
BDDC deluxe Domain Decomposition

Olof B. Widlund1 and Clark R. Dohrmann2

1 Introduction

We will consider BDDC domain decomposition algorithms for finite ele-
ment approximations of a variety of elliptic problems. The BDDC (Balanc-
ing Domain Decomposition by Constraints) algorithms were introduced by
Dohrmann [2003], following the introduction of FETI–DP by Farhat et al.
[2001]. These two families are closely related algorithmically and have a com-
mon theory. The design of a BDDC algorithm involves the choice of a set
of primal degrees of freedom and the choice of an averaging operator, which
restores the continuity of the approximate solution across the interface be-
tween the subdomains into which the domain of the given problem has been
partitioned. We will also refer to these operators as scalings.

This paper principally address the latter choice. All our efforts aim at
developing effective preconditioners for the stiffness matrices. These approx-
imate inverses are then combined with the conjugate gradient method. We
are primarily interested in hard problems with very many subdomains and
to obtain convergence rates independent of that number and with rates that
deteriorate slowly with the size of the subdomain problems. Our bounds can
often be made independent of jumps in the coefficients between subdomains
and our numerical results indicate that our new BDDC deluxe algorithm is
quite promising and robust.

Among our applications are problems formulated in H(curl), H(div), and
for Reissner-Mindlin plates. We have worked mostly with the lowest order
finite element methods for self-adjoint elliptic problems but we have also
helped develop solvers for isogeometric analysis. After introducing the general
ideas, we will focus on our recent work on three-dimensional problems in
H(curl), see Dohrmann and Widlund [2014], since other applications are
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discussed in other papers of this volume or elsewhere; cf. Beirão da Veiga
et al. [2014a], Beirão da Veiga et al. [2014b], Calvo [2014], Chung and Kim
[2014], Dryja et al. [2014], Lee [2014], Oh et al. [2013], and Oh [2014].

2 BDDC, finite element meshes, and equivalence classes

The BDDC algorithms work with decompositions of the domain Ω of the
elliptic problem into non-overlapping subdomains Ωi, each often with tens of
thousands of degrees of freedom. In-between the subdomains is the interface
Γ , which does not cut through any elements. The local interface of Ωi is
defined by Γi := ∂Ωi \ ∂Ω.

For nodal finite element methods, most nodes are typically interior to in-
dividual subdomains while the others belong to several subdomain interfaces
or to the boundary of the given region. We partition the nodes on Γ into
equivalence classes determined by the set of indices of the local interfaces
Γj to which they belong. In three dimensions, we have equivalence classes
of face nodes, associated with two local interfaces, and classes of edge nodes
and subdomain vertex nodes typically associated with more than two. For
H(curl) and Nédélec (edge) elements, there are only equivalence classes of
element edges for subdomain faces and for subdomain edges. For H(div) and
Raviart-Thomas elements, we only have degrees of freedom for element faces
and the only equivalence classes are associated with the subdomain faces.
These equivalence classes play a central role in the design, analysis, and pro-
gramming of domain decomposition methods.

These preconditioners are constructed using partially subassembled stiff-
ness matrices built from the subdomain stiffness matrices A(i) of the subdo-
mains Ωi, i = 1, . . . , N. We will first consider nodal finite element problems.
The nodes of Ωi ∪ Γi are divided into those in the interior (I) and those on
the interface (Γ ). The interface set is further divided into a primal set (Π)
and a dual set (∆).

We can then represent the subdomain stiffness matrix, of Ωi, as

A(i) =




A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ


 .

This matrix represents the stiffness contributed by Ωi. Throughout the it-
eration, we enforce continuity of the primal variables, as in the given finite
element model, but allow multiple values of the dual variables when working
with a partially subassembled model as in Figure 1. Partially subassembling
the subdomain matrices and noting that the matrix ÃΠΠ is assembled from

the submatrices A
(i)
ΠΠ , we obtain
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Fig. 1 Torn 2D scalar elliptic problem; primal variables at subdomain vertices only.

Ã =




A
(1)
II A

(1)
I∆ A

(1)
IΠ

A
(1)
∆I A

(1)
∆∆ A

(1)
∆Π

. . .
...

A
(N)
II A

(N)
I∆ A

(N)
IΠ

A
(N)
∆I A

(N)
∆∆ A

(N)
∆Π

A
(1)
ΠI A

(1)
Π∆ · · · A

(N)
ΠI A

(N)
Π∆ ÃΠΠ




.

