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1 Introduction

The Optimized Schwarz Method (OSM) is a domain decomposition method
based on the introduction of generalized Robin interface conditions obtained
by linearly combining the two physical interface conditions through the in-
troduction of suitable symbols, and then on the optimization of such symbols
within a proper subset, see Lions [1990], Japhet [1998]. This method has been
considered so far for many problems in the case of flat interfaces, see, e.g.,
Gander [2006], Japhet et al. [2001], Gander et al. [2002], Qaddouria et al.
[2008], Dolean et al. [2009], Gerardo Giorda et al. [2010], Stupfel [2010]. Re-
cently, OSM has been considered and analyzed for the case of cylindrical
interfaces in Gigante et al. [2013], Gigante and Vergara [2013], and for the
case of circular interfaces in Barucq et al. [2013]. In particular, in Gigante and
Vergara [2013] we developed a general convergence analysis of the Schwarz
method for elliptic problems and an optimization procedure within the con-
stants, with application to the fluid-structure interaction (FSI) problem.

In this work, we provide a numerical study of the performance of the
optimization procedure developed in Gigante and Vergara [2013] for the FSI
problem when the solution is characterized by non-null angular frequencies,
thus breaking the radial symmetry. The reported 3D numerical results for
a cylindrical domain showed the effectiveness of the procedure proposed in
Gigante and Vergara [2013] also in such a case.

The outline of this paper is as follows. In Section 2 we report the conver-
gence result developed in Gigante and Vergara [2013] with application to the
FSI problem, whereas in Section 3 we describe the optimization procedure.
Finally, in Section 4 we show the numerical results.
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2 Convergence analysis

We consider the interaction between an incompressible, inviscid and linear
fluid in the cylindrical domain Ωf := {(x, y, z) ∈ R

3 : x2 + y2 < R2}, for a
given R ∈ R

+, and a linear elastic structure described by the wave equation
in the cylindrical crown Ωs := {(x, y, z) ∈ R

3 : R2 < x2 + y2 < (R + H)2},
with H the structure thickness. The two subproblems interact at the common
cylindrical interface ΣR = {(x, y, z) ∈ R

3 : x2 + y2 = R2}. We also introduce
the cylindrical variables r, ϕ defined by x = r cos ϕ and y = r sinϕ. After the
time discretization obtained with a BDF1 scheme for both subproblems, the
coupled problem at time tn+1 := (n + 1)∆t, ∆t being the time discretization
parameter, reads






ρfδtu + ∇p = 0 in Ωf ,
∇ · u = 0 in Ωf ,∫
∞

−∞

∫ 2π

0
|p (r cos ϕ, r sinϕ, z)| dϕdz bounded as r → 0+,

u · n = δtη · n on ΣR,
−pn = λ∇η n on ΣR,
η × n = 0 on ΣR,
ρsδttη − λ△η = 0 in Ωs,
γST η + λ∇η n = Pext n on Σout,

(1)

where ρf and ρs are the fluid and structure densities, λ the square of the wave

propagation velocity, δtw := w−wn

∆t
, δttw := δtw−δtw

n

∆t
, Σout = {(x, y, z) ∈

R
3 : x2 + y2 = (R + H)2}, n is the unit vector orthogonal to the interfaces,

and we have omitted the time index n+1. Problem (1)1−3 is the fluid problem,
problem (1)7−8 is the structure problem equipped with a Robin condition at
the external surface to model the elastic surrounding tissue, Pext is the exter-
nal pressure, whereas (1)4−6 are the coupling conditions at the FS interface,
stating the continuity of the velocities and of the tractions along the normal
direction. The fluid and the structure problems have to be completed with
initial conditions and with the assumption of decay to zero for |z| → ∞.

