Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms

Nicole Spillane

Center for Mathematical Modelling at the Universidad de Chile in Santiago.

July 9th, 2015 - DD23 Jeju Island, Korea

Acknowledgements

Collaborators

- Pierre Gosselet (CNRS, ENS Cachan)
- Frédéric Nataf (CNRS, Université Pierre et Marie Curie)
- Daniel J. Rixen (University of Munich)
- François-Xavier Roux (ONERA, Université Pierre et Marie Curie)

Funding

Financial support by CONICYT through project Fondecyt 3150090.

Balancing Domain Decomposition (BDD): $\mathbf{Ku}_* = \mathbf{f} (\mathbf{K} \text{ spd})$

BDD reduces the problem to the interface Γ :

$$\mathbf{A}\mathbf{u}_{*,\Gamma} = \mathbf{b}, \text{ where } \begin{array}{l} \mathbf{A} := \mathbf{K}_{\Gamma\Gamma} - \mathbf{K}_{\Gamma/}\mathbf{K}_{//}^{-1}\mathbf{K}_{/\Gamma}, \\ \mathbf{b} := \mathbf{f}_{\Gamma} - \mathbf{K}_{\Gamma/}\mathbf{K}_{//}^{-1}\mathbf{f}_{/}. \end{array}$$

The operator A is a sum of local contributions :

$$\mathbf{A} = \sum_{s=1}^{N} \mathbf{R}^{s \top} \mathbf{S}^{s} \mathbf{R}^{s}, \quad \mathbf{S}^{s} := \mathbf{K}_{\Gamma^{s} \Gamma^{s}}^{s} - \mathbf{K}_{\Gamma^{s} l^{s}}^{s} (\mathbf{K}_{l^{s} l^{s}}^{s})^{-1} \mathbf{K}_{l^{s} \Gamma^{s}}^{s},$$

1

Balancing domain decomposition

The preconditioner **H** also:

$$\mathbf{H} := \sum_{s=1}^{N} \mathbf{R}^{s\top} \mathbf{D}^{s} \mathbf{S}^{s\dagger} \mathbf{D}^{s} \mathbf{R}^{s}, \text{ with } \sum_{s=1}^{N} \mathbf{R}^{s\top} \mathbf{D}^{s} \mathbf{R}^{s} = \mathbf{I}.$$
The coarse space is range(U) := $\sum_{s=1}^{N} \mathbf{R}^{s\top} \mathbf{D}^{s} \mathrm{Ker}(\mathbf{S}^{s}).$

Illustration of the Problem: Heterogeneous Elasticity N = 81 subdomains, $\nu = 0.4$, $E_1 = 10^7$ and $E_2 = 10^{12}$

Problem: We want to design new DD methods with three objectives:

- **Reliability**: robustness and scalability.
- Efficiency: adapt automatically to difficulty.
- **Simplicity**: non invasive implementation.

Illustration of the Problem: Heterogeneous Elasticity N = 81 subdomains, $\nu = 0.4$, $E_1 = 10^7$ and $E_2 = 10^{12}$

Problem: We want to design new DD methods with three objectives:

- **Reliability**: robustness and scalability.
- Efficiency: adapt automatically to difficulty.
- Simplicity: non invasive implementation.

Contents

Adaptive Coarse Spaces (GenEO)

Multi Preconditioned CG (Simultaneous BDD)

Adaptive Multi Preconditioned CG

Projected PCG [Nicolaides, 1987 – Dostál, 1988] for $Ax_* = b$ preconditioned by H and projection Π

- Assume that $\mathbf{A}, \mathbf{H} \in \mathbb{R}^{n \times n}$ are spd and $\mathbf{U} \in \mathbb{R}^{n \times n_0}$ is full rank,
- Define $\mathbf{\Pi} := \mathbf{I} \mathbf{U}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{A}$.

1 2 3	$ \begin{aligned} \mathbf{x}_0 &= \mathbf{U}(\mathbf{U}^\top \mathbf{A} \mathbf{U})^{-1} \mathbf{U}^\top \mathbf{b}; \\ \mathbf{r}_0 &= \mathbf{b} - \mathbf{A} \mathbf{x}_0 ; \\ \mathbf{z}_0 &= \mathbf{H} \mathbf{r}_0; \end{aligned} $	← Initial Guess ← Initial residual	Convergence [Kaniel, 66 – Meinardus, 63]
3 4 5 6 7 8 9 10	$ \begin{aligned} \mathbf{z}_{0} &= \mathbf{H}1_{0}; & \leftarrow \\ \mathbf{p}_{0} &= \mathbf{\Pi}\mathbf{z}_{0}; & \leftarrow \\ \mathbf{for} \ i &= 0, \ 1, \ \dots, \ convergence \ \mathbf{do} \\ \mathbf{q}_{i} &= \mathbf{Ap}_{i}; \\ \alpha_{i} &= (\mathbf{q}_{i}^{\top}\mathbf{p}_{i})^{-1}(\mathbf{p}_{i}^{\top}\mathbf{r}_{i}); \\ \mathbf{x}_{i+1} &= \mathbf{x}_{i} + \alpha_{i}\mathbf{p}_{i}; \leftarrow \ Update \\ \mathbf{r}_{i+1} &= \mathbf{r}_{i} - \alpha_{i}\mathbf{q}_{i}; \\ \mathbf{z}_{i+1} &= \mathbf{H}\mathbf{r}_{i+1}; \\ \beta_{i} &= (\mathbf{q}_{i}^{\top}\mathbf{p}_{i})^{-1}(\mathbf{q}_{i}^{\top}\mathbf{z}_{i+1}); \end{aligned} $	Initial search direction e approximate solution ← Update residual ← Precondition	$\frac{\ \mathbf{x}_{*} - \mathbf{x}_{i}\ _{\mathbf{A}}}{\ \mathbf{x}_{*} - \mathbf{x}_{0}\ _{\mathbf{A}}} \leqslant 2 \left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right]^{i}$ $ \kappa = \frac{\lambda_{\max}}{\lambda_{\min}},$ $ \lambda_{\max} \text{ and } \lambda_{\min}:$
12 13 14	$ \mathbf{p}_{i+1} = \mathbf{\Pi} \mathbf{z}_{i+1} - \beta_i \mathbf{p}_i; \leftarrow Pro$ end Return $\mathbf{x}_{i+1};$	ject and orthogonalize	extreme eigenvalues of HAII excluding 0.

