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Abstract
We propose new schemes for solving linear elasticity problems consisting of heterogeneous materials. Recently,

immersed finite element methods (IFEM) are developed for partial differential equation with discontinuous coeffi-
cients. IFEM use uniform grids allowing the interface to cut through the elements. To use uniform grids, we develop
P1-nonconforming based on IFEM functions which satisfy Laplace-Young conditions along the interface. We add
stabilizing terms and consistency terms to the bilinear form to improve the results. Optimal rates of convergence
are achieved in the numerical results.

Introduction
Let Ω be a connected, convex polygonal domain in R2 which is divided into two subdomains Ω+ and
Ω− by a C2 interface Γ = ∂Ω+ ∩ ∂Ω−. We assume the subdomains Ω+ and Ω− are occupied by two
different elastic materials. Then the displacement u = (u1, u2) of the elastic body under an external
force satisfies the Navier-Lamé equation as follows.

−divσ(u) =f in Ωs, (s = +,−) (1)
[u]Γ =0, (2)

[σ(u) · n]Γ =0, (3)
u =0 on ∂Ω, (4)

where
σ(u) = 2µϵ(u) + λ tr(ϵ(u))δ, ϵ(u) =

1

2
(∇u +∇uT )

are the stress tensor and the strain tensor respectively, n is outward unit normal vector, δ is the identity
tensor, and f ∈ (L2(Ω))2 is the external force. The bracket [·] means the jump across the interface.
Here

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

are the Lame constants, satisfying 0 < µ1 < µ < µ2 and 0 < λ < ∞, and E is the Young’s modulus
and ν is the Poisson ratio. When the parameter λ → ∞, this equation describes the behavior of nearly
incompressible material. Since the material properties are different in each region, we set the Lamé
constants µ = µs, λ = λs on Ωs for s = +,−.

IFEM scheme

IFEM basis
The main idea of the IFEM is to use two pieces of linear shape functions on an interface element to
satisfy the interface condition. In this case, we set, for i = 1, 2, · · · , 6,

ϕ̂i(x, y) =


ϕ̂
+
i (x, y) =

(
ϕ̂+i1
ϕ̂+i2

)
=

(
a+1 + b+1 x + c+1 y
a+2 + b+2 x + c+2 y

)
, (x, y) ∈ T+

ϕ̂
−
i (x, y) =

(
ϕ̂−i1
ϕ̂−i2

)
=

(
a−1 + b−1 x + c−1 y
a−2 + b−2 x + c−2 y

)
, (x, y) ∈ T−

and require these functions satisfy the nodal value conditions(edge average), continuity, and jump
conditions along the interface:

Figure 1: A typical interface triangle

ϕ̂i1|ej = δij, j = 1, 2, 3

ϕ̂i2|ej = δ(i−3)j, j = 1, 2, 3

[ϕ̂i(D)] = 0,

[ϕ̂i(E)] = 0,[
σ(ϕ̂i) · n

]
DE

= 0.

It is shown in [1] that these twelve conditions uniquely determine the basis functions ϕ̂i, i =

1, · · · , 6. We denote by N̂h(T ) the space of functions generated by ϕ̂i, i = 1, · · · , 6 constructed
above. Using this IFEM basis, we define the global IFEM space N̂h(Ω) by

N̂h(Ω) =

{
ϕ̂ ∈ N̂h(T ) if T is an interface element, and ϕ̂ ∈ P1(T ) if T is not an interface element;
if T1 and T2 share an edge e, then

∫
e ϕ̂|∂T1

ds =
∫
e ϕ̂|∂T2

ds; and
∫
∂T∩∂Ω ϕ̂ ds = 0

}
.

Approximation property of N̂h(Ω)

Proposition 1. For any u ∈ (H̃2
Γ(Ω))

2, there exists a constant C > 0 such that for m = 0, 1

∥u− Ihu∥m,h +m · ∥
√
λdiv(u− Ihu)∥L2(Ω) ≤ Ch2−m(∥u∥

H̃2(Ω)
+m ·

√
λM∥divu∥

H̃1(Ω)
),

and ∥u− Ihu∥m,h ≤ Ch2−m∥u∥
H̃2(Ω)

.

