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1 Introduction

Optimized Schwarz methods (OS) use Robin or higher order transmission
conditions instead of the classical Dirichlet ones. An optimal Schwarz method
for a general second-order elliptic problem and a decomposition into strips
was presented in [13]. Here optimality means that the method converges in a
finite number of steps, and this was achieved by replacing in the transmission
conditions the higher order operator by the subdomain exterior Dirichlet-
to-Neumann (DtN) maps. It is even possible to design an optimal Schwarz
method that converges in two steps for an arbitrary decomposition and an
arbitrary partial differential equation (PDE), see [6], but such algorithms are
not practical, because the operators involved are highly non-local. Substan-
tial research was therefore devoted to approximate these optimal transmis-
sion conditions, see for example the early reference [11], or the overview [5]
which coined the term ’optimized Schwarz method’, and references therein.
In particular for the Helmholtz equation, [7] presents optimized second-order
approximations of the DtN, [17] (improperly) and [14] (properly) tried for
the first time using perfectly matched layers (PML, see [1]) to approximate
the DtN in OS.

The DtN map arises also naturally in the analytic factorization of partial
differential operators. This has been identified by [8] with the Schur comple-
ment occurring in the block LU factorization of block tridiagonal matrices,
which led to analytic incomplete LU (AILU) preconditioners. The AILU pre-
conditioners consist of one forward and one backward sweep corresponding
to block ‘L’ and ‘U’ solves. In particular, second-order differential approxi-
mations of the DtN were studied by [9] for AILU for the Helmholtz equation.
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Fig. 1 Non-overlapping and overlapping domain decomposition into strips.

The connection between the DtN and the block LU factorization was redis-
covered in [4], where a PML approximation of the DtN was used to improve
the AILU preconditioners, and this has quickly inspired more research: [16]
showed a “rapidly converging” domain decomposition method (DDM) based
on sweeps, [2, 3] presented and analyzed the source transfer DDM (STDDM),
and [10] proposed to use the sweeping process to accelerate Jacobi-type opti-
mized Schwarz methods. All these new algorithms use PML but apparently
in different formulations. In order to show their tight connection, we present
here the relation between STDDM and OS. Such close connections also ex-
ist between OS and AILU, the sweeping preconditioner, and the method in
[16], but these results, as well as the corresponding discrete formulations will
appear elsewhere.

2 Algorithms and Equivalence

We consider a linear second order PDE of the form

Lu = f in Ω, Bu = g on ∂Ω, (1)

where Ω could either be Rd, or a truncated domain padded with PML, in
which case we consider the PML region as part of the domain. We decompose
Ω into either overlapping or non-overlapping strips (or slices in higher dimen-
sions) called subdomains Ωj , j = 1, . . . , J , which are in turn decomposed into
boundary layers (overlaps) that are shared with neighboring subdomains, and
non-shared interior, i.e. Ωj = Γj−1 ∪ Ij ∪ Γj , see Fig. 1 for examples.

We start by introducing the optimized Schwarz method of symmetric
Gauss-Seidel type (OS-SGS) for the strip decomposition we consider here,
see also [12]. This method is based on subdomain solves that are performed
first by sweeping forward across the subdomains, and then backward, a tech-
nique often used in the linear algebra community to render a Gauss-Seidel
preconditioner symmetric. We then rewrite the OS-SGS method in residual
correction form, in order to show how closely related it is to the STDDM
from [2, 3]. All our formulations are at the continuous level, but one can also
develop the corresponding discrete variants.
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In OS-SGS (see below), Sj , S̃j and Tj , T̃j , are tangential operators on
the left and right interfaces of Ωj which need to ensure well-posedness of
the subdomain problems. Note that on Ω1 and ΩJ we did for simplicity not
specify the modification due to the physical boundary there. If T1 = T̃1, then

v
(n+1)
1 = u

(n)
1 , because the subdomain problems solved coincide, and so we

need only to solve one of them. Even if T1 6= T̃1, u
(n)
1 is not necessary for

iteration (n+ 1), only to complete iteration (n).