\rightarrow GenEO is a choice of range(U) that guarantees fast convergence.

Bibliography (1/2) (coarse spaces based on generalized eigenvalue problems)

Multigrid

M. Brezina, C. Heberton, J. Mandel, and P. Vaněk. Technical Report 140, University of Colorado Denver, April 1999.

Additive Schwarz

- J. Galvis and Y. Efendiev. Multiscale Model. Simul., 2010.
- Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems. ESAIM Math. Model. Numer. Anal., 2012.
- F. Nataf, H. Xiang, V. Dolean, and N. S. SIAM J. Sci. Comput., 2011.
- V. Dolean, F. Nataf, R. Scheichl, and N. S. Comput. Methods Appl. Math., 2012.
- N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Numer. Math., 2014.

Optimized Schwarz Methods

- S. Loisel, H. Nguyen, and R. Scheichl. Technical report, submitted, 2015.
- R. Haferssas, P. Jolivet, and F. Nataf. Technical report, Submitted, hal-01100926, 2015.

Bibliography (2/2) (coarse spaces based on generalized eigenvalue problems)

Substructuring Methods

- P.E. Bjørstad, J. Koster and P. Krzyżanowski. Applied Parallel Computing, 2001.
- J. Mandel and B. Sousedík. Comput. Methods Appl. Mech. Engrg., 2007.
- B. Sousedík, J. Šístek, and J. Mandel. Computing, 2013
- N. S. and D. J. Rixen. Int. J. Numer. Meth. Engng., 2013.
- H. H. Kim and E. T. Chung, Model. Simul., 2015.
- A. Klawonn, P. Radtke, and O. Rheinbach. DD22 Proceedings, 2014.
- A. Klawonn, P. Radtke, and O. Rheinbach. SIAM J. Numer. Anal., 2015.

And many other talks at this conference:

- Minisymposium on monday: Olof B. Widlund, Clark R. Dohrmann (with Clemens Pechstein),
- Pierre Jolivet (HPDDM https://github.com/hpddm),
- Frédéric Nataf's plenary talk tomorrow !
- Session on friday morning (CT 7) !

Adaptive Coarse Space: Strategy (1/5)

[N. S., D. J. Rixen, 2013] [N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

Adaptive Coarse Space: Strategy (2/5)

[N. S., D. J. Rixen, 2013] [N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

Adaptive Coarse Space: Strategy (3/5)

[N. S., D. J. Rixen, 2013] [N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

Adaptive Coarse Space: Strategy (4/5)

[N. S., D. J. Rixen, 2013] [N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

Adaptive Coarse Space: Strategy (5/5)

[N. S., D. J. Rixen, 2013] [N. S., V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, 2014]

GenEO Coarse Space for BDD

• $\lambda_{\min} \ge 1$.

• the bottleneck estimate for λ_{\max} is

$$\mathbf{x}^{s^{\top}}\mathbf{R}^{s}\mathbf{A}\mathbf{R}^{s^{\top}}\mathbf{x}^{s} \leqslant (1/\tau) \mathbf{x}^{s^{\top}}\mathbf{D}^{s-1}\mathbf{S}\mathbf{D}^{s-1}\mathbf{x}^{s}.$$

So we solve in each subdomain :

$$\mathbf{D}^{s-1}\mathbf{S}^{s}\mathbf{D}^{s-1}\mathbf{x}_{k}^{s} = \lambda_{k}^{s}\mathbf{R}^{s}\mathbf{A}\mathbf{R}^{s\top}\mathbf{x}_{k}^{s},$$

and define the coarse space as

$$\mathsf{range}(\mathsf{U}) = \mathsf{span}\{\mathbf{R}^{s op}\mathbf{x}_k^s; s=1,\ldots,N ext{ and } \lambda_k^s \leqslant au\}.$$

The the effective condition number is bounded by :

$$\kappa(\mathsf{HA\Pi}) \leqslant rac{\mathcal{N}}{ au}; \quad \mathcal{N}:$$
 number of neighbours of a subdomain.

Numerical Illustration: Heterogeneous Elasticity

Size of the coarse space: $n_0 = 349$ including 212 rigid body modes.

Conclusion for GenEO and introduction for MPCG

- Convergence guaranteed in few iterations,
- This is achieved with **local** contributions to the coarse space.
- \rightarrow Only drawback <u>could be</u> the cost of the eigensolves.

Instead of precomputing a coarse space, take advantage of the local components already being computed:

$$\mathbf{H} := \sum_{s=1}^{N} \underbrace{\mathbf{R}^{s\top} \mathbf{D}^{s} \mathbf{S}^{s\dagger} \mathbf{D}^{s} \mathbf{R}^{s}}_{:=\mathbf{H}^{s}}.$$

R. Bridson and C. Greif.

SIAM J. Matrix Anal. Appl., 27(4):1056-1068, 2006.

P

C. Greif, T. Rees, and D. Szyld.

DD 21 proceedings, 2014.

D. J. Rixen.

PhD thesis, Université de Liège, Belgium, Collection des Publications de la Faculté des Sciences appliquées, n.175, 1997.

P. Gosselet, D. J. Rixen, F.-X. Roux, and N. S.

International Journal for Numerical Methods in Engineering, Currently Published Online, 2015.

