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Iterative methods

For self-adjoint problems/symmetric matrices, iterative
methods of choice exist: conjugate gradients for SPD,
MINRES otherwise

but many possible methods for non-self-adjoint
problems/nonsymmetric matrices: GMRES , BICGSTAB ,
QMR , IDR , . . .
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Iterative methods

Arises because of convergence guarantees:

• for symmetric matrices: descriptive convergence
bounds ⇒ a priori estimates of iterations for acceptable
convergence; good preconditioning ensures fast
convergence.

• for nonsymmetric matrices: by contrast, to date there
are no generally applicable and descriptive
convergence bounds even for GMRES ; for any of the
other nonsymmetric methods without a minimisation
property, convergence theory is extremely limited ⇒ no
good a priori way to identify what are the desired
qualities of a preconditioner

A major theoretical difficulty, but heuristic ideas abound!
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The situation is more severe than this:

Theorem (Greenbaum, Ptak and Strakos, 1996)

Given any set of eigenvalues and any monotonic
convergence curve, then for any b there exists a matrix B
having those eigenvalues and an initial guess x0 such that
GMRES for Bx = b with x0 as starting vector will give that
convergence curve.

In fact more extreme negative results than this exist.
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One way to address such questions:
look for (non-standard) inner products in which a problem
might be self-adjoint
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One way to address such questions:
look for (non-standard) inner products in which a problem
might be self-adjoint

such inner products exist for a real nonsymmetric matrix B
if and only if B is diagonalizable and has real eigenvalues

but preconditioners still would have to have self-adjointness
in any relevant non-standard inner product!!
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Convection-diffusion equation:

∂u

∂t
+ b · ∇u − ǫ∇2u = f in Ω × (0, T ], Ω ⊂ R

2 or R3

u(x, 0) = u0(x), u given on ∂Ω

• arises widely e.g. as a subproblem in Navier-Stokes

• is non-self-adjoint ⇒ nonsymmetric discretization
matrix

⇒ convergence of Krylov subspace methods not easily
described

so no mathematical idea how to precondition
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For steady convection-diffusion

b · ∇u − ǫ∇2u = f

the nonsymmetric issue remains even in 1-dimension

u′ − ǫu′′ = f

(though iterative methods not so crucial here!)
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u′ − ǫu′′ = f

is
(
− exp(−x/ǫ)u′

)′
=

1

ǫ
exp(−x/ǫ)f

so continuous problem is self-adjoint in a highly distorted
inner product based on this integrating factor (given certain
simple boundary conditions)

Discretizations however have matrices which are not
self-adjoint in any inner product for large enough h/ǫ
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Recently (Pestana & W, 2015) we have made progress for real
nonsymmetric Toeplitz (constant diagonal) matrices
regardless of nonnormality with a very simple observation:
If B is a real Toeplitz matrix then








a0 a−1 · · a1−n

a1 a0 a−1 · ·
· a1 a0 · ·
· · · · a−1

an−1 · · a1 a0








︸ ︷︷ ︸

B








0 0 · 0 1
0 · 0 1 0
· 0 1 0 ·
· · · · ·
1 0 · 0 0








︸ ︷︷ ︸

Y

is the real symmetric matrix








a1−n · · a−1 a0

· · a−1 a0 a1

· · a0 a1 ·
a−1 · · · ·
a0 a1 · · an−1







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Thus MINRES can be robustly applied to BY — it is
symmetric but generally indefinite — and its convergence
will depend only on eigenvalues.

BUT preconditioning? – needs to be symmetric and positive
definite for MINRES

Fortunately it is well known that Toeplitz matrices are well
preconditioned by related circulant matrices, C (Strang, 1986,
Chan, 1988) which are diagonalised by an FFT in O(n logn)
work: C = U⋆ΛU .