OS-SGS (interface transmission form)

Forward sweep: given (u
(n−1)
j )Jj=1 on (Ωj)

J
j=1 at iteration step (n−1), solve

successively for j = 1, . . . , J − 1 the subdomain problems

L v(n)j = f in Ωj ,

B v(n)j = g on ∂Ω ∩ ∂Ωj ,
( ∂
∂nj

+ Sj)(v(n)j − v(n)j−1) = 0 on ∂Ωj ∩Ωj−1,

( ∂
∂nj

+ Tj)(v(n)j − u(n−1)
j+1 ) = 0 on ∂Ωj ∩Ωj+1.

(2)

Backward sweep: solve successively for j = J, . . . , 1 the subdomain problems

Lu(n)j = f in Ωj ,

B u(n)j = g on ∂Ω ∩ ∂Ωj ,
( ∂
∂nj

+ S̃j)(u(n)j − v(n)j−1) = 0 on ∂Ωj ∩Ωj−1,

( ∂
∂nj

+ T̃j)(u(n)j − u(n)j+1) = 0 on ∂Ωj ∩Ωj+1.

Definition 1. The Dirichlet to Neumann (DtN) map exterior to Ωj is

DtNc
j : gD → gN = ∂nv, s.t. L v = 0, in Ω\Ωj ,

B v = 0, on ∂Ωj ∩ ∂Ω,
v = gD, on ∂Ωj\∂Ω.

The optimal choice for the transmission conditions in the optimal Schwarz
method is to use the DtN, see [13]. We show here that it suffices to choose for

the tangential operators Sj and S̃j the DtN operators, independent of what

one uses for Tj and T̃j , to get an optimal result:

Theorem 1. If Sj = S̃j , j = 1, . . . , J−1 correspond to the DtN maps exterior
to Ωj restricted to ∂Ωj∩Ωj−1, and all the subdomain problems have a unique
solution, then OS-SGS converges in one iteration for any initial guess. In
particular, convergence is independent of the number of subdomains.

This result can either be proved following the arguments in [13] using the
error equations, or by the approach in [6] at the discrete level or in [2] at the
continuous level to substitute exterior source terms with transmission data
represented by subdomain solutions. We omit the details here.
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In optimized Schwarz methods, one replaces the DtN with an approxima-
tion, for example an absorbing boundary condition, or a PML. For the latter,
we define the approximation DtNL

j by

DtNL
j : gD → gN = ∂nv, s.t. L̃ v = 0, in ΩLj ,

B v = 0, on ∂Ωj ∩ ∂Ω,
v = gD, on ∂Ωj\∂Ω,

where ΩLj is the PML region exterior to Ωj and L̃ is chosen such that DtNL
j

closely approximates DtNc
j from Definition 1. We notice that if Sj = DtNL

j ,

the subdomain problem (2) is equivalent to solve one PDE in Ωj ∪ΩLj with

the Dirichlet and Neumann traces continuous across ∂ΩLj ∩ ∂Ωj .
OS-SGS in the interface transmission form requires the evaluation of oper-

ators on data, such as (∂nj
+Sj)v(n−1)

j−1 , which can be inconvenient, especially
if Sj is complicated. This can be avoided if we solve for the corrections. To this

end, we introduce in the forward sweep δv
(n)
j := v

(n)
j − ṽ

(n−1)
j for some ṽ

(n−1)
j

which has the same Dirichlet and Neumann traces as v
(n−1)
j−1 on ∂Ωj ∩Ωj−1

and u
(n−1)
j+1 on ∂Ωj ∩ Ωj+1. For example, following [2] (see also [15] at the

discrete level), we introduce the weighting functions αj and βj such that

∂

∂nj
αj = 0, αj = 1 on ∂Ωj ∩Ωj−1,

∂

∂nj
βj = 0, βj = 1 on ∂Ωj ∩Ωj+1. (3)

Then, we can define the auxiliary function ṽ
(n−1)
j as

ṽ
(n−1)
j =


αjv

(n)
j−1 + (1− αj)w(n−1)

j , on Γj−1,

w
(n−1)
j , in Ij ,

βju
(n−1)
j+1 + (1− βj)w(n−1)

j , on Γj ,

(4)

where w
(n−1)
j is an arbitrary function. One can verify that

∂
∂nj

ṽ
(n−1)
j = ∂

∂nj
v
(n)
j−1, ṽ

(n−1)
j = v

(n)
j−1 on ∂Ωj ∩Ωj−1,

∂
∂nj

ṽ
(n−1)
j = ∂

∂nj
u
(n−1)
j+1 , ṽ

(n−1)
j = u

(n−1)
j+1 on ∂Ωj ∩Ωj+1,

which together with (2) imply

( ∂
∂nj

+ Sj)(v(n)j − ṽ(n−1)
j ) = 0 on ∂Ωj ∩Ωj−1,

( ∂
∂nj

+ Tj)(v(n)j − ṽ(n−1)
j ) = 0 on ∂Ωj ∩Ωj+1.