Multi Preconditioned CG for $Ax_* = b$ prec. by $\{H^s\}_{s=1,...,N}$ and Π

► A, $\mathbf{H} \in \mathbb{R}^{n \times n}$ spd $\mathbf{F} \mathbf{U} \in \mathbb{R}^{n \times n_0}$ full rank, $\mathbf{F} \mathbf{H} = \sum_{s=1}^{N} \mathbf{H}^s$, where \mathbf{H}^s spsd. MPCG

-			Remark
1 X	$\mathbf{u}_0 = \mathbf{U}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{b};$	 ← Initial Guess 	$\mathbf{r}_i, \mathbf{x}_i \in \mathbb{R}^n$
2 r	$\mathbf{b}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0;$		$\mathbf{Z}_i, \mathbf{P}_i, \mathbf{Q}_i \in \mathbb{R}^{n \times N}$
3 Z	$\mathbf{X}_0 = \begin{bmatrix} \mathbf{H}^{T} \mathbf{r}_0 \\ \cdots \end{bmatrix} \mathbf{H}^{N} \mathbf{r}_{i+1}];$	 Initial search directions 	$oldsymbol{eta}_{i,j} \in \mathbb{R}^{N imes N}$
4 r 5 f	or $i = 0, 1, \ldots,$ convergence do	• Initial search directions	$oldsymbol{lpha}_i \in \mathbb{R}^N$
6	$\mathbf{Q}_i = \mathbf{A}\mathbf{P}_i;$		<i>n</i> : size of problem,
7	$\boldsymbol{\alpha}_i = (\mathbf{Q}_i^\top \mathbf{P}_i)^\dagger (\mathbf{P}_i^\top \mathbf{r}_i);$		N: nb of precs.
8 9	$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{P}_i \boldsymbol{\alpha}_i; \leftarrow U$ $\mathbf{r}_{i+1} = \mathbf{r}_i - \mathbf{Q}_i \boldsymbol{\alpha}_i;$	Jpdate approximate solution ← Update residual	Properties
10	$\mathbf{Z}_{i+1} = \begin{bmatrix} \mathbf{H}^1 \mathbf{r}_{i+1} \mid \dots \mid \mathbf{H}^N \mathbf{r} \end{bmatrix}$	$_{i+1}]; \leftarrow Multi Precondition$	1. $\mathbf{P}_i^{\top} \mathbf{A} \mathbf{P}_j = 0 \ (i \neq j).$
11	$\boldsymbol{\beta}_{i,j} = (\mathbf{Q}_j^\top \mathbf{P}_j)^{\dagger} (\mathbf{Q}_j^\top \mathbf{Z}_{i+1}),$	$j=0,\ldots,i;$	2. $\mathbf{r}_i^{\top} \mathbf{P}_j = 0 \ (j < i).$
12	$\mathbf{P}_{i+1} = \mathbf{\Pi} \mathbf{Z}_{i+1} - \sum_{j=0}^{i} \mathbf{P}_{j} \boldsymbol{\beta}$	$P_{i,j}; \leftarrow Project and orthog.$	3. no short recurrence.
13 e 14 F	e nd Return x _{i+1} ;		4. $\ \mathbf{x}_{*} - \mathbf{x}_{i+1}\ _{\mathbf{A}} = \min\{\ \mathbf{x}_{*} - \mathbf{x}\ _{\mathbf{A}}; \mathbf{x} \in \mathbf{x}_{i} + \operatorname{range}(\mathbf{P}_{i})\}.$

Multi Preconditioned CG for $Ax_* = b$ prec. by $\{H^s\}_{s=1,\dots,N}$ and Π ► A, $\mathbf{H} \in \mathbb{R}^{n \times n}$ spd $\mathbf{E} \cup \mathbb{R}^{n \times n_0}$ full rank, $\mathbf{E} = \sum_{s=1}^{N} \mathbf{H}^s$, where \mathbf{H}^s spsd. MPCG PPCG 1 $\mathbf{x}_0 = \mathbf{U}(\mathbf{U}^\top \mathbf{A} \mathbf{U})^{-1} \mathbf{U}^\top \mathbf{b};$ \leftarrow Initial Guess $\mathbf{x}_0 = \mathbf{U}(\mathbf{U}^\top \mathbf{A} \mathbf{U})^{-1} \mathbf{U}^\top \mathbf{b};$ 2 $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$; $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$: **3** $\mathbf{Z}_0 = [\mathbf{H}^1 \mathbf{r}_0 | \dots | \mathbf{H}^N \mathbf{r}_{i+1}];$ $\mathbf{z}_0 = \mathbf{H} \mathbf{r}_0$ 4 $P_0 = \Pi Z_0$: \leftarrow Initial search directions $\mathbf{p}_0 = \mathbf{\Pi} \mathbf{z}_0$; 5 for $i = 0, 1, \ldots$, convergence do for i = 0, 1, ..., conv. do $\mathbf{O}_i = \mathbf{A}\mathbf{P}_i$ 6 $\mathbf{q}_i = \mathbf{A}\mathbf{p}_i$ $\boldsymbol{\alpha}_i = (\mathbf{Q}_i^\top \mathbf{P}_i)^\dagger (\mathbf{P}_i^\top \mathbf{r}_i);$ $\alpha_i = (\mathbf{q}_i^\top \mathbf{p}_i)^{-1} (\mathbf{p}_i^\top \mathbf{r}_i);$ 7 $\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{P}_i \boldsymbol{\alpha}_i; \qquad \leftarrow Update \ approximate \ solution$ $\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{p}_i;$ 8 $\mathbf{r}_{i+1} = \mathbf{r}_i - \mathbf{O}_i \boldsymbol{\alpha}_i$ \leftarrow Update residual $\mathbf{r}_{i+1} = \mathbf{r}_i - \alpha_i \mathbf{q}_i$ 9 $\mathbf{Z}_{i+1} = [\mathbf{H}^1 \mathbf{r}_{i+1} | \dots | \mathbf{H}^N \mathbf{r}_{i+1}]; \leftarrow Multi Precondition$ $z_{i+1} = Hr_{i+1};$ 10 $\beta_i = (\mathbf{q}_i^\top \mathbf{p}_i)^{-1} (\mathbf{q}_i^\top \mathbf{z}_{i+1});$ $\boldsymbol{\beta}_{i,i} = (\mathbf{Q}_i^\top \mathbf{P}_i)^{\dagger} (\mathbf{Q}_i^\top \mathbf{Z}_{i+1}), \quad j = 0, \dots, i;$ 11 $\mathbf{P}_{i+1} = \mathbf{\Pi} \mathbf{Z}_{i+1} - \sum_{i=0}^{i} \mathbf{P}_{i} \boldsymbol{\beta}_{i,i}; \quad \leftarrow \text{Project and orthog.}$ $\mathbf{p}_{i+1} = \mathbf{\Pi} \mathbf{z}_{i+1} - \beta_i \mathbf{p}_i;$ 12 13 end end Return \mathbf{x}_{i+1} ; 14 Return \mathbf{x}_{i+1} ;