By combining linearly (1)4 and (1)5 through the introduction of the linear
operators Sf and Ss acting in the tangential direction to ΣR, we obtain the
following generalized Robin interface conditions (see Gigante and Vergara
[2013]) 





Sf∆t δtur − p =
Sf

∆t
ηr + λ∂rηr,

Ss

∆t
ηr + λ∂rηr = Ss∆t δtur − p,

where ur = u · n and ηr = η · n, and where we have set to zero the terms
at previous time steps since we analyze the convergence to the zero solution.
Then, at time tn+1, the corresponding iterative Schwarz method reads:

Given u
0, p0, η0, solve for j ≥ 0 until convergence
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1. Fluid problem






ρfδtu
j+1 + ∇pj+1 = 0 in Ωf ,

∇ · uj+1 = 0 in Ωf ,∫
∞

−∞

∫ 2π

0
|p (r cos ϕ, r sin ϕ, z)| dϕdz bounded as r → 0+,

Sf∆t δtu
j+1
r − pj+1 =

Sf

∆t
ηj

r + λ∂rη
j
r on ΣR;

(2)

2. Structure problem






ρsδttη
j+1 − λ△η

j+1 = 0 in Ωs,
γST η

j+1 + λ∇η
j+1

n = 0 on Σout,
Ss

∆t
ηj+1

r + λ∂rη
j+1
r = Ss∆t δtu

j+1
r − pj+1 on ΣR,

η
j+1 × n = 0 on ΣR,

(3)

where we have set to zero the forcing term Pext since we analyze the conver-
gence to the zero solution.

By introducing the Fourier transform with respect to z and ϕ, and the
symbols σf and σs related to Sf and Ss, we can write the previous iterations
with respect to the variables (r,m, k), where m is the discrete frequency
variable related to the angular variable ϕ and k is the continuous frequency
variable related to z. Then, we have the following

Proposition 1 Set

A(m, k) = −λ∆tβ (K ′

m(β R) − χ I ′m(β R))

Km(β R) − χ Im(β R)
, B(m, k) = − ρf Im(kR)

∆tk I ′m(kR)
,

(4)
where Iν and Kν are the modified Bessel functions, see Lebedev [1972], β(k) =√

k2 + ρs

λ∆t2
, and

χ(m, k) :=
γST Km (β(R + H)) + λβK ′

m(β(R + H))

γST Im(β(R + H)) + λβI ′m(β(R + H))
. (5)

Then, the reduction factor of iterations (2)-(3) is given by

ρj(m, k) = ρ(m, k) =

∣∣∣∣
σf (m, k) − A(m, k)

σs(m, k) − A(m, k)
· σs(m, k) − B(m, k)

σf (m, k) − B(m, k)

∣∣∣∣ . (6)

Moreover, for any given frequency (m, k), the convergence set is given by
(σf , σs) ∈ Θ1 (A,B) ∪ Θ2 (A,B), where

Θ1 (A,B) =
{

(σf , σs) : σs < σf and
(
σf − A+B

2

) (
σs − A+B

2

)
<

(
B−A

2

)2
}

,

Θ2 (A,B) =
{

(σf , σs) : σs > σf and
(
σf − A+B

2

) (
σs − A+B

2

)
>

(
B−A

2

)2
}

,

with A and B given by (4).
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Proof. See Gigante and Vergara [2013].

3 Optimization procedure

From the previous results it follows that the reduction factor (6) is equal
to zero for σopt

f = A(m, k) and σopt
s = B(m, k), with A and B given by

(4). However, such choices are not implementable since they lead to non-
local conditions. Then, a classical approach is to find the best values of the
interface symbols within a suitable subset (Optimized Schwarz Method). In
particular, in Gigante and Vergara [2013] it has been proposed to look for
the best symbols belonging to a properly chosen curve parametrized with
respect to a variable q ∈ R, so that in fact we have a minimization problem
over q. Let K be the set of the admissible frequencies. Then, we introduce
the following quantities:

B = max
(m,k)∈K

B (m, k) , A = min
(m,k)∈K

A (m, k) , M =
1

2

(
A + B

)
,

D (m, k) =
1

2
(A (m, k) − B (m, k)) , M (m, k) =

1

2
(A (m, k) + B (m, k)) ,

Q (m, k) =

∣∣M (m, k) − M
∣∣

D (m, k)
, Q = sup

(m,k)∈K

Q (m, k) , N =
inf(m,k)∈K D (m, k)

sup(m,k)∈K D (m, k)
.

We have the following

Theorem 1. Assume that A (m, k) and B (m, k) given by (4) are bounded
on K, for all (m, k) ∈ K. Let

ρ0 = max






(
1 −

√
N

1 +
√

N

)2

;



1 −
√

1 − Q
2

Q





2




.

