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| ter ative methods

For self-adjoint problems/symmetric matrices, iterative
methods of choice exist. conjugate gradients for SPD,
MINRES otherwise

but many possible methods for non-self-adjoint
problems/nonsymmetric matrices: GMRES , BICGSTAB ,
OMR, IDR, ...
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| ter ative methods

Arises because of convergence guarantees:

e for symmetric matrices. descriptive convergence
bounds =- a priori estimates of iterations for acceptable
convergence; good preconditioning ensures fast
convergence.

e for nonsymmetric matrices: by contrast, to date there
are no generally applicable and descriptive
convergence bounds even for GMRES ; for any of the
other nonsymmetric methods without a minimisation
property, convergence theory is extremely limited = no
good a priori way to identify what are the desired
gualities of a preconditioner

A major theoretical difficulty, but heuristic ideas abound!
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The situation Is more severe than this:

Theorem (Greenbaum, Ptak and Strakos, 1996)

Given any set of eigenvalues and any monotonic
convergence curve, then for any b there exists a matrix B
having those eigenvalues and an initial guess xg such that
GMRES for Bx = b with x¢ as starting vector will give that
convergence curve.

In fact more extreme negative results than this exist.
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One way to address such questions:
look for (non-standard) inner products in which a problem
might be self-adjoint
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One way to address such questions:
look for (non-standard) inner products in which a problem
might be self-adjoint

such inner products exist for a real nonsymmetric matrix B
If and only if B Is diagonalizable and has real eigenvalues

but preconditioners still would have to have self-adjointness
In any relevant non-standard inner product!!
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Convection-diffusion equation:

ou 2 . 2 3
o7 TP Vu—eViu=f in 2x(0,T], Q2CR orR

u(x,0) = ug(x), u given on 912

e arises widely e.g. as a subproblem in Navier-Stokes

e IS non-self-adjoint = nonsymmetric discretization
matrix

= convergence of Krylov subspace methods not easily
described

S0 no mathematical idea how to precondition
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For steady convection-diffusion
b-Vu—eViu=f
the nonsymmetric issue remains even in 1-dimension
uw —eu = f

(though iterative methods not so crucial here!)
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v —eu = f
IS
/ 1
(— exp(—z/)w') = - exp(—z/e)f

so continuous problem is self-adjoint in a highly distorted
Inner product based on this integrating factor (given certain
simple boundary conditions)

Discretizations however have matrices which are not
self-adjoint in any inner product for large enough h /e
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Recently (Pestana & W, 2015) we have made progress for real

nonsymmetric Toeplitz (constant diagonal) matrices

regardless of nonnormality with a very simple observation:
If B is a real Toeplitz matrix then

[ apo a_1 al_n' 0 0 - 0 1°7
aj ao a_—_i O - 010
al ao O10
° a’—]_ ° ° °
| An—1 aj aop | L 1 O 0 0 _
B Y
IS the real symmetric matrix
[ A1_n a_1 ap |
a_—_i ao aj
ag aj y
a—]_ ° °
| 4o aj an—1 _
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Thus MINRES can be robustly applied to BY — itis
symmetric but generally indefinite — and its convergence
will depend only on eigenvalues.

BUT preconditioning? — needs to be symmetric and positive
definite for MINRES

Fortunately it is well known that Toeplitz matrices are well
preconditioned by related circulant matrices, C' (Strang, 1986,
Chan, 1988) which are diagonalised by an FFT in O(n logn)
work: C = U*AU.

For many Toeplitz matrices we have that the Strang or
Optimal (Chan) circulant C satisfy

C'B=I4+R+E

where R Is of small rank and E is of small norm

—-eigenvalues clustered around 1 except for a few outlierS..._ ...



To ensure symmetric and positive definite preconditioner for
BY just use the circulant matrix

IC| = U*|A|U
which is real symmetric and positive definite
Theorem (Pestana & W, 2015)

IC|"'BY =J+ R+ E

where J iIs real symmetric and orthogonal with eigenvalues
+1, R is of small rank and FE is of small norm

= guaranteed fast convergence because MINRES
convergence only depends on eigenvalues which are
clustered around 41 except for few outliers!
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Example

n Condition number of B | preconditioned MINRES iters
10 14 6
100 207 6
1000 2.6x10° 6

Similar ideas apply for block Toeplitz matrices—higher
dimensions—but theory not so good
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Time-dependent Convection-Diffusion

ou

5 +b.Vu—eViu=f in Qx (0, T], QC R?orR?
u(x,0) = ug(x), u given on 912

Finite elements In space (x), @ time stepping gives

Muk — ket i K(Buk + (1 — 9)uk_1) =5

T

M € R™*"™: SPD mass matrix (identity operator, but same
sparsity as K)

K € R™*™:. nonsymmetric discrete steady
convection-diffusion matrix
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Rearranging:
(M—I—THK)uk - (M —r(1—6) K)uk_l +rfy,

k=1,2,...,N
NT =T

Recall for unconditional stability: % <061

0 = 1: backwards Euler, 0 = %: Crank-Nicolson

else need = = O(h?): very small time steps for explicit
method
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(M—I—THK)uk = (M—T(l—H)K)uk_1+Tfk,

k=1,2,...,N
Standard solution method:

Solve the IN separate n X n honsymmetric linear systems
(sequentially) for k = 1,2,..., N. Here we use a
geometric multigrid due to Ramage specifically for
convection diffusion

= r = 5 V-cycles for solution of each linear system to a
relative residual tolerence of 10—

Hence if we (quite reasonably) regard 1 V-cycle as the main
unit of work

= INr V-cycles sequentially for the overall solution
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Alternatively:

Write all timesteps at one go (all-at-once method):

where A Is the matrix

i MA+T10K

0
0

ui
u2

un

0

0

—M+7(1—0)K M+16K

= r.h.s

0
0

—M4+r(1-0)K

0
0

0
M410K |

and r.h.s. = [M—7(1—0)Kug+r f1, 7 fa, ..., 7 fn]7T

nonsymmetric!
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MA+T0K

—M+7(1—60)K M+16K

0
0

AcRLXL I, — Nn

0 0 0
0 0

" " 0

0 —M+tr(1-0)K M+r0K |

We propose to solve this huge linear system (for the
solution at all time steps) by GMRES (or BICGSTAB ) with
block diagonal preconditioner

[ (M—I—THK)MG
0

0
0

0 0
(M+4+7T0K)png O

0 0

0
0

0
(M—|—T9K)MG i

where (M4+T0K ) 1S one GMG V-cycle exactly as above.

Any other approximate nonsymmetric solver could be.lused. ,....



Theory: If we used

 (MH4T0K) 0 0 0 ]

0 (M+T0K) 0 0

Pexact = 0 0
i 0 0 0 (M+70K) |

as preconditioner (no multigrid approximation) then we
would have

o O

-1 .
PexactA o

SO UM
~N O

~N O O O

S

0

J = (M+70K) Y (—M+r(1-0)K)
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For

I 0 0 O
» J I 0 0
Pexact™ = o . . 0l
0 0 J I

the minimum polynomial is (1 — s)?V, so GMRES would
terminate (in exact arithmetic) in IV iterations

We observe that (M+70K )¢ is close to (M+160K) so
that convergence to a tolerance much less than the
discretization error is achieved in N iterations also with P
as preconditioner.
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Thus: N V-cycles for each of N GMRES iterations—hence
N? (> Nr) overall.

but with IN processors, solution with P is (embarrasingly)
parallel—block diagonal = independent computation.

Thus parallel effortis N < N (= sequential effort).
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