Simultaneous FETI: Tests with CPU time (F.-X. Roux)

100 subdomains, 17×10^6 dofs, $\nu = 0.45$ or 0.4999, $1 \le E \le 10^5$. 2.6 GHz 8-core Xeon processors, Intel fortran, MKL-pardiso.

Checker

Slices 2

Decomp.	ν	Solver	#it	dim	Max solves	Time (s)	
Slices 1	0.45	FETI	> 800	> 800	> 1600	> 7300	X
Slices I	0.45	S-FETI	48	4800	192	493	1
Slices2	0.45	FETI	409	409	818	1979	 Image: A set of the set of the
Slicesz	0.45	S-FETI	36	3600	144	363	1
Charlier	0.4999	FETI	233	233	466	991	\checkmark
Checker		S-FETI	46	4600	276	320	1
Slices 1	0.4000	FETI	> 800	> 800	> 1600	> 7300	X
Slices I	0.4999	S-FETI	152	15200	608	4653	1
Slices2	0.4000	FETI	> 800	> 800	> 1600	> 7300	X
Silcesz	0.4999	S-FETI	144	14400	576	4455	1

Good convergence but two possible limitations \checkmark Local contributions $\mathbf{H}^{s}\mathbf{r}_{i}$ form a good minimization space.

- **X** Cost of inverting $\mathbf{P}_i^{\top} \mathbf{A} \mathbf{P}_i \in \mathbb{R}^{N \times N}$ at each iteration in $\alpha_i = (\mathbf{P}_i^{\top} \mathbf{A} \mathbf{P}_i)^{\dagger} (\mathbf{P}_i^{\top} \mathbf{r}_i)$ and $\beta_{i,i} = (\mathbf{P}_i^{\top} \mathbf{A} \mathbf{P}_i)^{\dagger} (\mathbf{Q}_i^{\top} \mathbf{Z}_{i+1})$.
- X Simultaneous BDD may work 'too hard' on 'easy' problems.

Introduce adaptativity into multipreconditioned CG. From the GenEO section we know that:

• a few local vectors should suffice to accelerate convergence.

Adaptive Multi Preconditioned CG for $Ax_* = b$ preconditioned by $\sum_{s=1}^{N} H^s$ and projection Π . ($\tau \in \mathbb{R}^+$ is chosen by the user)

1
$$\mathbf{x}_{0} = \mathbf{U}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{b};$$

2 $\mathbf{r}_{0} = \mathbf{b} - \mathbf{A}\mathbf{x}_{0}; \mathbf{Z}_{0} = \mathbf{H}\mathbf{r}_{0}; \mathbf{P}_{0} = \mathbf{\Pi}\mathbf{Z}_{0};$
3 for $i = 0, 1, ..., convergence do
4 $\mathbf{Q}_{i} = \mathbf{A}\mathbf{P}_{i};$
5 $\alpha_{i} = (\mathbf{Q}_{i}^{\top}\mathbf{P}_{i})^{\dagger}(\mathbf{P}_{i}^{\top}\mathbf{r}_{i});$
6 $\mathbf{x}_{i+1} = \mathbf{x}_{i} + \mathbf{P}_{i}\alpha_{i};$
7 $\mathbf{r}_{i+1} = \mathbf{r}_{i} - \mathbf{Q}_{i}\alpha_{i};$
8 $t_{i} = \frac{(\mathbf{P}_{i}\alpha_{i})^{\top}\mathbf{A}(\mathbf{P}_{i}\alpha_{i})}{\mathbf{r}_{i+1}^{\top}\mathbf{H}\mathbf{r}_{i+1}};$
9 if $t_{i} < \tau$ then $\leftarrow \tau$ -test
10 $|\mathbf{Z}_{i+1} = [\mathbf{H}^{\dagger}\mathbf{r}_{i+1} | \dots | \mathbf{H}^{N}\mathbf{r}_{i+1}]$
11 else
12 $|\mathbf{Z}_{i+1} = [\mathbf{H}^{\dagger}\mathbf{r}_{i+1} | \dots | \mathbf{H}^{N}\mathbf{r}_{i+1}]$
13 end
14 $\beta_{i,j} = (\mathbf{Q}_{j}^{\top}\mathbf{P}_{j})^{\dagger}(\mathbf{Q}_{j}^{\top}\mathbf{Z}_{i+1}), \quad j = 0, \dots, i;$
15 $\mathbf{P}_{i+1} = \mathbf{\Pi}\mathbf{Z}_{i+1} - \sum_{j=0}^{i}\mathbf{P}_{j}\beta_{i,j};$
16 end
17 Return $\mathbf{x}_{i+1};$$

Remark

$$\begin{aligned} \mathbf{x}_{i}, \mathbf{r}_{i} \in \mathbb{R}^{n}, \\ \mathbf{Z}_{i}, \mathbf{P}_{i}, \mathbf{Q}_{i} \in \mathbb{R}^{n \times N} \text{ or } \mathbb{R}^{n}, \\ \boldsymbol{\alpha}_{i} \in \mathbb{R}^{N} \text{ or } \mathbb{R}, \\ \boldsymbol{\beta}_{i,j} \in \mathbb{R}^{N \times N}, \ \mathbb{R}^{N}, \ \mathbb{R}^{1 \times N} \text{ or } \mathbb{R}, \\ \mathbf{P}_{i} \boldsymbol{\alpha}_{i} \in \mathbb{R}^{n}. \end{aligned}$$

- ▶ *n*: size of problem,
- ► *N*: nb of precs.