Similar identities also hold for the backward sweep. Therefore, the OS-SGS
algorithm in interface transmission form can equivalently be written in the
residual–correction form (see below).
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Remark 1. Usually one uses the subdomain iterates for defining ṽ
(n−1)
j and

ũ
(n−1)
j , e.g. w

(n−1)
j := u

(n−1)
j in (4), thus gluing the subdomain solutions

together to obtain a global approximation. If the weighting functions {βj} for
the gluing are the indicator functions of the corresponding non-overlapping
partition, we obtain the so called restricted Schwarz methods; other choices
give the same subdomain iterates but only different global iterates.

OS-SGS (residual–correction form)

Forward sweep: given (u
(n−1)
j )Jj=1 on (Ωj)

J
j=1 at iteration (n − 1), solve

successively for j = 1, . . . , J − 1 the subdomain problems

L δv(n)j = f − L ṽ(n−1)
j in Ωj ,

B δv(n)j = g − B ṽ(n−1)
j on ∂Ω ∩ ∂Ωj ,

( ∂
∂nj

+ Sj)δv(n)j = 0 on ∂Ωj ∩Ωj−1,

( ∂
∂nj

+ Tj)δv(n)j = 0 on ∂Ωj ∩Ωj+1,

each followed by letting v
(n)
j ← ṽ

(n−1)
j + δv

(n)
j and setting ṽ

(n−1)
j+1 as in (4).

Backward sweep: solve successively for j = J, . . . , 1 the subdomain problems

L δu(n)j = f − Lũ(n)j in Ωj ,

B δu(n)j = g − Bũ(n)j on ∂Ω ∩ ∂Ωj ,
( ∂
∂nj

+ S̃j)δu(n)j = 0 on ∂Ωj ∩Ωj−1,

( ∂
∂nj

+ T̃j)δu(n)j = 0 on ∂Ωj ∩Ωj+1,

each followed by setting u
(n)
j ← ũ

(n−1)
j + δu

(n)
j and setting ũ

(n−1)
j−1 as in (4).

Theorem 2. The source transfer domain decomposition method defined in [2]
is an overlapping optimized Schwarz method of symmetric Gauss-Seidel type,
with the overlap covering half the subdomains, and using PML transmission
conditions on the left and right interfaces in the forward sweep and Dirichlet
instead of PML on the right interfaces in the backward sweep. In addition,
the source terms are consistently modified in the forward sweep.

Proof. As we have seen for OS-SGS, the residual–correction form is equivalent
to the interface transmission form. The only difference of STDDM from the
residual–correction form of OS-SGS is that in the forward sweep the residual
for 1 ≤ j ≤ J − 1 in the overlap with the right neighbor is set to zero, see
ALGORITHM 3.1 in [2]. This modification can also be interpreted as taking
the boundary layer Γj as part of the PML on the right of the subdomain so
the physical subdomains become effectively non-overlapping.

To see the consistency of STDDM, we assume u
(n−1)
j is equal to the exact

solution of the original problem in Ωj for 1 ≤ j ≤ J and check whether u
(n)
j =
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u
(n−1)
j holds, i.e. the exact solution is a fixed point of the iteration. We note

that STDDM uses w
(n−1)
j = u

(n−1)
j in (4). In this case, by the assumption on

u
(n−1)
1 and u

(n−1)
2 , we can show ṽ

(n−1)
1 = u

(n−1)
1 and so the residual vanishes

in Ω1 both for OS-SGS and STDDM. Therefore, the correction δv
(n)
1 = v

(n)
1 −

ṽ
(n−1)
1 must be zero because the sub-problem has a unique solution, which

gives v
(n)
1 = ṽ

(n−1)
1 = u

(n−1)
1 . By induction, we then show that u

(n)
j = u

(n−1)
j

for 1 ≤ j ≤ J. �

3 Numerical Experiments

We solve the Helmholtz equation in rectangles discretized by Q1 finite ele-
ments. For the free space and open cavity problems, the wave speed is con-
stant, c = 1, and the point source is at (0.5177,0.6177) while the Marmousi
model problem has a variable wave speed and the point source at (6100,2200).
PML are padded around all the domains except for the open cavity problem,
where homogeneous Neumann conditions are imposed at the top and bot-
tom. We use the same depth (counted with mesh elements) of PML for the
original domain and the subdomains since already for a PML with two layers
the dominating error is around the point source. The PML complex stretch-
ing function we use is given by s(d) = 1

