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1 Introduction

Domain decomposition (DD) methods are important techniques for designing
parallel algorithms for solving partial differential equations. Since the decom-
position is often performed using automatic mesh partitioning tools, one can
in general not make any assumptions on the shape or physical size of the
subdomains, especially if local mesh refinement is used. In many of the pop-
ular domain decomposition methods, neighboring subdomains are not using
the same type of boundary conditions, e.g. the Dirichlet-Neumann methods
invented by [2], or the two-sided optimized Schwarz methods proposed in
[3], and one has to decide which subdomain uses which boundary condition.
A similar question also arises in mortar methods, see [1], where one has to
decide on the master and slave side at the interfaces. In [4], it was found
that for optimized Schwarz methods, the subdomain geometry and problem
boundary conditions influence the optimized Robin parameters for symmet-
rical finite domain decompositions, and in [5], it was observed numerically
that swapping the optimized two-sided Robin parameters can accelerate the
convergence for a circular domain decomposition.

We study in this paper two-sided optimized Schwarz methods for a model
decomposition into a larger and a smaller subomain, to investigate which
Robin parameter should be used on which subdomain in order to get fast
convergence. We consider the model problem

∆u− ηu = f in Ω, u|∂Ω = 0, (1)
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where Ω = {(x, y) ∈ R2| − a ≤ x ≤ b} is decomposed into two subdomains
Ω = Ω1 ∪Ω2, with Ω1 = {(x, y) ∈ R2| − a ≤ x ≤ L}, Ω2 = {(x, y) ∈ R2|0 ≤
x ≤ b}, and L ≥ 0 is the overlap between subdomains, a+ L < b. Note here
in the y-direction, the domain Ω is still infinite, but this will not affect our
theoretical findings, since in numerical computations the Fourier frequency
lies in between kmin and kmax, the lowest and the highest frequencies involved
in the computation, and we will use this in our analysis.

We focus in this short paper on the parallel Schwarz method

∆un
1 − ηun

1 = f, in Ω1,
un
1 (−a, y) = 0,

∆un
2 − ηun

2 = f, in Ω2,
un
2 (b, y) = 0,

(2)

with two-sided Robin transmission conditions

(∂x + p1)u
n
1 (L, ·) = (∂x + p1)u

n−1
2 (L, ·),

(∂x − p2)u
n
2 (0, ·) = (∂x − p2)u

n−1
1 (0, ·), (3)

where p1, p2 are positive constants.

2 Optimized two-sided Robin transmission conditions

Inserting a Fourier expansion of the iterates, un
i (x, y) =

∑∞
k=−∞ ûn

i (x, k)e
iky,

into (2) and iterating the solutions between subdomains through the trans-
mission condition (3), see for example [3], we obtain for each Fourier mode k
the contraction factor

ρ(k, η, L, p1, p2, a, b) =

√
η+k2(1+e−2

√
η+k2(b−L))−p1(1−e−2

√
η+k2(b−L))√

η+k2(1+e−2
√

η+k2(a+L))+p1(1−e−2
√

η+k2(a+L))
·

√
η+k2(1+e−2

√
η+k2a)−p2(1−e−2

√
η+k2a)√

η+k2(1+e−2
√

η+k2b)+p2(1−e−2
√

η+k2b)
· e−2

√
η+k2L.

(4)
To obtain the fastest method for all relevant Fourier modes k, we have to
solve the optimization problem

min
p1,p2>0

ρmax(L, p1, p2), (5)

where ρmax(L, p1, p2) := maxkmin≤k≤kmax |ρ(k, η, L, p1, p2, a, b)| and kmin,
kmax are estimates of the lowest and the highest frequencies involved in the
computation. If h is the mesh size along the interface, and the interface length
is c, one can estimate kmin = π/c and kmax = π/h, see [3].

Since the frequency k is involved in the contraction factor in a complicated
fashion, (5) can not be solved analytically. We show here a new idea, namely
to approximate ρ for large k asymptotically accurately in order to solve the
optimimization problem (5). To this end, we introduce
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ρapp(k, η, L, p1, p2) =

√
η + k2 − p1√
η + k2 + p1

·
√

η + k2 − p2√
η + k2 + p2

· e−2
√

η+k2L, (6)

which is the contraction factor obtained by [3] in the infinite, symmetric
domain decomposition analysis.