Theoretical Result (1/3): PPCG like Properties

$$\begin{array}{l} \mathbf{x}_{0} = \mathbf{U}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{b}; \\ \mathbf{r}_{0} = \mathbf{b} - \mathbf{A}\mathbf{x}_{0}; \mathbf{Z}_{0} = \mathbf{H}\mathbf{r}_{0}; \mathbf{P}_{0} = \mathbf{\Pi}\mathbf{Z}_{0}; \\ \textbf{for } i = 0, 1, \ldots, convergence \, \textbf{do} \\ \mathbf{Q}_{i} = \mathbf{AP}_{i}; \\ \boldsymbol{\alpha}_{i} = (\mathbf{Q}_{i}^{\top}\mathbf{P}_{i})^{\dagger} \left(\mathbf{P}_{i}^{\top}\mathbf{r}_{i}\right); \\ \mathbf{x}_{i+1} = \mathbf{x}_{i} + \mathbf{P}_{i}\boldsymbol{\alpha}_{i}; \\ \mathbf{r}_{i+1} = \mathbf{r}_{i} - \mathbf{Q}_{i}\boldsymbol{\alpha}_{i}; \\ \mathbf{t}_{i} = \frac{(\mathbf{P}_{i}\boldsymbol{\alpha}_{i})^{\top}\mathbf{A}(\mathbf{P}_{i}\boldsymbol{\alpha}_{i})}{\mathbf{r}_{i+1}^{\top}\mathbf{H}\mathbf{r}_{i+1}}; \\ \textbf{if } t_{i} < \tau \text{ then} \\ \begin{vmatrix} \mathbf{Z}_{i+1} = \left[\mathbf{H}^{1}\mathbf{r}_{i+1} \mid \ldots \mid \mathbf{H}^{N}\mathbf{r}_{i+1} \right] \\ \mathbf{P}_{i+1} = \mathbf{\Pi}\mathbf{Z}_{i+1} - \mathbf{P}_{i+1}; \\ \textbf{end} \\ \boldsymbol{\beta}_{i,j} = (\mathbf{Q}_{j}^{\top}\mathbf{P}_{j})^{\dagger}(\mathbf{Q}_{j}^{\top}\mathbf{Z}_{i+1}); \\ \mathbf{P}_{i+1} = \mathbf{\Pi}\mathbf{Z}_{i+1} - \sum_{j=0}^{i}\mathbf{P}_{j}\boldsymbol{\beta}_{i,j}; \\ \textbf{end} \\ \text{Return } \mathbf{x}_{i+1}; \end{array}$$

Remark

No short recurrence property as soon as the minimization space has been augmented.

Theorem

 $\blacktriangleright \mathbf{x}_{n-n_0} = \mathbf{x}_* .$

- Blocs of search directions are pairwise A-orthogonal:
 P[⊤]_i AP_i = 0 (i ≠ j).
- *Residuals are pairwise H-orthogonal:* ⟨*Hr_j*, *r_i*⟩ = 0
 (*i* ≠ *j*).

$$\mathbf{k}_{*} - \mathbf{x}_{i} \|_{\mathbf{A}} = \min \left\{ \|\mathbf{x}_{*} - \mathbf{x}\|_{\mathbf{A}}; \ \mathbf{x} \in \operatorname{range}(\mathbf{U}) + \sum_{j=0}^{i-1} \operatorname{range}(\mathbf{P}_{j}) \right\}.$$

Theoretical Result (2/3): Two types of iterations

Theorem If the τ -test returns $t_{i-1} \ge \tau$ then $\frac{\|\mathbf{x}_* - \mathbf{x}_i\|_{\mathbf{A}}}{\|\mathbf{x}_* - \mathbf{x}_{i-1}\|_{\mathbf{A}}} \le \left(\frac{1}{1 + \lambda_{\min} \tau}\right)^{1/2},$ $\lambda_{\min} = 1 \text{ for BDD.}$