1−i4πd2/(L3k) where k = ω/c is the

wavenumber, d is the distance to the physical boundary and L is the geomet-
ric depth of the PML. We use the same mesh size and element-wise constant
material coefficients in the physical and PML regions. We use a zero ini-
tial guess for GMRES with relative residual (preconditioned) tolerance 10−6.
The results are shown in Table 1 where ‘STDDM2’ is the STDDM without
changing transmission from PML to Dirichlet in the backward sweep, ‘PMLh’
represents OS-SGS with two elements overlap and PML on all boundaries,
‘TO2h’ (‘TO0h’) is the OS-SGS with the Taylor second- (zero-) order trans-
mission conditions and two elements overlap. The optimized transmission
conditions from [7] are also tested with overlap and the results for the opti-
mized condition of second-order are listed (the original boundaries still use
Taylor second-order conditions) under the name ‘O2h’. The optimized con-
dition of zero-order suffers from too many subdomains and can not converge
to the correct solution in all cases. We implemented all the algorithms in
the residual–correction form. We also tested the classical Schwarz method of
symmetric Gauss-Seidel type with Dirichlet transmission conditions but the
preconditioned system is very ill-conditioned so that the obtained solution
comprises a significant error even if the preconditioned residual is reduced by
the tolerance factor. The same failure happens in Table 1 indicated by middle
bars. From the table, we find that, for our particular test problems with open
boundaries on both left and right sides, STDDM2 which uses always PML
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free space problem on the unit square

ω
2π

1
10h

J
10

STDDM STDDM2 PMLh TO2h TO0h O2h

it m nx it m nx it m nx it it it m nx

20 20 2 4 4 26, 22 4 2 22 4 2 16 11 12 14 0 12

20 40 4 4 7 32, 25 4 2 22 4 3 18 21 25 17 0 12
20 80 8 6 7 32, 25 4 4 26 4 7 26 63 45 – 0 12

40 40 4 6 4 26, 22 4 2 22 5 2 16 15 25 49 0 12

80 80 8 6 9 36, 27 4 3 24 6 3 18 25 89 – 0 12
160 160 16 10 22 62, 40 6 4 26 6 5 22 49 > 200 – 0 12

open cavity problem on the unit square

ω
2π

1
10h

J
10

STDDM STDDM2 PMLh TO2h TO0h O2h

it m nx it m nx it m nx it it it m nx

20 20 2 11 2 22, 20 6 2 22 8 2 16 41 85 33 0 12

20 40 4 13 3 24, 22 10 2 22 12 5 22 76 216 55 0 12
20 80 8 19 5 28, 23 18 4 26 22 6 24 142 392 – 0 12

40 40 4 19 2 22, 20 10 2 22 14 2 16 123 292 119 0 12

80 80 8 — – — 22 2 22 30 2 16 429 — — 0 12

Marmousi model

ω
2π

h J STDDM STDDM2 PMLh TO2h TO0h O2h

it m nx it m nx it m nx it it it m nx

2 74 10 5 2 26, 24 4 2 26 4 2 18 9 6 7 0 14
2 37 20 6 4 30, 26 4 2 26 4 3 20 16 10 11 0 14

2 18 40 6 5 32, 27 5 2 26 5 3 20 37 17 19 0 14

4 37 20 6 3 28, 25 4 2 26 5 2 18 10 9 8 0 14
8 18 40 8 4 30, 26 5 2 26 6 2 18 12 14 18 0 14

16 9 80 10 4 30, 26 6 2 26 6 2 18 16 25 – 0 14

Table 1 Minimal depth m of the PML layer and the corresponding number nx of mesh

elements for each subdomain in the x-direction to reach the given iteration number it (J
is the number of subdomains. Two nx are presented for STDDM because in the backward

sweep the right interfaces use Dirichlet instead of PML).

on both sides works better than STDDM which changes to Dirichlet on the
right side in the backward sweep.
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