For many Toeplitz matrices we have that the Strang or
Optimal (Chan) circulant C satisfy

C−1B = I + R + E

where R is of small rank and E is of small norm

⇒eigenvalues clustered around 1 except for a few outliersJeju, Korea, 2015 – p.10/24



To ensure symmetric and positive definite preconditioner for
BY just use the circulant matrix

|C| = U⋆|Λ|U

which is real symmetric and positive definite

Theorem (Pestana & W, 2015)

|C|−1BY = J + R + E

where J is real symmetric and orthogonal with eigenvalues
±1, R is of small rank and E is of small norm

⇒ guaranteed fast convergence because MINRES
convergence only depends on eigenvalues which are
clustered around ±1 except for few outliers!
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Example

B =









1 0.01
1 1 0.01

. . . . . . . . .
1 1 0.01

1 1









∈ R
n×n

n Condition number of B preconditioned MINRES iters

10 14 6
100 207 6
1000 2.6×106 6

Similar ideas apply for block Toeplitz matrices—higher
dimensions—but theory not so good
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Time-dependent Convection-Diffusion

∂u

∂t
+ b.∇u − ǫ∇2u = f in Ω × (0, T ], Ω ⊂ R

2 or R3

u(x, 0) = u0(x), u given on ∂Ω

Finite elements in space (x), θ time stepping gives

M
uk − uk−1

τ
+ K

(

θuk + (1 − θ)uk−1

)

= fk

M ∈ R
n×n: SPD mass matrix (identity operator, but same

sparsity as K)

K ∈ R
n×n: nonsymmetric discrete steady

convection-diffusion matrix
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Rearranging:
(

M + τ θK
)

uk =
(

M − τ (1 − θ)K
)

uk−1 + τ fk,

k = 1, 2, . . . ,N

Nτ = T

Recall for unconditional stability: 1

2
≤ θ ≤ 1

θ = 1: backwards Euler, θ = 1

2
: Crank-Nicolson

else need τ = O(h2): very small time steps for explicit
method
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(

M + τ θK
)

uk =
(

M − τ (1 − θ)K
)

uk−1 + τ fk,

k = 1, 2, . . . ,N

Standard solution method:

Solve the N separate n × n nonsymmetric linear systems
(sequentially) for k = 1, 2, . . . , N . Here we use a
geometric multigrid due to Ramage specifically for
convection diffusion

⇒ r = 5 V-cycles for solution of each linear system to a
relative residual tolerence of 10−6

Hence if we (quite reasonably) regard 1 V-cycle as the main
unit of work

⇒ Nr V-cycles sequentially for the overall solution
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Alternatively:

Write all timesteps at one go (all-at-once method):

A







u1

u2

...
uN







= r.h.s

where A is the matrix






M+τθK 0 0 0
−M+τ (1−θ)K M+τθK 0 0

0
. . . . . . 0

0 0 −M+τ (1−θ)K M+τθK







and r.h.s. = [M−τ (1−θ)Ku0+τ f1, τ f2, . . . , τ fN ]T
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A=







M+τθK 0 0 0
−M+τ (1−θ)K M+τθK 0 0

0
. . . . . . 0

0 0 −M+τ (1−θ)K M+τθK







A ∈ R
L×L, L = Nn

We propose to solve this huge linear system (for the
solution at all time steps) by GMRES (or BICGSTAB ) with
block diagonal preconditioner

P =







(M+τθK)MG 0 0 0
0 (M+τθK)MG 0 0

0
. . . . . . 0

0 0 0 (M+τθK)MG







where (M+τθK)MG is one GMG V-cycle exactly as above.

Any other approximate nonsymmetric solver could be used.Jeju, Korea, 2015 – p.17/24



Theory: If we used

Pexact =







(M+τθK) 0 0 0
0 (M+τθK) 0 0

0
. . . . . . 0

0 0 0 (M+τθK)







as preconditioner (no multigrid approximation) then we
would have

P−1

exactA =







I 0 0 0
J I 0 0

0
. . . . . . 0

0 0 J I






,

J = (M+τθK)−1(−M+τ (1−θ)K)
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For

P−1

exactA =







I 0 0 0
J I 0 0

0
. . . . . . 0

0 0 J I






,

the minimum polynomial is (1 − s)N , so GMRES would
terminate (in exact arithmetic) in N iterations

We observe that (M+τθK)MG is close to (M+τθK) so
that convergence to a tolerance much less than the
discretization error is achieved in N iterations also with P
as preconditioner.
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Thus: N V-cycles for each of N GMRES iterations—hence
N2 (> Nr) overall.

but with N processors, solution with P is (embarrasingly)
parallel—block diagonal ⇒ independent computation.

Thus parallel effort is N < Nr (= sequential effort).
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Convection-diffusion
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Convection-diffusion

Iteration
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Convection-diffusion
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