Then, for all (m, k) ∈ K, we have

ρ̂(q,m, k) =

∣∣∣∣
q − A (m, k)

2M − q − A (m, k)

2M − q − B (m, k)

q − B (m, k)

∣∣∣∣ ≤ ρ0, (7)

if and only if q ∈ [q−, q+] with

q− = M

+sup(m,k)∈K

{
1+ρ0

1−ρ0

D (m, k) −
√(

M − M (m, k)
)2

+ 4ρ0

(1−ρ0)
2 (D (m, k))

2
}

,

q+ = M

+ inf(m,k)∈K

{
1+ρ0

1−ρ0

D (m, k) +
√(

M − M (m, k)
)2

+ 4ρ0

(1−ρ0)
2 (D (m, k))

2
}

.
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Proof. In Gigante and Vergara [2013], a proof of a general result holding for
any A and B satisfying B < A for all (m, k) ∈ K, and B < A, has been
provided. Here, we notice that these assumptions are automatically satisfied
in our case. Indeed, first of all notice that I, I ′,K > 0 while K ′ < 0, so that
B < 0 for any (m, k). As for A, we first observe that

K ′

m (βR) − χI ′m (βR)

Km (βR) − χIm (βR)
< 0

if and only if
K ′

m (βR)

I ′m (βR)
< χ <

Km (βR)

Im (βR)
,

which thanks to (5) becomes

K ′

m (βR)

I ′m (βR)
<

γST Km (β (R + H)) + λβK ′

m (β (R + H))

γST Im (β (R + H)) + λβI ′m (β (R + H))
<

Km (βR)

Im (βR)
. (8)

Since the denominators are positive, the first inequality becomes

γST K ′

m (βR) Im (β (R + H)) + λβK ′

m (βR) I ′m (β (R + H))

< γST I ′m (βR) Km (β (R + H)) + λβI ′m (βR) K ′

m (β (R + H)) .

Dividing by I ′m (βR) K ′

m (βR) < 0, we obtain

γST

(
Im (β (R + H))

I ′m (βR)
− Km (β (R + H))

K ′
m (βR)

)
> −λβ

(
−K ′

m (β (R + H))

K ′
m (βR)

+
I ′m (β (R + H))

I ′m (βR)

)
,

and this inequality follows immediately, since

Im (β (R + H))

I ′m (βR)
> 0,

Km (β (R + H))

K ′
m (βR)

< 0,

and
I ′m (β (R + H))

I ′m (βR)
> 1,

K ′

m (β (R + H))

K ′
m (βR)

< 1

(since I ′m is positive and increasing, while K ′

m is negative and increasing).
The second inequality in (8) is treated similarly. ¤

By comparing (7) with (6), we observe that moving along the line

{
σf = q
σs = −q + 2M,

q ∈ [q−, q+], the reduction factor is guaranteed to be below a suitable value
(ρ0). This allows to choose properly the value of q in view of the numerical
simulations.



6 Giacomo Gigante and Christian Vergara

4 Numerical results

In Gigante and Vergara [2013] we studied the numerical performance of the
proposed estimates for a real fluid-structure interaction problem, inspired by
haemodynamics, where the solution was characterized by radial symmetry,
thus to a null dominant angular frequency m. In particular, we showed that
in this case, the estimates provided by Theorem 1 allowed to choose effective
values of the interface parameters.

Here we want to study some cases where the solution features non null
dominant angular frequencies. In particular, we considered the coupling be-
tween the incompressible Navier-Stokes equations written in the Arbitrary
Lagrangian-Eulerian formulation, see Donea [1982], and the linear infinites-
imal elasticity, see for example Nobile et al. [2013], and we used a Robin-
Robin partitioned procedure for its numerical solution, see Badia et al.
[2008], Nobile and Vergara [2012]. In all the numerical experiments, we
used the BDF scheme of order 1 for both the subproblems with a semi-
implicit treatment of the fluid convective term. Moreover, we used the fol-
lowing data: ρf = 1 g/cm3, ρs = 1.1 g/cm3, γST = 3 · 106 dyne/cm3, fluid
viscosity µ = 0.035 dyne/cm2, Poisson ratio ν = 0.49, Young modulus
E = 3 · 106 dyne/cm2. All these data are inspired from haemodynamic ap-
plications. We considered a cylinder with length L = 5 cm, partitioned in
an inner cylinder for the fluid problem with radius R = 0.5 cm, 4680 tetra-
hedra and 1050 vertices, and an external cylindrical crown for the structure
with thickness 0.1 cm and 1260 vertices. For the numerical discretization, we
used P1bubble − P1 finite elements for the fluid subproblem and P1 finite
elements for the structure subproblem, and a time discretization parameter
∆t = 0.001 s. The space discretization parameter is h = 0.25 cm, so that the
frequency k varies in the range [0.6, 12.5]. In all the numerical experiments we
prescribed the pressure Pin = 1000 dyne/cm2 at the inlet. All the numerical
results have been obtained with the parallel Finite Element library LIFEV

