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1 Introduction

Classical Schwarz methods need in general overlap to converge, but in the case of
hyperbolic problems, they can also be convergent without overlap, see [7]. For the
first order formulation of Maxwell equations, we have proved however in [18] that
the classical Schwarz method without overlap does not converge in most cases in
the presence of coefficient jumps aligned with interfaces.

Optimized Schwarz methods have been developed for Maxwell equations in first
order form without conductivity in [8], and with conductivity in [5, 12]. These meth-
ods use modified transmission conditions, and often converge much faster than clas-
sical Schwarz methods. For DG discretizations of Maxwell equations, optimized
Schwarz methods can be found in [9, 10, 6]. Optimized Schwarz methods were
also developed for the second order formulation of Maxwell equations, see [1], and
[16, 17] for scattering problems with applications.

While usually coefficient jumps hamper the convergence of domain decomposi-
tion methods, this is very different for optimized Schwarz methods. For diffusive
problems, it was shown in [11] that jumps in the coefficients can actually lead to
faster iterations, when they are taken into account correctly in the transmission con-
ditions: optimized Schwarz methods benefit from jumps in the coefficients at inter-
faces. We had shown in [18] that this also holds for the special case of transverse
magnetic modes (TMz) in the two dimensional first order Maxwell equations. We
show in this short paper that these results for the TMz modes (and the correspond-
ing ones for the transverse electric modes (TEz)) can be used to formulate optimized
Schwarz methods for the 3D second order Maxwell equations which then in some
cases converge faster, the bigger the coefficient jumps are.
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2 Classical Schwarz for Second Order Maxwell Equations

The time dependent Maxwell equations in their second order formulation are

ε∂
2
t E +∇× (µ−1

∇×E ) = ∂tJ , (1)

where E = (E1,E2,E3)
T is the electric field, ε is the electric permittivity, µ is the

magnetic permeability, and J is the applied current density. We assume that the
applied current density is divergence free, divJ = 0. There is a similar system also
for the magnetic field H = (H1,H2,H3)

T ,

µ∂
2
t H +∇× (ε−1

∇×H ) = ∇× ε
−1J , (2)

but we will only consider the equations (1) for the electric field in this short paper.
The time dependent Maxwell equations (1) form a system of hyperbolic partial

differential equations [8]. Imposing incoming characteristics is equivalent to impos-
ing the impedance condition

Bn j(E
m,n) =

1
µm

(∇×E m,n×n j)×n j +
iω
Zm

(E m,n×n j) = s, (3)

where Zm =
√

µm
εm

. We are interested here in the time-harmonic Maxwell equations,

which are obtained by supposing that E (x, t) = eiωtE(x) for a fixed frequency ω .
After some simplifications, we obtain from equation (1) the time harmonic second
order Maxwell equation

εω
2E−∇× (µ−1

∇×E) =−iωJ. (4)

We are interested here in the heterogeneous case, where the domain Ω of interest
consists of two non-overlapping subdomains Ω1 and Ω2 with interface Γ , and piece-
wise constant parameters ε j and µ j in Ω j, j = 1,2. We want to solve such problems
using the Schwarz algorithm{

ε1ω2E1,n−∇× (µ−1
1 ∇×E1,n) = −iωJ, in Ω1,

Tn1(E
1,n) = Tn1(E

2,n−1) on Γ ,{
ε2ω2E2,n−∇× (µ−1

2 ∇×E2,n) = −iωJ, in Ω2,
Tn2(E

2,n) = Tn2(E
1,n−1) on Γ ,

(5)

with the transmission condition

Tn j(E
m,n) = (Id−A j)(

1
µm

n j×∇×Em,n)−
iω j

µ j
(Id +A j)(n j× (Em,n×n j)). (6)

with ω j = ω
√

ε jµ j, j = 1,2. The classical Schwarz algorithm is obtained for
the choice A j = 0, for j = 1,2. We see that the classical Schwarz algorithm is
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exchanging characteristic information at the interfaces between subdomains, i.e.
Tn j(Em,n) = Bn j(E

m,n) where B is defined in (3).
In [18], we studied the classical Schwarz algorithm for the first order Maxwell