Theoretical Result (2/3): Two types of iterations

 $= \|\mathbf{d}_i\|_{\mathbf{AHA}}^2 / \|\mathbf{d}_i\|_{\mathbf{AHA}}^2$

$$\begin{aligned} & \text{Theorem} \\ & \text{Theorem} \\ & \text{J}(\mathbf{U}^{\mathsf{T}} A \mathbf{U})^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{b}; \\ & - \mathbf{A} \mathbf{x}_{0}; \mathbf{Z}_{0} = \mathbf{H} \mathbf{r}_{0}; \mathbf{P}_{0} = \mathbf{\Pi} \mathbf{Z}_{0}; \\ & \mathbf{Q}_{1} = \mathbf{A} \mathbf{P}_{1}; \\ & \mathbf{\alpha}_{i} = (\mathbf{Q}_{i}^{\mathsf{T}} \mathbf{P}_{i})^{\dagger} (\mathbf{P}_{i}^{\mathsf{T}} \mathbf{r}_{i}); \\ & \mathbf{\alpha}_{i} = (\mathbf{Q}_{i}^{\mathsf{T}} \mathbf{P}_{i})^{\dagger} (\mathbf{P}_{i}^{\mathsf{T}} \mathbf{r}_{i}); \\ & \mathbf{\alpha}_{i+1} = \mathbf{x}_{i} + \mathbf{P}_{i} \alpha_{i}; \\ & \mathbf{f}_{i+1} = \mathbf{x}_{i} + \mathbf{P}_{i} \alpha_{i}; \\ & \mathbf{f}_{i+1} = \mathbf{x}_{i} - \mathbf{Q}_{i} \alpha_{i}; \\ & \mathbf{f}_{i+1} = \mathbf{r}_{i} - \mathbf{Q}_{i} \alpha_{i}; \\ & \mathbf{f}_{i+1} = \mathbf{I} \mathbf{r}_{i+1} : \\ & \text{sind} \\ & = \mathbf{I} \quad \mathbf{f} \text{ or } \mathbf{B} \mathbf{D} \mathbf{D}. \\ & \mathbf{I} = \mathbf{I} \quad \mathbf{f} \text{ or } \mathbf{B} \mathbf{D} \mathbf{D}. \\ & \mathbf{P} \text{roof} \\ & \mathbf{x}_{*} = \mathbf{x}_{0} + \sum_{i=0}^{n-n_{0}} \mathbf{P}_{i} \alpha_{i} = \mathbf{x}_{i} + \sum_{j=i}^{n-n_{0}} \mathbf{P}_{j} \alpha_{j} \\ & \Rightarrow \|\mathbf{x}_{*} - \mathbf{x}_{i}\|_{A}^{2} = \sum_{j=i}^{n-n_{0}} \|\mathbf{P}_{j} \alpha_{j}\|_{A}^{2} \\ & \Rightarrow \|\mathbf{x}_{*} - \mathbf{x}_{i}\|_{A}^{2} = \sum_{j=i}^{n-n_{0}} \|\mathbf{P}_{j} \alpha_{j}\|_{A}^{2} \\ & \Rightarrow \|\mathbf{x}_{*} - \mathbf{x}_{i}\|_{A}^{2} = \|\mathbf{x}_{*} - \mathbf{x}_{i}\|_{A}^{2} + \|\mathbf{P}_{i-1} \alpha_{i-1}\|_{A}^{2}. \\ & \text{(Similar to [Axelsson and Kaporin, 2001].)} \end{aligned}$$

 $=t_{i-1}$

Theoretical Result (3/3): No extra work for 'easy' pbs.

 $\mathbf{x}_0 = \mathbf{U}(\mathbf{U}^\top \mathbf{A} \mathbf{U})^{-1} \mathbf{U}^\top \mathbf{b}$ $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0; \mathbf{Z}_0 = \mathbf{H}\mathbf{r}_0; \mathbf{P}_0 = \mathbf{\Pi}\mathbf{Z}_0;$ for $i = 0, 1, \ldots$, convergence do $\mathbf{O}_i = \mathbf{A}\mathbf{P}_i$ $\boldsymbol{\alpha}_{i} = (\mathbf{Q}_{i}^{\top} \mathbf{P}_{i})^{\dagger} (\mathbf{P}_{i}^{\top} \mathbf{r}_{i});$ $\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{P}_i \boldsymbol{\alpha}_i;$ $\mathbf{r}_{i+1} = \mathbf{r}_i - \mathbf{Q}_i \boldsymbol{\alpha}_i;$ $t_i = \frac{(\mathbf{P}_i \boldsymbol{\alpha}_i)^\top \mathbf{A}(\mathbf{P}_i \boldsymbol{\alpha}_i)}{-}$ if $t_i < \tau$ then $\mathbf{Z}_{i+1} = \begin{bmatrix} \mathbf{H}^{1}\mathbf{r}_{i+1} \mid \ldots \mid \mathbf{H}^{N}\mathbf{r}_{i+1} \end{bmatrix}$ else $\mathbf{Z}_{i+1} = \mathbf{H}\mathbf{r}_{i+1};$ end $\boldsymbol{\beta}_{i,j} = (\mathbf{Q}_j^\top \mathbf{P}_j)^{\dagger} (\mathbf{Q}_j^\top \mathbf{Z}_{i+1});$ $\mathbf{P}_{i+1} = \mathbf{\Pi} \mathbf{Z}_{i+1} - \sum_{i=0}^{i} \mathbf{P}_j \boldsymbol{\beta}_{i,j};$ end Return \mathbf{x}_{i+1} ;

Theorem If $\lambda_{\max}(\mathbf{HA}) \leq 1/\tau$ then the algorithm is the usual PPCG.

Theoretical Result (3/3): No extra work for 'easy' pbs.

 $\mathbf{x}_0 = \mathbf{U}(\mathbf{U}^\top \mathbf{A} \mathbf{U})^{-1} \mathbf{U}^\top \mathbf{b}$ $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0; \mathbf{Z}_0 = \mathbf{H}\mathbf{r}_0; \mathbf{P}_0 = \mathbf{\Pi}\mathbf{Z}_0;$ for $i = 0, 1, \ldots$, convergence do $\mathbf{O}_i = \mathbf{A}\mathbf{P}_i$ $\boldsymbol{\alpha}_{i} = (\mathbf{Q}_{i}^{\top} \mathbf{P}_{i})^{\dagger} (\mathbf{P}_{i}^{\top} \mathbf{r}_{i});$ $\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{P}_i \boldsymbol{\alpha}_i;$ $\mathbf{r}_{i+1} = \mathbf{r}_i - \mathbf{Q}_i \boldsymbol{\alpha}_i;$ $t_i = \frac{(\mathbf{P}_i \boldsymbol{\alpha}_i)^\top \mathbf{A}(\mathbf{P}_i \boldsymbol{\alpha}_i)}{-}$ if $t_i < \tau$ then $\mathbf{Z}_{i+1} = \begin{bmatrix} \mathbf{H}^1 \mathbf{r}_{i+1} \mid \ldots \mid \mathbf{H}^N \mathbf{r}_{i+1} \end{bmatrix}$ else $\mathbf{Z}_{i+1} = \mathbf{H}\mathbf{r}_{i+1};$ end $\boldsymbol{\beta}_{i,j} = (\mathbf{Q}_j^\top \mathbf{P}_j)^{\dagger} (\mathbf{Q}_j^\top \mathbf{Z}_{i+1});$ $\mathbf{P}_{i+1} = \mathbf{\Pi} \mathbf{Z}_{i+1} - \sum_{i=0}^{i} \mathbf{P}_j \boldsymbol{\beta}_{i,j};$ end Return \mathbf{x}_{i+1} ;

Theorem If $\lambda_{max}(\mathbf{HA}) \leq 1/\tau$ then the algorithm is the usual PPCG.