Scheme and error estimate
We propose new IFEM schemes for (1)-(4). Find uh ∈ N̂h(Ω) such that

ah(uh,vh) = (f ,vh), ∀vh ∈ N̂h(Ω), (5)

where

ah(u,v) : =
∑
T∈Th

(∫
T
2µϵ(u) : ϵ(v)dx +

∫
T
λdivu divv dx

)
+
∑
e∈E

∫
e

τ

h
[u][v]ds

−
∑
e∈E

∫
e
{σ(u) · n} · [v]ds− ϵ

∑
e∈E

∫
e
{σ(v) · n} · [u]ds, ∀u,v ∈ Hh(Ω).

Since the nonconforming basis does not hold Korn’s inequality, we have to add the stabilized terms
(the third term in scheme) in order to converge robustly. And the last two terms of the above equation
are not necessary in standard case. But we can avoid consistency estimate by adding these terms. The

variations of the scheme are motivated to IIPG, SIPG, and NIPG of DG methods (ϵ = 0, ϵ = 1, and
ϵ = −1, respectively). At last, we introduce the following mesh dependent energy-like norms.

∥v∥2ah :=
∑
T∈Th

∫
T
2µϵ(v) : ϵ(v)dx +

∫
T
λ|divv|2dx

+
∑
e∈E

(∫
e
h|{σ(v) · n}|2ds +

∫
e

τ

h
[v]2ds

)
.

Theorem 2. Let u (resp. uh) be the solution of (1)(resp. (5)). Then we have

∥u− uh∥ah ≤ Ch
(
∥u∥

H̃2(Ω)
+
√

λM∥divu∥
H̃1(Ω)

)
.

Numerical Results
The domain is Ω = (−1, 1) × (−1, 1). The interface is the zero set of L(x, y) = x2 + y2 − r20. Let
Ω+ = Ω ∩ {(x, y)|L(x, y) > 0}, Ω− = Ω ∩ {(x, y)|L(x, y) < 0}. The exact solution is chosen as

u =

(
1

µ
(x2 + y2 − r20)x,

1

µ
(x2 + y2 − r20)y

)
1/h ∥u− uh∥0 order ∥u− uh∥1,h order ∥divu− divuh∥0 order

8 7.799e-2 1.636e-0 1.059e-1
16 2.418e-2 1.689 9.117e-1 0.844 5.514e-2 0.942
32 6.848e-2 1.820 4.521e-1 1.012 2.817e-2 0.969
64 1.860e-3 1.880 2.249e-1 1.007 1.417e-2 0.991
128 4.848e-4 1.940 1.112e-1 1.016 7.110e-3 0.995
256 1.237e-4 1.971 5.536e-2 1.006 3.563e-3 0.997

Table 1: µ− = 1, µ+ = 10, λ = 1000µ, r0 = 0.6, nearly incompressible case

Figure 2: u and x-component of u figure about table 1

The domain is the same as above, and the interface is represented by L(x, y) = x2

4 + y2 − r20 = 0.
The exact solution is chosen as

u =

(
1

µ
(
x2

4
+ y2 − r20)x,

1

µ
(
x2

4
+ y2 − r20)y

)
1/h ∥u− uh∥0 order ∥u− uh∥1,h order ∥divu− divuh∥0 order

8 1.791e-3 6.431e-2 5.906e-2
16 4.543e-4 1.979 3.105e-2 1.050 2.902e-2 1.025
32 1.139e-4 1.996 1.568e-2 0.986 1.474e-2 0.977
64 2.785e-5 2.032 7.908e-3 0.987 7.452e-3 0.984
128 6.969e-6 1.999 3.970e-3 0.994 3.747e-3 0.992
256 1.740e-6 2.002 1.988e-3 0.998 1.878e-3 0.997

Table 2: µ− = 1, µ+ = 10, λ = 5µ, r0 = 0.4, elliptical interface

Figure 3: u and x-component of u figure about table 2

Conclusions
• We presented a numerical scheme using a uniform grid for the elasticity problem with an interface.
• This scheme is very useful in computing problems with moving interface since we use a grid inde-

pendent of the interface.
• Numerical results show the optimal convergence rate in the case of various interface shapes and

Lamé constants including nearly incompressible case.

References
[1] Do Y Kwak and Sangwon Jin. A stabilized p 1 immersed finite element method for the interface

elasticity problems. arXiv preprint arXiv:1408.4227, 2014.
[2] Do Y Kwak, Kye T Wee, and Kwang S Chang. An analysis of a broken p 1-nonconforming finite

element method for interface problems. SIAM Journal on Numerical Analysis, 48(6):2117–2134,
2010.