developed at MOX - Politecnico di Milano, INRIA - Paris, CMCS - EPF of
Lausanne and Emory University - Atlanta.

We studied the following two cases, characterized by the following initial
conditions for the velocity u0z along the z direction:
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1.

u0z (x, y) = 103
(
x5 − 10x3y2 + 5xy4

)
cm/s = 103r5 cos(5ϕ) cm/s. (9)

In this case the leading frequency is m = 5 and therefore we apply Theorem
1 with m = 5 and 0.6 ≤ k ≤ 12.5, obtaining ρ0 = 0.05, provided that
q ∈ [6684, 9586], with M = 3651;

2.

u0z(x, y) =






10
(
x2 + y2

) sin(10.5 arctan( y

x ))
sin(0.5 arctan( y

x ))
cm/s x > 0, y 6= 0,

210x2 cm/s x > 0, y = 0,

10
(
x2 + y2

) cos(10.5 arctan( y

x ))
cos(0.5 arctan( y

x ))
cm/s x < 0,

−10y2 cm/s x = 0.

(10)

= 10r2

(
1 + 2

10∑

m=1

cos (mϕ)

)
cm/s.

This function is the Dirichlet kernel which is characterized by the fact
that all the frequencies m between 0 and 10 are equally distributed. We
then apply Theorem 1 with 0 ≤ m ≤ 10 and 0.6 ≤ k ≤ 12.5, obtaining
ρ0 = 0.32, provided that q ∈ [1983, 7521], with M = 1323.

Of course we prescribe the same initial condition for the displacement η

along the z direction.
In both the cases the solution is supposed to feature, at least for the

first time steps, the same leading frequencies as the initial condition, so that
the application of the estimates provided by Theorem 1 are supposed to
lead to excellent convergence properties. In particular, we run the numerical
experiments for two time steps, that is we set T = 0.002 s as the final instant.

In Figure 1 we depict the computed velocity along the z direction after
the first time step.

Fig. 1 Velocity along the z direction after the first time step. Left: case characterized by

m = 5 as the leading frequency; Right: Dirichlet kernel.
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We run the numerical simulations for a wide range of the parameter q. We
found that the optimal value is q = 9000 for the first case and q = 3000 for
the second case. In Tables 1 and 2, we report the mean number of iterations
for some of the couples of the interface parameters used in the numerical
simulations, some of them within the range estimated by Theorem 1 and
some of them outside such a range.

σf /σs u0z given by (9) σf /σs u0z given by (10)

6684/618 24.5 1000/-1646 X
8000/-698 12.0 1983/663 9.5

9000/-1698 8.5 3000/-354 4.5
9586/-2284 8.5 5000/-2354 8.0
12000/-4698 10.0 7521/-4875 10.5
15000/-7698 13.5 10000/-7354 13.0

Table 1 Values of the interface parameters and mean number of iterations over the two

time steps for the initial condition given by (9) (left) and by (10) (right). In bold the
couples of σf and σs within the optimal range estimated by Theorem 1. X means that no
convergence has been achieved.

These numerical results show that the optimal value of q falls in both
the cases within the range estimated by Theorem 1 and that outside such a
range the convergence properties deteriorate. In particular, we observe that
the performance worsens faster going towards the left extreme of the optimal
range. This could be explained by looking at Figure 4, left, in Gigante and
Vergara [2013], where it could be observed that the level sets are denser for
small values of σf and σs (that is of q), so that the performance is more
sensitive to small perturbation of q when q is small.

In conclusion, our results showed the effectiveness of the estimates provided
in Gigante and Vergara [2013] also when the dominant angular frequencies
are different from zero.
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