Theorem 1 (Approximation to the contraction factor). The difference
between the exact and approximate contraction factor satisfies the estimate

|ρ(k, η, L, p1, p2, a, b)− ρapp(k, η, L, p1, p2)| ≤ 4e−2
√

η+k2(a+L). (7)

Proof. The contraction factor ρ can be rewritten in the form

ρ = ρapp + (1− ρapp)

(√
η+k2−p2√
η+k2+p2

e−2
√

η+k2b +

√
η+k2−p1√
η+k2+p1

e−2
√

η+k2(a+L)

)
,

(8)
and the result then follows by the triangle inequality and using that −1 ≤
ρapp ≤ 1. �

Theorem 1 shows that ρapp is a good approximation for k large, but not for
k small. We thus propose to only use the approximation for k large, and the
exact ρ for k small, in order to solve the min-max problem (5) asymptotically.
We obtain the following theorems, whose proofs are beyond the scope of this
short paper, see our forthcoming paper [6].

Theorem 2 (Optimized parameters, overlapping case). With the over-

lap L > 0, the parameters p∗1 = G
4
5L− 1

5 , p∗2 = G
2
5L− 3

5 solve asymptotically
the equioscillation equations

ρ(kmin, η, L, p
∗
1, p

∗
2, a, b) = −ρapp(k̄1, η, L, p

∗
1, p

∗
2) = ρapp(k̄2, η, L, p

∗
1, p

∗
2), (9)

where G = G(kmin, η, a, b) :=

√
η+k2

min

2
1−e

−2
√

η+k2
min

(a+b)

(1−e
−2
√

η+k2
min

a
)(1−e

−2
√

η+k2
min

b
)

, and

k̄1 = G
3
5L− 2

5 and k̄2 = G
1
5L− 4

5 are the locations of the interior maxima of
ρapp. Furthermore, p∗1, p

∗
2 approximately solve the min-max problem (5) as

L → 0 with the error estimate

|ρmax(L, p
∗
1, p

∗
2)− min

p1,p2>0
ρmax(L, p1, p2)| ≤ 4e−2

√
η+k2

1(a+L), (10)

where k1 = cL− 1
5 , and c is some constant. The associated contraction factor

is
ρmax(L, p

∗
1, p

∗
2) = 1− 4G

1
5L

1
5 +O(L

2
5 ). (11)

Theorem 3 (Optimized parameters, nonoverlapping case). When L =

0, the parameters p̄1 = 2
1
4G

3
4 k

1
4
max, p̄2 = 2

3
4G

1
4 k

3
4
max solve asymptotically the

equioscillation equations
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ρ(kmin, η, 0, p̄1, p̄2, a, b) = −ρapp(k̄, η, 0, p̄1, p̄2) = ρapp(kmax, η, 0, p̄1, p̄2),
(12)

where k̄ = (2G)
1
2 k

1
2
max is the location of the interior maximum of ρapp. Fur-

thermore, p̄1, p̄2 solve approximately the min-max problem (5) as kmax → ∞
with the error estimate

|ρmax(0, p̄1, p̄2)− min
p1,p2>0

ρmax(0, p1, p2)| ≤ 4e−2
√

η+k2
0a, (13)

where k0 = ck
1
4
max, and c is some constant. The associated contraction factor

is
ρmax(0, p̄1, p̄2) = 1− 2

7
4G

1
4 k

− 1
4

max +O(k
− 1

2
max). (14)

3 Swapping the Robin parameters

Theorems 2 and 3 do not allow us to see which Robin parameter of the
two should be used on which subdomain, swapping them leads to the same
asymptotic results. To see the influence of the domain size, we have to push
the asymptotic analysis further.

The overlapping case: To get further insight, we compute one more term
in the asymptotic expansions of the equioscillation equations (9) both for the
parameter ordering given, and swapped. We obtain at the interior maximum
points k̄1 and k̄2 the same result ρmax = 1−4G

1
5L

1
5 +8G

2
5L

2
5 +O(L

3
5 ), while

at kmin

ρ(kmin, η, L, p
∗
1, p

∗
2, a, b) = 1− 4G

1
5L

1
5 + 8G

2
5L

2
5 (1 + d) +O(L

3
5 ), (15)

ρ(kmin, η, L, p
∗
2, p

∗
1, a, b) = 1− 4G

1
5L

1
5 + 8G

2
5L

2
5 (1− d) +O(L

3
5 ), (16)

where the additional term

d :=
e−2

√
η+k2

mina − e−2
√

η+k2
minb

1− e−2
√

η+k2
min(a+b)

(17)

appears. Hence, if d > 0, i.e. a < b, one should swap the parameters to get a
uniform contraction factor bounded by ρmax, since G > 0, and we get

Theorem 4. If a < b and L is small, swapping the transmission parameters
p∗1 and p∗2 improves the performance of the optimized Schwarz method (2),
and the bigger the value of d in (17) is, the larger the improvement becomes.