This partially subassembled stiffness matrix of this alternative finite element
model is an important component of the BDDC preconditioners. The primal
variables provide a necessary, global component of the preconditioners and
they make the partially assembled matrix invertible.

Solving a linear system with the matrix Ã is much cheaper than when
using the fully assembled model but results in multiple values of the dual
interface variables. When using BDDC, we therefore restore the continuity of
the original finite element problem by averaging across the interface. When
using FETI–DP, we instead employ Lagrange multipliers.

For scalar second order elliptic equations in the plane, as in Figure 1, the
approach outlined yields a condition number bound of C(1 + log(H/h))2,
where H/h := maxi(Hi/hi) with Hi the diameter of Ωi and hi that of the
smallest of the elements of Ωi. These results can be made independent of
jumps in the coefficients, if the interface averages are chosen carefully, but
for three dimensions the primal set of variables should include averages (and
possibly first moments) of the displacements over subdomain edges (and pos-
sibly subdomain faces) to obtain competitive algorithms. After introducing
primal variables of this type, we can change the variables to allow us to
represent the partially subassembled system matrix as above.
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We note that parallel, public domain BDDC software, developed by
Zampini [2013], is available. We also note Farhat, Pierson, et al. and Kla-
wonn and Rheinbach have been pioneers in developing FETI–DP software
for elasticity problems.

The BDDC and FETI–DP algorithms can be described in terms of three
product spaces of finite element functions/vectors defined by their interface
nodal values:

ŴΓ ⊂ W̃Γ ⊂ WΓ .

WΓ : no constraints; ŴΓ : continuity at every point on Γ ; W̃Γ : common values
of the primal variables. After eliminating the interior variables, we can write
the resulting subdomain Schur complements as

S(i) :=

(
S
(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
:=

(
A

(i)
∆∆ A

(i)
∆Π

A
(i)
Π∆ A

(i)
ΠΠ

)
−

(
A

(i)
∆I

A
(i)
ΠI

)(
A

(i)
II

)
−1 (

A
(i)
I∆ A

(i)
IΠ

)
.

By partially subassembling the S(i), we obtain S̃.
Let us denote the BDDC averaging operator, which maps W̃Γ into ŴΓ ,

by ED. In each BDDC iteration, we first compute the residual of the fully
assembled Schur complement equation. We then apply ET

D to obtain a right-
hand side for the partially subassembled linear system. We solve this system
and then apply ED. In the conventional BDDC algorithms the averaging
across the interface is done point-wise and that leads to non-zero residuals at
the nodes next to Γ. In each iteration, subdomain Dirichlet solves are then
used to eliminate them, but in the deluxe variant this step is not needed. The
iteration is accelerated by using a preconditioned conjugate gradient method.

The core of any theory for BDDC algorithms is the norm of the aver-
age operator ED. By an algebraic argument known, for FETI–DP, since the
publication of [Klawonn et al., 2002, Proof of Theorem 1], we have

κ(M−1A) ≤ ‖ED‖S̃ ,

which then provides an upper bound for the number of iterations required
of the preconditioned conjugate gradient method; for details on the BDDC
case, see, e.g., Beirão da Veiga et al. [2014a]. Here M−1 represents the action
of the preconditioner.

3 The new algorithmic idea

When designing a BDDC algorithm, we have to choose an effective set of
primal constraints and also a good recipe for the averaging across the inter-
face. Traditional averaging recipes were found not to work uniformly well for
three dimensional problems in H(curl); see Dohrmann and Widlund [2013].
This is directly related to the fact that there are two material parameters.
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An alternative was found and will be outlined in this section. It has also
proven to be very robust for H(div) problems, see Oh et al. [2013], and for
Reissner-Mindlin plates, see Lee [2014].

We note that experimentally, the condition numbers are often quite small.
For Reissner-Mindlin plates, in Lee’s experiments, they are ≤ 4 while without
preconditioning the condition numbers can exceed 1011 for very thin plates
with the parameter t = 10−5. The results in the H(div)-study are quite
similar and experiments with the deluxe version of BDDC for isogeometric
analysis show considerable improvement over older variants.