Proof

We begin with $\mathbf{r}_i = \mathbf{r}_{i-1} - \mathbf{Q}_{i-1}\boldsymbol{\alpha}_{i-1}$ and take the inner product by \mathbf{Hr}_i :

$$\begin{aligned} \langle \mathbf{H}\mathbf{r}_{i},\mathbf{r}_{i}\rangle &= \langle \mathbf{H}\mathbf{r}_{i},\mathbf{r}_{i-1}\rangle - \langle \mathbf{H}\mathbf{r}_{i},\mathbf{A}\mathbf{P}_{i-1}\boldsymbol{\alpha}_{i-1}\rangle \\ &\leqslant \|\mathbf{r}_{i}\|_{\mathbf{H}\mathbf{H}}^{1/2} \|\mathbf{P}_{i-1}\boldsymbol{\alpha}_{i-1}\|_{\mathbf{A}}^{1/2} \quad (C.S.), \end{aligned}$$

or equivalently:

$$\frac{\langle \mathsf{H} \mathsf{r}_i, \mathsf{r}_i \rangle}{\langle \mathsf{H} \mathsf{r}_i, \mathsf{A} \mathsf{H} \mathsf{r}_i \rangle} \leqslant \frac{\langle \mathsf{P}_{i-1} \alpha_{i-1}, \mathsf{A} \mathsf{P}_{i-1} \alpha_{i-1} \rangle}{\langle \mathsf{H} \mathsf{r}_i, \mathsf{r}_i \rangle}$$

Finally:
$$\tau \leq \frac{1}{\lambda_{\max}} \leq \frac{\langle \mathbf{Hr}_i, \mathbf{r}_i \rangle}{\langle \mathbf{Hr}_i, \mathbf{AHr}_i \rangle} \leq \frac{\langle \mathbf{P}_{i-1} \boldsymbol{\alpha}_{i-1}, \mathbf{AP}_{i-1} \boldsymbol{\alpha}_{i-1} \rangle}{\langle \mathbf{Hr}_i, \mathbf{r}_i \rangle} = t_{i-1}.$$

Local Adaptive MPCG for $\sum_{s=1}^{N} A^{s} \mathbf{x}_{s} = \mathbf{b}$ preconditioned by $\sum_{s=1}^{N} \mathbf{H}^{s}$ and projection $\mathbf{\Pi}$. ($\tau \in \mathbb{R}^{+}$ is chosen by the user) $\bullet \mathbf{A} = \sum_{s=1}^{N} \mathbf{R}^{s\top} \mathbf{S}^{s} \mathbf{R}^{s}.$ 1 $\mathbf{x}_0 = \mathbf{U}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{b}; \mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0; \mathbf{Z}_0 = \mathbf{H}\mathbf{r}_0;$ $\mathbf{P}_0 = \mathbf{\Pi} \mathbf{Z}_0;$ ² for $i = 0, 1, \ldots$, convergence do Between 1 and N 3 $\mathbf{O}_i = \mathbf{A}\mathbf{P}_i$ search directions per $\boldsymbol{\alpha}_i = (\mathbf{Q}_i^{\top} \mathbf{P}_i)^{\dagger} (\mathbf{P}_i^{\top} \mathbf{r}_i);$ 4 $\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{P}_i \boldsymbol{\alpha}_i$; iteration. 5 $\mathbf{r}_{i+1} = \mathbf{r}_i - \mathbf{Q}_i \boldsymbol{\alpha}_i$ 6 Reduces the cost of \leftarrow initialize \mathbf{Z}_{i+1} $Z_{i+1} = Hr_{i+1};$ 7 inverting $\mathbf{P}_i^{\top} \mathbf{A} \mathbf{P}_i$ (one for s = 1, ..., N do 8 $t_i^s = \frac{\langle \mathbf{P}_i \boldsymbol{\alpha}_i, \mathbf{A}^s \mathbf{P}_i \boldsymbol{\alpha}_i \rangle}{\mathbf{r}_{i+1}^\top \mathbf{H}^s \mathbf{r}_{i+1}};$ limitation of MPCG) 9 if $t^s_i < \tau$ then $\leftarrow local \tau$ -test 10 $\mathbf{Z}_{i+1} = [\mathbf{Z}_{i+1} | \mathbf{H}^{s} \mathbf{r}_{i+1}];$ Theorem 11 end 12 If the τ -test returns $t_{i-1}^s \ge \tau$ end 13 for all $s = 1, \ldots, N$ then $\boldsymbol{\beta}_{i,j} = (\mathbf{Q}_j^\top \mathbf{P}_j)^{\dagger} (\mathbf{Q}_i^\top \mathbf{Z}_{i+1}), \quad j = 0, \dots, i;$ 14 $\mathbf{P}_{i+1} = \mathbf{\Pi} \mathbf{Z}_{i+1} - \sum_{i=0}^{l} \mathbf{P}_{j} \boldsymbol{\beta}_{i,j};$ 15 $\frac{\|\mathbf{x}_* - \mathbf{x}_i\|_{\mathbf{A}}}{\|\mathbf{x}_* - \mathbf{x}_{i-1}\|_{\mathbf{A}}} \leq \left(\frac{1}{1 + \lambda_{\min} \tau}\right)^{1/2}.$ 16 end Return \mathbf{x}_{i+1} ; 17

