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GOAL: Endow P.L. Lions algorithm (1988) with an

"ASM-like” theory

~AUTYy =f inQy,
Uttt =0 onaQNoQ,

0 _
v n+1 —(_ 2 n Q
(an_l + a)(u1 ) ( anz + Oé)(UZ) on 891 N 25

(ny and n» are the outward normal on the boundary of the
subdomains)

~AWSTY=f  inQy,
Ut =0 onaQeNoQ

9 ety _ (9 n a
(5 + NG = (5 +a)(f)  on 09N 0y,

with o > 0. Overlap is not necessary for convergence.
Parameter o can be optimized for.

Extended to the Helmholtz equation (B. Despres, 1991)
a.k.a FETI 2 LM (Two-Lagrange Multiplier) Method, 1998.
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@ (Recall) on Additive Schwarz Methods
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

Qo
—A(u)="f inQ

u=0 onoNQ.

Schwarz Method : (uf, ug) — (U7, ug™™) with

~AUTY =1 inQ ~A(ugTYy =1 inQ
Uttt =00on 9Q NaQ Ul = 00on 90 NN
Ut =ug  on 09 N Qy. Uttt =ut on 9 N Q.

Parallel algorithm.
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An introduction to Additive Schwarz

Consider the discretized Poisson problem: Au = f € R".
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An introduction to Additive Schwarz

Consider the discretized Poisson problem: Au = f € R".
Given a decomposition of [1; n]}, (N1, N>), define:

@ the restriction operator R; from RI'" into RV,
@ R/ as the extension by 0 from RV into RI".

Q
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An introduction to Additive Schwarz

Consider the discretized Poisson problem: Au = f € R".
Given a decomposition of [1; n]}, (N1, N>), define:

@ the restriction operator R; from RI'" into RV,
@ R/ as the extension by 0 from RV into RI".
u™ — u™1 by solving concurrently:

Ut = Ul + AR (F - Au™) Ut = U+ AT Ro(f — Au™)

where Ulm = R,'Um and A; .= R,AF)’IT Q
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An introduction to Additive Schwarz |l

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
I=) R'DR.
i=1
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An introduction to Additive Schwarz |l

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
I=) R'DR.
i=1

N
Then, u™" => " R/ DU,

i=1
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An introduction to Additive Schwarz |l

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
I=) R'DR.
i=1
)
1
2
N
Then, u™" => " R/ DU, Mgpas = Z RT DA R

i=1 i=1
RAS algorithm (Cai & Sarkis, 1999)
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Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions (u},, u2))
RAS algorithm iterates on the global function u™
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Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions (u},, u2))
RAS algorithm iterates on the global function u™

Schwarz and RAS

Discretization of the classical Schwarz algorithm and the
iterative RAS algorithm:

1 .
umt :U”+MASr m=~F-AU".
are equivalent

U" = R DyU + R] D, US .

(Efstathiou and Gander, 2002).

Operator M‘ =as 1S Used as a preconditioner in Krylov methods
for non symmetric problems.
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ASM: a symmetrized version of RAS

M=

oS - fZRTDA R;.

i=1

A symmetrized version: Additive Schwarz Method (ASM),

Mpdy '—ZRTA Ri (1)

is used as a preconditioner for the conjugate gradient (CG)
method.

Although RAS is more efficient, ASM is amenable to to
condition number estimates.

Chronological curiosity: First paper on Additive Schwarz dates
back to 1989 whereas RAS paper was published in 1998
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Adding a coarse space

One level methods are not scalable.

We add a coarse space correction (aka second level)

Let Vi be the coarse space and Z be a basis, Vi = span Z,
writing Ry = ZT we define the two level preconditioner as:

Maau2 = Rd (RoAR] )~ +ZF?TA R.

i=1

The Nicolaides approach (1987) is to use the kernel of the
operator as a coarse space, this is the constant vectors, in local
form this writes:

Z .= (RT DiR)1<i<n

where D; are chosen so that we have a partition of unity:

N
> R/DR;=1d
=1

Key notion: Stable splitting (J. Xu, 1989 )

F. Nataf SORAS



Theoretical convergence result

Theorem (Widlund, Dryija)
Let M;;M 5 be the two-level additive Schwarz method:

H
K(Magy2A) < C (1 + 3>

where § is the size of the overlap between the subdomains and
H the subdomain size. )

This does indeed work very well
Number of subdomains | 8 | 16 | 32 | 64

ASM 18 | 35 | 66 | 128
ASM + Nicolaides 20 | 27 | 28 | 27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space
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GenEO

Define an appropriate coarse space Vi, = span(Z>) and use
the framework previously introduced, writing Ry = Z; the two
level preconditioner is:

N
_ 1 B
PA§M2 = HJ(ROAR(;-) RO + E R,'TAI- 1R,'.
i=1

The coarse space must be

@ Local (calculated on each subdomain) — parallel
@ Adaptive (calculated automatically)
@ Easy and cheap to compute

@ Robust (must lead to an algorithm whose convergence is
proven not to depend on the partition nor the jumps in
coefficients)
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Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems:
Geneo .EVP per subdomain:

Find Vx € RN and )\« > 0:

T N
D RART D,V = Njy ANeUY;

In the two-level ASM, let ~ be a user chosen parameter:
Choose eigenvectors \; x > 7 per subdomain:
. T j=1,.,N
Z = (R D}Vjx)

A k=T
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Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems:
Geneo .EVP per subdomain:

Find Vx € RN and )\« > 0:

T N
D RART D,V = Njy ANeUY;

In the two-level ASM, let ~ be a user chosen parameter:
Choose eigenvectors \; x > 7 per subdomain:

7 = (RjTDj\/,-,k)f:”"’N

A k=T
This automatically includes Nicolaides CS made of Zero

Energy Modes.
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Theory of GenEO

Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl

(Num. Math. 2013))
Ifforallj: 0 <X\jm,  <oo:

H(M;;‘M,zA) < (14 ko) |2+ ko (2ko + 1) (1 + T)}

Possible criterion for picking 7: (used in our Numerics)

Ry

r:= min -2
j=1,..N §;

H; ... subdomain diameter, ¢; . . . overlap
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Numerical results (Darcy)

Channels and inclusions: 1 < a < 1.5 x 10, the solution and
partitionings (Metis or not)
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Error

T
= = =Py 1AS + 2,

= = Py AS + 25
« GMRES PBNN CAS + ZD2N

300 400
Iteration count
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9 Optimized Restricted Additive Schwarz Methods
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P.L. Lions’ Algorithm (1988)

~AWTY =f inQy,

Uttt =0 onaQsNoQ,

0 _
v n+1 —(_ n
(am +a)(uthy = ( o +a)(ud) on o NQy,

(ny and n» are the outward normal on the boundary of the
subdomains)

~AUSTYy=1f  inQy,

Uttt =0 onaNe NN
8 0 _
(87"1'05)( n+1) = (—67+06)(U1) on 0o N 4.

with « > 0. Overlap is not necessary for convergence.
Parameter a can be optimized for.

Extended to the Helmholtz equation (B. Despres, 1991)
a.k.a FETI 2 LM (Two-Lagrange Multiplier ) Method, 1998.
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GOAL of this work

(Recap) A; .= RART, 1 <i<N
@ Schwarz algorithm at the continuous level (partial
differential equation)
@ Algebraic reformulation = M,;As = Z,N1 RTD,AT'R;
© Symmetric variant = M4 .= SN RTA'R,

© Adaptive Coarse space with prescribed targeted
convergence rate
= Find V;, € RN and )\, 4 > 0:

DiADVik = Nk AV
GOAL: Develop a theory and computational framework for

P.L. Lions algorithm similar to what was done for Schwarz
algorithm for a S.P.D. matrix A.

F. Nataf SORAS



ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)

© Algebraic formulation for overlapping subdomains
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)

© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)

© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007

© Symmetric variant =
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)

© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007

Q Symmetric variant =

0 M=, RTB 'R (Natural but K.O.)
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)
© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007
Q Symmetric variant =
oM OAS =¥ 1 R/B 'R (Natural but K.O.)
@ Msopns = 21:1 R,TD B 'D;R (OK)
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)
© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007
Q Symmetric variant =
oM OAS =¥ 1 R/B 'R (Natural but K.O.)
@ Msopns = 21:1 R,TD B 'D;R (OK)
© Adaptive Coarse space with prescribed targeted

convergence rate
=
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)
© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007
Q Symmetric variant =
oM OAS =¥ 1 R/B 'R (Natural but K.O.)
@ Msopns = 21:1 R,TD B 'D;R (OK)
© Adaptive Coarse space with prescribed targeted

convergence rate
— 777
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P.L. Lions algorithm and ORAS

Provided subdomains overlap, discretization of the classical
P.L. Lions algorithm and the iterative ORAS algorithm:

U™ = U+ Mghug!" 1" = F — AU".
are equivalent
U" = RIDyUY + RI D, UY

(St Cyr, Gander and Thomas, 2007).

@ Huge simplification in the implementation: no boundary
right hand side discretization

@ Operator M(;,;AS is used as a preconditioner in Krylov
methods for non symmetric problems.

@ First step in a global theory
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e SORAS-GenEO-2 coarse space
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Fictitious Space Lemma

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric
positive bilinear form on H and b on Hp. Suppose that there
exists a linear operator R : Hp — H, such that

@ R is surjective.