The natural next question is: from which overlap on should one swap the
transmission parameters to get better performance? Notice that |ρ| has the

same asymptotic expansions at k̄1 and k̄2 up to O(L
3
5 ). We should thus look

for an L∗ > 0 such that when L < L∗
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|ρ(kmin, η, L, p
∗
2, p

∗
1, a, b)| < |ρ(kmin, η, L, p

∗
1, p

∗
2, a, b)|. (18)

Though it is hard to obtain an explicit expression of such an L∗, the inequality
(18) can be used numerically as a necessary condition for judging when we
should swap the optimized transmission parameters. A sufficient condition
can be obtained as follows: if

p∗1 >
√

η + k2min

1 + e−2
√

η+k2
mina

1− e−2
√

η+k2
mina

, (19)

then (4) implies ρ(kmin, η, L, p
∗
2, p

∗
1, a, b) > 0. Now using (8), we obtain

with a direct comparison after a short calculation ρ(kmin, η, L, p
∗
2, p

∗
1, a, b) <

ρ(kmin, η, L, p
∗
1, p

∗
2, a, b), which together with the positivity implies (18). Solv-

ing (19) asymptotically yields

L <
1

16
√

η + k2min

(1− e−2
√

η+k2
min(a+b))4(1− e−2

√
η+k2

mina)

(1 + e−2
√

η+k2
mina)5(1− e−2

√
η+k2

minb)4
=: L∗. (20)

Noting that GL∗ < 1, all the above mentioned asymptotic expansions con-
verge, and we arrive at

Theorem 5. For a < b, with an overlap L < L∗, where L∗ is defined in (20),
swapping the transmission parameters p∗1 and p∗2 in the optimized Schwarz
method (2) improves the performance.

The nonoverlapping case: we again compute one more term in the expan-
sions of the equioscillation equations (12), both for the parameter ordering
given, and swapped. We obtain as in the overlapping case at k̄ and kmax the

same result, 1− 2
7
4G

1
4 k

− 1
4

max + 2
5
2G

1
2 k

− 1
2

max +O(k
− 3

4
max), while at kmin

ρ(kmin, η, 0, p̄1, p̄2, a, b) = 1−2
7
4G

1
4 k

− 1
4

max+2
5
2G

1
2 k

− 1
2

max(1+d)+O(k
− 3

4
max), (21)

ρ(kmin, η, 0, p̄2, p̄1, a, b) = 1−2
7
4G

1
4 k

− 1
4

max+2
5
2G

1
2 k

− 1
2

max(1−d)+O(k
− 3

4
max), (22)

where the same term d from (17) appears. Hence, as in the overlapping case,
if

|ρ(kmin, η, 0, p̄2, p̄1, a, b)| < |ρ(kmin, η, 0, p̄1, p̄2, a, b)|, (23)

swapping the transmission parameters in the optimized Schwarz method

(2) improves the performance. Solving p̄1 >
√

η + k2min
1+e

−2
√

η+k2
min

a

1−e
−2
√

η+k2
min

a
with

kmax = π/h gives an h̄ = 2G3π( 1√
η+k2

min

1−e
−2
√

η+k2
min

a

1+e
−2
√

η+k2
min

a
)4 such that for any

h < h̄ inequality (23) holds, and we get

Theorem 6. If a < b and there is no overlap, and if h < h̄, swapping the
transmission parameters p̄1 and p̄2 of the optimized Schwarz method (2) im-
proves the performance.
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L Transmission parameters h= 1/50 1/100 1/200 1/400 1/800

h p1 = p∗1(p
∗
2), p2 = p∗2(p

∗
1) 6(9) 7(9) 8(9) 10(10) 12(11)

h p1 = p∗1,inf(p
∗
2,inf), p2 = p∗2,inf(p

∗
1,inf) 7(12) 8(15) 10(18) 11(18) 13(15)

0 p1 = p̄1(p̄2), p2 = p̄2(p̄1) 11(10) 14(12) 17(14) 19(16) 24(20)

0 p1 = p̄1,inf(p̄2,inf), p2 = p̄2,inf(p̄1,inf) 13(14) 16(14) 18(17) 22(20) 27(24)

Table 1 Number of iterations required by the various optimized Schwarz methods.