equations on the domain Ω = R3, with subdomains Ω1 = (−∞,0]×R2 and Ω2 =
[0,∞)×R2 and interface Γ = {0}×R2 and the Silver-Müller radiation condition.
We showed that the convergence factor of the classical Schwarz algorithm in 3D is
ρcla = max{ρEcla,ρMcla}, where ρEcla and ρMcla are the convergence factors of the
TEz and TMz cases in 2D. We then proved that if there are coefficient jumps along
the interface Γ , i.e. µ1 6= µ2 and/or ε1 6= ε2, the classical Schwarz algorithm is diver-
gent in 3D if µ1ε2 6= µ2ε1. If µ1ε2 = µ2ε1, we obtained ρEcla = ρMcla, and ρcla < 1
for the propagative modes, |k| < ω j, j = 1,2, but ρcla(|k|) = 1 for the evanescent
modes, |k| > ω j, j = 1,2, so the algorithm is stagnating for all evanescent modes.
It is thus never convergent in 3D. We then investigated in [18] the 2D case of TMz
modes in more detail, and found that the classical Schwarz algorithm in the presence
of coefficient jumps is convergent in certain situations, depending on the jumps in ε

and µ .
These results also hold for the second order Maxwell equations when the Schwarz

algorithm (5,6) with classical transmission conditions is applied, and for the conver-
gent cases from [18] in 2D, we have the following new contraction estimate:

Theorem 1 (Classical Schwarz in 2D). If the classical Schwarz algorithm (5,6) in
2D converges, then we have the asymptotic convergence factor estimate

ρMcla(k,ω1,ω2,Z) = ρEcla(k,ω1,ω2,Z) = 1−O(h2)

with Z =
√

µ1ε2
µ2ε1

and h the uniform mesh size.

Proof. As in [18], we can write the convergence factors for the TMz case as

ρMcla(k,ω1,ω2,Z) =

∣∣∣∣∣∣∣
(√

k2−ω2
1 − iω1Z

)(√
k2−ω2

2 − iω2/Z
)

(√
k2−ω2

1 + iω1

)(√
k2−ω2

2 + iω2

)
∣∣∣∣∣∣∣

1
2

, (7)

and for evanescent modes (k > ω1,ω2), equation (7) is equal to

ρMcla(k,ω1,ω2,Z) = 1+
(Z2−1)ω2

1
Z2k2

(
Z2−Y 2− (Z2−1)ω2

2
k2

)
, (8)

with Y = ω2
ω1

. From equation (8) we see that limk→∞ ρMcla = 1. If the classical
Schwarz algorithm is convergent then ρMcla < 1, ∀k, the previous remark permits us
to conclude that the maximum over all the frequencies must be at k = kmax =

cmax
h ,

the largest frequency supported by the numerical grid, where h is the mesh size and
cmax is a constant depending on the geometry. To conclude the proof, we just insert
k = cmax/h into (8) and the result follows by expansion. The proof for the TEz case
is similar.
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3 Optimized Schwarz for Second Order Maxwell Equations

Since the classical Schwarz method is not an effective solver for Maxwell equations
in the presence of coefficient jumps, we introduce now more effective transmission
conditions which take the coefficient jumps into account. We consider algorithm
(5,6) with the particular choice

A j := γ jMST M + γ jEST E , ST M = ∇τ ∇τ ·, ST E = ∇τ ×∇τ×,

where τ is the tangential direction to the interface. We note that ST M−ST E = ∆τ I,
where ∆τ is the Laplace-Beltrami operator in the tangential plane (for example ,
∆τ = ∂yy+∂zz when n=(1,0,0)). The constants γ1E , γ2E and γ1M , γ2M can be chosen
in order to optimize the algorithm.

Performing a Fourier transform in the yz plane, we find after a lengthy calculation
the iteration matrix of the optimized Schwarz algorithm to be

IT =

(
CE 0
0 CM

)
(9)

with the coefficients

CE =
((λ1− iω1/Z)− γ2M|k|2(λ1 + iω1/Z))((λ2− iω2Z)− γ1M|k|2(λ2 + iω2Z))

(2ω1− i(λ1− iω1)(1− γ1M|k|2))(2ω2− i(λ2− iω2)(1− γ2M|k|2))
,

CM =
((λ1− iω1Z)− γ2E |k|2(λ1 + iω1Z))((λ2− iω2/Z)− γ1E |k|2(λ2 + iω2/Z))