@ there exists a positive constant cg such that

a(Rup, Rup) < cg - b(up, up) Yup € Hp. (2)

@ Stable decomposition: there exists a positive constant cr
such that for all u € H there exists up € Hp with Rup = u
and

cr - b(up, up) < a(Rup, Rup) = a(u, u). (3)
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Fictitious Space Lemma (continued)

Lemma (FSL continued)

We introduce the adjoint operator R* : H — Hp by
(Rup, u) = (up, R*u)p for all up € Hp and u € H. Then we
have the following spectral estimate

cr-a(u,u)<a (RB_1R*AU, u) <cg-a(u,u), YJue H (4)

which proves that the eigenvalues of operator RB~'R*A are
bounded from below by ct and from above by cg.
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FSL and DDM

FSL lemma is the Lax-Milgram lemma of domain
decomposition methods.

In combination with GenEOQ techniques it yields adaptive
coarse spaces with a targeted condition number.

@ Additive Schwarz method

@ Hybrid Schwarz method

@ Balancing Neumann Neumann and FETI

@ Optimized Schwarz method

For a comprehensive presentation:

"An Introduction to Domain Decomposition Methods: algorithms,
theory and parallel implementation”, V. Dolean, P. Jolivet and F Nataf,
https://hal.archives—-ouvertes.fr/cel-01100932,
Lecture Notes to appear in SIAM collection, 2015.

F. Nataf SORAS


https://hal.archives-ouvertes.fr/cel-01100932

FSL and one level SORAS

@ H:=R#N and the a-bilinear form:
a(U,V) := VT AU. (5)

where A is the matrix of the problem we want to solve.
@ Hp is a product space and b a bilinear form defined by

N
Hp = [ [ R#" and b, V) : ZVBU,,. (6)
i=1

@ The linear operator Rspras is defined as

N
Rsonas : Ho — H, Rsomas(U) = > R/DU;.  (7)

Y -1 R
We have: Mgopas = Rsoras B Rsopas:

F. Nataf SORAS



Estimate for the one level SORAS

Let ky be the maximum number of neighbors of a subdomain
and 4 be defined as:

DU;))" A(DU;
4= max  max ( ’U’)T (DY)
1§i§NUi€R#Ni\{0} Ui B,'U,‘
We can take cg := ko1 -
Let k1 be the maximum multiplicity of the intersection between
subdomains and 74 be defined as:

. o UTAN,
T4 = min mn ——
1<i<N yer#Nin{o} U;' B;U;

1

We can take cr := -

We have: -
= MMsgbrasA) < ko1 -
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Control of the upper bound

Definition (Generalized Eigenvalue Problem for the upper

bound)

Find (U,‘k, ,u,-k) € R#M \ {O} x R such that
(8)
DiAiDUjx = pixB;iUj .

Let v > 0 be a user-defined threshold, we define Zjgpeo C R#N
as the vector space spanned by the family of vectors
(R,TD,-U,-,()M,.P%K,-SN corresponding to eigenvalues larger than
Vo
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Control of the lower bound

Definition (Generalized Eigenvalue Problem for the lower
bound)

For each subdomain 1 < j < N, we introduce the generalized
eigenvalue problem

Find (Vjx, \ik) € R#Vi \ {0} x R such that )
Aj{\/euvjk = )\jkBjij o
Let 7 > 0 be a user-defined threshold, we define ZJ,,., C R#N
as the vector space spanned by the family of vectors
(F‘l’jTDjij))\jk<T,1§j§N corresponding to eigenvalues smaller
than .
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Two level SORAS-GENEO-2 preconditioner

Definition (Two level SORAS-GENEO-2 preconditioner)

Let Py denote the a-orthogonal projection on the
SORAS-GENEO-2 coarse space

ZLGenEO-2 == ZgTeneo @ Z;eneo )

the two-level SORAS-GENEO-2 preconditioner is defined:

M§<13RAS,2 = PoA™" + (lg — Po) Mgpas (la — Pg)

where PoA~" = R](Ro AR])~'Ro, see J. Mandel, 1992.
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Two level SORAS-GENEO-2 preconditioner

Theorem (Haferssas, Jolivet and N., 2015)

Let~ and T be user-defined targets. Then, the eigenvalues of
the two-level SORAS-GenEQO-2 preconditioned system satisfy
the following estimate

1

T )\(M§ORA32A) < max(1, ko)

What if one level method is Mg,

Find (Vjx, \i) € R#i\ {0} x R such that
ANCU = Ny DiBiDNV i -
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© Numerical Results
@ Comparisons
@ Scalability tests
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Nearly incompressible elasticity

Material properties: Young modulus E and Poisson ratio v or
alternatively by its Lamé coefficients A and p:

Ev E

Mooz M T i)

For v close to 1/2, the variational problem consists in finding
(Up, pn) € Vi :=Pg N H{(Q) x Py such that for all (vp, gn) € Vs

Jo2pe(up) - e(vp)dx — [ prdiv(vp)dx = [, fvpdx

— [odiv(up)gndx  — [, 1pngn =0
H BT][u] [f
:>AU—[B —cl||p _[O]_F.