Across a subdomain face F ⊂ Γ , common to two subdomains Ωi and
Ωj , the deluxe ED is defined in terms of two Schur complements, which are
principal minors of S(i) and S(j), respectively:

S
(k)
F := A

(k)
FF −A

(k)
FIA

(k)
II

−1
A

(k)
IF , k = i, j.

The face contribution of the deluxe averaging operator is then defined by

w̄F := (EDw)F := (S
(i)
F + S

(j)
F )−1(S

(i)
F w

(i)
F + S

(j)
F w

(j)
F ).

This action of this component of ED can be implemented by solving a Dirich-
let problem on Ωi ∪ F ∪ Ωj . This local problem is larger than those of the
conventional BDDC algorithms, and we are currently exploring the effects of
using cheaper, inexact solvers for these subproblems.

Similar formulas can also be written down for subdomain edges and other
equivalence classes of interface variables. The operator ED is assembled from
these components.

We will now show that the analysis of BDDC deluxe can be reduced to
bounds for individual subdomains. Arbitrary jumps in two coefficients can
then often be well accommodated. We also note that the analysis of tradi-
tional BDDC algorithms requires an extension theorem; the deluxe version
does not.

Instead of estimating (RT
F w̄F )

TS(i)RT
F w̄F , where the restriction operator

RF maps the values on Γ onto those on F, we will work with the norm of

RT
F (w

(i)
F − w̄F ). Thus, instead of estimating the norm of ED, we will estimate

the norm of I −ED; a bound on the norm of ED will, as we previously have
noted, give a bound on the condition number.

We easily find that

w
(i)
F − w̄F = (S

(i)
F + S

(j)
F )−1S

(j)
F (w

(i)
F − w

(j)
F ).

By some more algebra and noting that RFS
(i)RT

F = S
(i)
F , we find that

(RT
F (w

(i)
F − w̄F ))

TS(i)(RT
F (w

(i)
F − w̄F )) =

(w
(i)
F − w

(j)
F )TS

(j)
F (S

(i)
F + S

(j)
F )−1S

(i)
F (S

(i)
F + S

(j)
F )−1S

(j)
F (w

(i)
F − w

(j)
F ).
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We now add the corresponding expression for the subdomain Ωj and, after
a simplification, find that this sum can be written as

(w
(i)
F − w

(j)
F )T (S

(i)−1
F + S

(j)−1
F )−1(w

(i)
F − w

(j)
F ).

We then find that, for any element wΠ in the primal space,

(RT
F (w

(i)
F − w̄F ))

TS(i)RT
F (w

(i)
F − w̄F ) + (RT

F (w
(j)
F − w̄F ))

TS(j)RT
F (w

(j)
F − w̄F )

≤ 2(w
(i)
F −RFwΠ)

T

S
(i)
F (w

(i)
F −RFwΠ)+2(w

(j)
F −RFwΠ)TS

(j)
F (w

(j)
F −RFwΠ).

Each of the two terms on the right hand side are local to only one subdomain.
For the subdomain faces, what now remains is to estimate, after a suitable

shift wΠ , (w
(i)
F −RFwΠ)TS

(i)
F (w

(i)
F −RFwΠ) by w(i)TS(i)w(i). This is routine

for H1(Ωi) using standard estimates in the domain decomposition literature
such as a face lemma [Toselli and Widlund, 2005, Lemma 4.24] in which we
estimate the energy of the extension of the face values by zero to the rest of
Γi with that of the minimal energy extension. A factor of C(1 + log(H/h))2

results. For H1(Ωi), all these estimates have been available for twenty years.
But for H(div) and H(curl), new tools have been required.

Similar estimates are required for subdomain edges. Let RE be the restric-
tion matrix which maps the values on Γ onto those on a subdomain edge E.
If this edge is common to three subdomains Ωi, Ωj , and Ωk, the edge average
w̄E is defined by

w̄E := (S
(i)
E + S

(j)
E + S

(k)
E )−1(S

(i)
E w

(i)
E + S

(j)
E w

(j)
E + S

(k)
E w

(k)
E ).

Here S
(i)
E := RES

(i)RT
E , etc. We can show that,

(RT
E(w

(i)
E − w̄E))

T S(i) RT
E(w

(i)
E − w̄E) ≤

3(w
(i)
E )TS

(j)
E w

(i)
E + 3/4(w

(j)
E )T S

(j)
E w

(j)
E + 3/4(w

(k)
E )TS

(k)
E w

(k)
E .