((1− γ1E |k|2)(λ1− iω1)+2iω1)((1− γ2E |k|2)(λ2− iω2)+2iω2)
,

(10)
with λ j =

√
|k|2−ω2

j , j = 1,2. If we choose for the parameters the values

γ1M =
λ2− iω2Z

|k|2(λ2 + iω2Z)
, γ1E =

λ2− iω2/Z
|k|2(λ2 + iω2/Z)

,

γ2E =
λ1− iω1Z

|k|2(λ1 + iω1Z)
, γ2M =

λ1− iω1/Z
|k|2(λ1 + iω1/Z)

,

(11)

then the iteration matrix IT in (9) vanishes and we have convergence in two itera-
tions. The corresponding transmission conditions are called transparent conditions,
and are optimal, since they lead to a direct solver. But the operators corresponding
to the symbols in (11) are non local and thus costly to use. We therefore propose to
replace λ1 and λ2 in (11) by zeroth order approximations s1E , s1M , s2E and s2E . The
convergence factor of the method is then the maximum of the spectral radius of (9)
over all Fourier frequencies. We obtain

ρopt = max{ρEopt,ρMopt}, (12)

with
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ρEopt(|k|,ω,ε1,ε2,µ1,µ2,s1M,s2M) =
∣∣∣ (λ2−s2M)(λ1−s1M)
(λ2+s1Mε2/ε1)(λ1+s2Mε1/ε2)

∣∣∣1/2
,

ρMopt(|k|,ω,ε1,ε2,µ1,µ2,s1E ,s2E) =
∣∣∣ (λ1−s1E )(λ2−s2E )
(λ2+s1E µ2/µ1)(λ1+s2E µ1/µ2)

∣∣∣1/2
.

(13)

These factors can be optimized separately and they are once again the convergence
factors of the TMz and TEz cases in 2D. In order to optimize we have to choose
s jE ,s jM , j = 1,2 such that ρopt is as small as possible for all numerically relevant
frequencies k ∈ K := [kmin,kmax]. Here kmin is the smallest frequency relevant to
the subdomain, and kmax =

cmax
h is the largest frequency supported by the numerical

grid, h being the mesh size, see for example [14]. We search for s jE and s jM of
the form s jE = c jE(1+ i), s jM = c jM(1+ i) such that s jE , s jM , j = 1,2 will be the
solutions of the min-max problems

min
s1E ,s2E∈C

max
k∈K

ρMopt(|k|,ω,ε1,ε2,µ1,µ2,s1E ,s2E), (14)

min
s1M ,s2M∈C

max
k∈K

ρEopt(|k|,ω,ε1,ε2,µ1,µ2,s1M,s2M). (15)

Since the optimization can be performed independently, we can use our results from
[18] and obtain

Corollary 1 (2D asymptotically optimized contraction factor). For TMz, the so-
lution of (14) for Y 6= 1 gives the asymptotic convergence factor

ρ
∗
Mopt =


1−O(h1/4) if Z = Y ,√

µmin
µmax

+O(h) if Z ≤ Y <
√

2Z or Y ≤ Z <
√

2Y ,

4
√

1
2 +O(h) if Z <

√
2Y or Y >

√
2Z.

(16)

If Z 6= 1 and Y = 1, we obtain after excluding the resonance frequency [8]

ρ
∗
Mopt =

√
µmin

µmax
+O(h).

For the TEz case, the same conclusion holds if we replace Y by Y−1 and µ by ε .

The results in 3D follow now by a systematic consideration of both cases together:

Theorem 2 (3D asymptotically optimized contraction factor, Case A). If Z 6=
Y,Y−1 and Y 6= 1, the optimized convergence factor ρ∗opt in (12) has the asymptotic
behavior:

1. If min
{

max{(ZY )−1,ZY},max{Z/Y,Y/Z}
}
>
√

2, then

ρ
∗
opt =

4
√

1/2+O(h). (17)

2. If min
{

max{(ZY )−1,ZY},max{Z/Y,Y/Z}
}
= max{Z/Y,Y/Z} ≤

√
2, then

ρ
∗
opt =

√
µmin

µmax
+O(h). (18)
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3. If min
{

max{(ZY )−1,ZY},max{Z/Y,Y/Z}
}
= max{(Y Z)−1,Y Z} ≤

√
2, then

ρ
∗
opt =

√
εmin

εmax
+O(h). (19)

Proof. To prove 1. we use twice Corollary 1. If max{Z/Y,Y/Z} >
√

2, we use the
third result in (16) for the TMz case. Similarly if max{ZY,(ZY )−1} >

√
2 we use

also the third result in (16) but for the TEz case. From equation (12) we know that
ρopt is the maximum of ρEopt and ρMopt, and if both of them have the asymptotic
behaviour 4

√
1/2+O(h), we get (17) as required.