4 Numerical experiments

We consider the model problem (1), where η = 2, and the domain Ω =
(−a, b)× (0, 1) is decomposed into Ω1 = (−a, L)× (0, 1), Ω2 = (0, b)× (0, 1),
with a = 0.1, and b = 0.5. We discretize (2) with the classical five-point finite
difference scheme on a uniform mesh with mesh parameter h, and simulate
directly the error equations, i.e. f = 0. The initial guesses on the interfaces
are chosen randomly so that all frequencies are present. We count the number
of iterations required to reach an error reduction of 1e− 6, and compare the
results obtained with our parameters to those obtained with parameters from
the infinite domain decomposition analysis in [3], denoted by the subscript
“inf”. Table 1 shows the corresponding results, both for the overlapping case,
L = h, and the nonoverlapping case, L = 0, with the results after parameter
swapping in parentheses. In both cases, our parameters require less iterations
than those from the infinite domain decomposition analysis. For the new
parameters in the nonoverlapping case, the swapped transmission parameters
perform better, which is in agreement with Theorem 6, since all the mesh sizes
involved in this computation are less than h̄ ≈ 0.0234. For the overlapping
case, we see that swapping for the larger mesh sizes is not advantageous, but
as soon as the mesh size becomes small, the swapped parameters catch up
to give lower iteration numbers. The situation is similar for the parameters
from the infinite domain decomposition analysis, but a more refined mesh
would be required. We also plot all the results in Figure 1, on the left for the
overlapping case and on the right for the nonoverlapping case. We observe
that each method performs as predicted by the asymptotic analysis, except
in the case of the infinite domain decomposition analysis with overlap where
a more refined mesh would be needed to reach the asymptotic regime.

We next illustrate numerically that there is indeed a critical value L∗

so that when the ovelap L < L∗, swapping the parameters can improve
the performance, as predicted by Theorem 5. Table 2 shows the error after
10 iterations of the optimized Schwarz method with varying overlap and
h = 1/800. We see that in this case L∗ lies in between 3h and 4h.

To finally test how well our analysis predicts the optimal parameters to be
used in a numerical setting, we vary the parameters p1 and p2 with 51 equidis-
tant samples of each for a fixed problem with h = 1/200 and count for each
parameter pair (p1, p2) the number of iterations to reach a residual of 1e− 6.
In the left column of Figure 2 we show a contour plot before transmission
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Fig. 1 Number of iterations required by the optimized Schwarz methods: overlapping case
on the left, nonoverlapping case on the right.

L 2h 3h 4h 5h

p1 = p∗1, p2 = p∗2 1.5467e− 06 1.6942e− 07 1.6390e− 08 1.0579e− 08

p1 = p∗2, p2 = p∗1 1.4941e− 07 3.7717e− 08 3.4429e− 08 2.9584e− 08

Table 2 Error reduction of each optimized Schwarz method.

parameter swapping, the overlapping case (on the top) and the nonoverlap-
ping case (at the bottom), and in the right column the corresponding contour
plots with transmission parameters swapped. We see that the transmission
parameters obtained by our analysis (∗) are always closer to the numerical
optimum than those from the infinite domain decomposition analysis (◦).
The left and right columns of Figure 2 also show numerically that there exist
at least 2 local minimizers and the swapped parameters are close to the one
resulting in the smaller contraction factor.

5 Conclusion

We have shown that when there are two different transmission condition-
s to be imposed between subdomains, the geometry, in our case the size of
the subdomain, can indicate which subdomain should use which transmission
condition. Using asymptotic analysis for a two subdomain model problem, we
developed a necessary and a sufficient condition on the overlap or mesh size for
when transmission conditions should be swapped between neighboring sub-
domains of different size to get better performance. Numerical experiments
confirm well our theoretical findings. We also observed numerically that the
min-max problem (5) has at least two local minimizers, but a more refined
pre-asymptotic study of this problem is needed for a complete understanding
of (5).
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Fig. 2 Optimized parameters found by our analysis (∗), as well as by the infinite domain
decomposition analysis (◦), compared to the performance of other values of the parame-
ters: first row for the overlapping case, second row for the nonoverlapping case, with the

parameters before parameter swapping in the left column and after swapping in the right
column.
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