Other bounds, e.g., with a shift with an element of the primal space, can
also be developed, but the one given here has proven of use in our work
on problems in H(curl). We can also develop similar bounds for any edge,
common to more than three subdomains, using the same kinds of arguments.

4 H(curl) problems in three dimensions

Consider the variational problem: Find u ∈ H0(curl;Ω) such that

a(u,v)Ω = (f ,v)Ω ∀v ∈ H0(curl;Ω),
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where u× n = 0 on ∂Ω and where

a(u,v)Ω :=

∫

Ω

[α∇× u · ∇ × v + βu · v] dx, (f ,v)Ω :=

∫

Ω

f · v dx.

Here, α(x) ≥ 0 and β(x) strictly positive. For coefficients constant in each
subdomain, we have

a(u,v)Ω =

N∑

i=1

(αi(∇× u,∇× v)Ωi
+ βi(u,v)Ωi

).

In our work, there are two relevant finite element spaces, namely Whi

curl of the

lowest order triangular Nédeléc elements and Whi

grad of the standard piecewise
linear, continuous elements, on the same triangulation.

The space of Nédélec finite element functions, Whi

curl, can be represented as
the range of an interpolation operatorΠh which is well defined, for sufficiently
smooth elements of w ∈ H(curl, Ω), by

Πh(w) :=
∑

e

λe(w)Ne where λe(w) :=
1

|e|

∫

e

w · teds.

Here te is a unit vector in the direction of the element edge e and Ne the
standard Nédélec basis function.

We have been able to build on the work by Toselli [2006]. Thus, for Nédélec
elements, the use of the basis based on {Ne} results in a poor result since the
coupling between the subdomain faces and edges is far too strong. Following
Toselli, we change the variables associated with the subdomain edges using a
constant along each subdomain edge and the gradient of the standard Whi

grad

basis functions for all the interior nodes of the subdomain edges. After this
change of variables, a quite stable decomposition can be found.

Domain decomposition theory always involves establishing the stability of
a decomposition; in our context, a new auxiliary result is then needed:

Lemma 1. Let F be a face of a polyhedral subdomain Ωi. Further, let f∂F ∈
Whi

grad(Ωi) have vanishing nodal values everywhere in Ωi except on ∂F . There

then exists a giF ∈ Whi

curl(Ωi) such that λe(giF ) = λe(∇f∂F ) for all element

edges in the interior of the face F , λe(giF ) = 0 for all other element edges

on ∂Ωi, and

‖giF ‖
2
L2(Ωi)

≤ C((1 + log(Hi/hi))‖f∂F ‖
2
L2(∂F ) +H2

i ‖∇f∂F · t∂F ‖
2
L2(∂F )),

‖∇× giF ‖
2
L2(Ωi)

≤ C(1 + log(Hi/hi))‖∇f∂F · t∂F ‖
2
L2(∂F ).
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For a proof of this result, see [Dohrmann and Widlund, 2014, Lemma 3.5].
We also use several standard auxiliary results forWhi

grad as collected in [Toselli
and Widlund, 2005, Subsection 4.6].

A key to our work is also a result by [Hiptmair and Xu, 2007, Lemma 5.1]:

Lemma 2. For any polyhedral subdomain Ωi and any uh ∈ Whi

curl(Ωi), there

exist Ψh ∈ (Whi

grad(Ωi))
3, ph ∈ Whi

grad(Ωi), and qh ∈ Whi

curl(Ωi), such that

wi = qi + Πhi(Ψi) +∇pi,

‖∇pi‖
2
L2(Ωi)

≤ C(‖wi‖
2
L2(Ωi)

+H2
i ‖∇×wi‖

2
L2(Ωi)

),

‖h−1
i qi‖

2
L2(Ωi)

+ ‖Ψi‖
2
H1(Ωi)

≤ C‖∇ ×wi‖
2
L2(Ωi)

.

We note that these bounds are local and that the result has been established
for polyhedra which are not necessarily convex.

This result is essential to Hiptmair and Xu’s work on algebraic multigrid
algorithms for H(curl) in which AMG Poisson solvers are used.

In contrast to earlier results on domain decomposition algorithms for
H(curl), we do not have to rely on any trace theorem in our proof.