For 2. we know that max{Z/Y,Y/Z} ≤
√

2, which means that we can use
the second result in (16), i.e. ρMopt =

√
µmin
µmax

+ O(h). We note that Z/Y = µ1
µ2

and ZY = ε2
ε1

which implies 1 ≥
√

µmin
µmax
≥ 4
√

1
2 . If max{(ZY )−1,ZY} >

√
2, by

Corollary 1 we have ρEopt =
4
√

1/2+O(h), and we clearly see ρMopt > ρEopt. If
max{(ZY )−1,ZY} ≤

√
2, we obtain by hypothesis the inequality max{Z/Y,Y/Z} ≤

max{(ZY )−1,ZY}≤
√

2, and this implies µmin
µmax
≥ εmin

εmax
. Then we obtain ρMopt≥ ρEopt

and thus (18).
Finally, for 3., one can proceed as for 2 to obtain (19).

Theorem 3 (3D asymptotically optimized contraction factor, Case B). If Z = Y
or Z = Y−1, then the optimized convergence factor ρ∗opt in (12) satisfies

ρ
∗
opt = 1−O(h1/4). (20)

Proof. We use the first result in (16) of Corollary 1 and proceed as in Theorem 2.

Theorem 4 (3D asymptotically optimized contraction factor, Case C). If Y = 1
and Z 6= Y , then the optimized convergence factor ρ∗opt in (12) satisfies

ρ
∗
opt =

√
µmin

µmax
+O(

√
h). (21)

Proof. After excluding the resonance frequency, we apply the second part of Corol-
lary 1. Note that in this case ρMopt = ρEopt.

Theorem 2 and 4 contain the important result that in the presence of jumps in the
coefficients, the convergence of the optimized Schwarz method for Maxwell equa-
tions gets faster when the jump increases, the method benefits from the jumps! In
the first part of Theorem 2, the convergence is independent of the jump in the coef-
ficients, and in all these cases the nonoverlapping method converges independently
of the mesh parameter, also unusual for optimized Schwarz methods without jumps
in the coefficients. In the case of Z =Y or Z =Y−1 (µ1 = µ2 or ε1 = ε2) in Theorem
3 however, the convergence factor depends on h and deteriorates as h goes to zero,
as in the case without jumps presented in [8].
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Fig. 1 Convergence regions in blue and divergence regions in red for classical Schwarz (left) and
optimized Schwarz (right)

We now illustrate graphically the improvement of the optimized Schwarz method
over the classical one in 2D. We show in Figure 1 in red the divergence regions and
in blue the convergence regions for different values of Z and Y . In the left graphic the
white part is still an open problem. In the right the light blue line have convergence
dependant of the mesh size h, the light blue region have convergence dependent on
the coefficients µ ′s and the dark blue region have convergence independent of the
mesh size h and the coefficients µ ′s, the red line is the zone of resonance corrected
with theorem 1. We clearly see that the optimization of the transmission conditions
transforms an algorithm that fails for a large range of problems into one that works
in all cases.

4 Conclusions

Classical Schwarz methods applied to 3D Maxwell equations with jumps in the
coefficients aligned with the interfaces do not converge, and this is also the case
for the second order formulation of Maxwell equations. Using however optimized
transmission conditions, we showed that one can obtain Schwarz methods for the
3D Maxwell equations that converge independently of the mesh parameter in some
cases, and even become faster as the jumps get larger at the interfaces. These meth-
ods directly benefit from the jumps in the coefficients. We presented precise asymp-
totic convergence factor estimates for the many different cases of coefficient jumps,
and are currently working on the numerical implementation of these methods in the
full 3D setting.
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