A is symmetric but no longer positive.

F. Nataf SORAS



"Robin” interface condition for nearly incompressible
elasticity

(Lube, 1998)
o(u).n+ L(a) u = 0. on 9Q,;\00

Where L is constructed from the Lamé coefficient of the
material and it is defined as follows

2op(2p + A
;C(OZ, )\”U/) = )\(—FSM)

Parameter « in the range (1.,10.).
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Comparisons (with FreeFem++)

Figure: 2D Elasticity: Sandwich of steel (E;,v1) = (210 - 10°,0.3) and
rubber (Ea, v2) = (0.1 - 10°,0.4999).

Metis partitioning

Table: 2D Elasticity. GMRES iteration counts

AS SORAS [[AS+CS(ZEM) [ SORAS +CS(ZEM)[] AS-GenEO [[ SORAS -GenEO-2

Nb DOFs [ Nb subdom [|iteration || iteration || iteration | dim || iteration dim iteration| dim || iteration dim
35841 8 150 184 117 24 79 24 110 184 13 145
70590 16 276 337 170 48 144 48 153 | 400 17 303
141375 32 497 ++1000 261 96 200 96 171 800 22 561
279561 64 ++1000 [[ ++1000 333 [ 192 335 192 496 | 1600 24 855
561531 128 ++1000 || ++1000 329 |384 400 384 ++1000 | 2304 29 1220
1077141 256 ++1000 || ++1000 369 | 768|[ ++1000 768 ++1000 | 3840 36 1971

F. Nataf

SORAS

34/40



Numerical results via a Domain Specific Language

FreeFem++ (http://www.freefem.org/ff++), F.Hecht
interfaced with

@ Metis Karypis and Kumar 1998 @ Intel MKL

@ SCOTCH chevalier and Pellegrini 2008 @ PARDISO Schenk et al. 2004
@ UMFPACK Davis 2004 @ MUMPS Amestoy et al. 1998
@ ARPACK Lehoucq et al. 1998 @ PETSc solvers Balay et al.
@ MPI sniretal. @ Slepc via PETSc

Runs on PC (Linux, OSX, Windows, Smartphones) and HPC
(Babel@CNRS, HPC1@LJLL, Titane@CEA via GENCI
PRACE)
Why use a DS(E)L instead of C/C++/Fortran/.. ?
@ performances close to low-level language implementation,
@ hard to beat something as simple as:
varf a(u, v) = int3d(mesh)([dx(u), dy(u), dz(u)]' * [dx(v), dy(v), dz(v)])
+ int3d(mesh)(f * v) + on(boundary mesh)(u = 0)
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http://www.freefem.org/ff++), F. Hecht

Weak scalability for heterogeneous elasticity (with

FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

8 :

S 100% | 1 704

g z
a, b .S
2 80% | 1197 F
[a\} =
o 4

*ﬂ—; 60(% |- - E
= . o
T 0% 1 2
> B k]
% 20% ——3D 3k
‘S 2D | 6

E 0% Il Il Il Il I

|
956, 5]9 ]091 901& 40(96 (?]99
# of processes

(a) Timings of various simulations

200 millions unknowns in 3D wall-clock time: 200. sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors.
Hours provided by an IDRIS-GENCI project.
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Strong scalability in two and three dimensions (with

FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity
problem

N Factorization Deflation Solution # of it. Total  # of d.o.f.

1024 79.2s 229.0s 76.3s 45 387.5s

2048 29.5s 76.5s 34.8s 42 143.9s 6
3D 4096 11.1s 45.8s 19.8s 42 80.9s 50.63 - 10

8192 4.7s 26.1s 14.9s 41 56.8s

Peak performance: 50 millions d.o.f’s in 3D in 57 sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors.
Hours provided by an IDRIS-GENCI project.

HPDDM https://github.com/hpddm/hpddm is a
framework in C++/MPI for high-performance domain
decomposition methods with a Plain Old Data (POD) interface
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e Conclusion
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Conclusion

@ SORAS preconditioner

N
Mglgas = > R/ DiB; 'DiR;
i=1
is amenable to a fruitful theory for OSM

@ Using two generalized eigenvalue problems, we are able to
achieve a targeted convergence rate for OSM

@ Freely available via HPDDM library or FreeFem++

@ Another look at parameter o optimization
@ Nonlinear time dependent problem (Coarse space reuse)
@ Multigrid like three (or more) level methods
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