Toselli primarily advocates the use of two primal variables for each sub-
domain edge: the average and first moment and so do we. We have improved
Toselli’s condition number bound from

Cmax
i

(1 +
βiH

2
i

αi

)(1 + log(Hi/hi))
4

to an estimate, with the best possible power of (1 + log(Hi/hi):

Cmax
i

min((Hi/hi)
2, (1 +

βiH
2
i

αi

))(1 + log(Hi/hi))
2.

We have fewer restrictions on the coefficients than Toselli; our constant C
is independent of the αi and βi.

So far, we have not mastered the case where
βiH

2

i

αi

is large. We note that for
H(div), one simple primal space works well in all cases; not so for H(curl).

5 Numerical Results

Numerical results are presented in this section, which confirm the theory and
demonstrate that in certain cases, the deluxe BDDC algorithm is much more
robust than older BDDC variants. In our tables iter and cond denote the
number of iterations and the estimated condition numbers obtained using a
relative tolerance of 10−8 of the ℓ2-norm of the residual as a stopping criterion.
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The subdomain problems are discretized using the lowest order hexahedral
edge elements, for which our theory is equally valid.

In the first example, a unit cube is subdivided into N3
d smaller cubes,

which are each subdivided into 64 = 43 elements. Table 1 illustrates that the
rate of convergence is independent of the number of subdomains.

Table 1 Results for unit cube decomposed into smaller cubical subdomains with H/h = 4.

The material properties are constant with αi = α and βi = 1.

α = 10−4 α = 10−2 α = 1 α = 102 α = 104

Nd iter cond iter cond iter cond iter cond iter cond

2 9 2.49 8 1.59 10 1.99 10 2.03 10 2.03

4 12 2.36 10 1.79 14 2.63 15 2.70 16 2.70

6 11 2.12 12 2.07 15 2.81 16 2.88 17 2.88

8 11 2.02 13 2.25 15 2.87 16 2.95 17 2.95

10 11 1.97 13 2.35 16 2.91 17 2.98 18 2.98

12 11 1.92 14 2.44 16 2.93 17 2.99 18 2.99

In the next set of experiments, we study the behavior of our algorithm
for increasing values of H/h, the number of elements across each subdomain.
We note a much more rapid growth of the condition number for the mass-
dominated cases, i.e., with βiH

2
i >> αi, represented by the first column of

Table 2.

Table 2 Results for unit cube decomposed into 27 smaller cubical subdomains. The ma-

terial properties are constant with αi = α and βi = 1.

α = 10−7 α = 10−2 α = 1 α = 102 α = 104

H/h iter cond iter cond iter cond iter cond iter cond

4 12 2.74 9 1.63 13 2.41 13 2.47 14 2.47

6 15 4.51 12 2.15 14 2.93 15 3.01 16 3.01

8 19 6.89 14 2.70 16 3.34 17 3.44 18 3.44

10 22 9.98 15 3.22 17 3.69 18 3.79 19 3.79

12 24 13.8 16 3.69 17 3.98 19 4.09 20 4.10

14 28 18.3 17 4.13 18 4.24 19 4.36 21 4.36

16 30 23.5 18 4.55 19 4.47 20 4.60 22 4.60

In our final table, Table 3, we consider a case of a three-dimensional
checkerboard arrangement of the material parameters with αi = 104, βi =
10−2 for the red subdomains and αi = 102, βi = 1 for the black. We indeed
find a considerable improvement for the deluxe variant over two standard
scalings. In the final columns, marked e-deluxe, results of replacing the solver
over pairs of subdomains with a common face, by a solver over only a thin
neighborhood of the face, which just includes the element edges next to the
face, are given.
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Table 3 Results for unit cube decomposed into 27 smaller smaller cubical subdomains

with a checkerboard arrangement of material properties.

stiffness scaling cardinality scaling deluxe scaling e-deluxe scaling

H/h iter cond iter cond iter cond iter cond

4 50 272 80 156 6 1.06 6 1.06

6 67 342 100 207 7 1.20 7 1.20

8 78 398 117 247 8 1.33 8 1.33

10 87 445 128 281 9 1.45 9 1.45

12 95 486 140 310 10 1.55 10 1.55

14 102 522 151 336 10 1.63 10 1.63

16 109 554 160 360 11 1.71 11 1.71
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