Implementation for BDD: Saving local solves

1
$$\mathbf{x}_{0} = \mathbf{U}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{b}; \mathbf{r}_{0} = \mathbf{b} - \mathbf{A}\mathbf{x}_{0}; \mathbf{Z}_{0} = \mathbf{H}\mathbf{r}_{0}; \mathbf{\tilde{P}}_{0} = \mathbf{Z}_{0};$$

2 for $i = 0, 1, ..., convergence do$
3 $\mathbf{Q}_{i} = \sum_{s=1}^{N} \mathbf{Q}_{i}^{s}$ where $\mathbf{Q}_{i}^{s} = \mathbf{A}^{s}\mathbf{Z}_{i} - \mathbf{A}^{s}\mathbf{U}(\mathbf{U}^{\top}\mathbf{A}\mathbf{U})^{-1}(\mathbf{A}\mathbf{U})^{\top}\mathbf{Z}_{i} - \sum_{j=0}^{i-1} \mathbf{Q}_{j}^{s}\boldsymbol{\beta}_{i-1,j};$
4 $\alpha_{i} = (\mathbf{Q}_{i}^{\top}\mathbf{P}_{i})^{\dagger}(\mathbf{P}_{i}^{\top}\mathbf{r}_{i}); \mathbf{x}_{i+1} = \mathbf{x}_{i} + \mathbf{\Pi}\mathbf{\tilde{P}}_{i}\alpha_{i}; \mathbf{r}_{i+1} = \mathbf{r}_{i} - \mathbf{Q}_{i}\alpha_{i};$
5 $\mathbf{Z}_{i+1} = \mathbf{H}\mathbf{r}_{i+1};$
6 for $s = 1, ..., N$ do
7 \mathbf{I} $\mathbf{I}_{i}^{s} = \frac{\langle \mathbf{\Pi}\mathbf{\tilde{P}}_{i}\alpha_{i}, \mathbf{Q}_{i}^{s}\alpha_{i} \rangle}{\mathbf{r}_{i+1}^{\top}\mathbf{H}^{s}\mathbf{r}_{i+1}};$
8 $\mathbf{I}_{i}^{t} \mathbf{f}_{i}^{s} < \tau$ then
9 $\mathbf{I}_{i+1} = [\mathbf{Z}_{i+1} | \mathbf{H}^{s}\mathbf{r}_{i+1}];$
10 $\mathbf{I}_{i+1} = [\mathbf{Z}_{i+1} | \mathbf{H}^{s}\mathbf{r}_{i+1}];$
11 \mathbf{I}_{i} end
12 end
13 $\boldsymbol{\beta}_{i,j} = (\mathbf{Q}_{i}^{\top}\mathbf{P}_{i})^{\dagger}(\mathbf{Q}_{j}^{\top}\mathbf{Z}_{i+1}) (j = 0, ..., i); \mathbf{\tilde{P}}_{i+1} = \mathbf{Z}_{i+1} - \sum_{j=0}^{i} \mathbf{\tilde{P}}_{j}\boldsymbol{\beta}_{i,j};$
14 end
15 Return $\mathbf{x}_{i+1};$

Same 'trick' as in :

P. Gosselet, D. J. Rixen, F.-X. Roux, and N. S.

Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions.

International Journal for Numerical Methods in Engineering, 2015.

Numerical Illustration (1/4): Homogenous subdomains

Numerical Illustration (2/4): Metis subdomains

500

Numerical Illustration (3/4): Channels 10^{0} 10^{-1} Error (log scale) 10^{-2} Global . 10^{-3} Local Simultaneous 10^{-4} PPCG × 10^{-5} GenEO 10^{-6} 10^{-7} 100 0 200 300 400 Iterations $\cdot 10^{4}$ Dimension of the minimization space 2,500Global 8 Local Simultaneous 2,000 Number of local solves PPCG 6 -× GenEO 1,5001,000 Global 2 Local 500Simultaneous PPCG 0 - X 100200 300 400 500100 200 300 400 0 0 Nicole Spillane (U. de Chile) Iterations Iterations

30 / 33

500

Numerical Illustration (4/4)

|--|

	Gloł	bal $ au$ -test	Local τ -test Simultaneous		usual BDD		GenEO		
E_2/E_1	it	solves	it	solves	it	solves	it	solves	it
1	26	4624	25	4602	14	7212	36	5832	23
10	26	5036	28	5213	14	7212	44	7128	23
10 ²	30	6096	25	5164	15	7786	76	12312	21
10 ³	23	5374	25	5133	16	8360	126	20412	22
10 ⁴	22	5212	25	5176	16	8360	139	22518	22
10 ⁵	22	5212	24	5041	16	8360	141	22842	23
	<i>dim</i> < 554 <i>dim</i> < 423		n < 423	<i>dim</i> < 1428		<i>dim</i> < 353		<i>dim</i> < 372	
Variable number of subdom				nains	for $E_2/E_1 =$	$= 10^5$ ((k scalin	g):	
	Global τ -test Local τ -test		al $ au$ –test	Simultaneous		usual BDD		GenEO	
Ν	it	solves	it	solves	it	solves	it	solves	it
25	20	1784	22	1447	17	2530	69	3450	20
36	24	2392	23	2150	16	3476	87	6264	20
49	20	3364	24	3146	16	4844	110	10780	20
64	21	5264	24	4137	17	7006	152	19456	20
	<i>dim</i> < 693 <i>dir</i>		<i>dim</i> < 379 <i>dir</i>		n < 1193	<i>dim</i> < 320		<i>dim</i> < 327	

Numerical Illustration (4/4)

Variable h	eterogeneity fo	r N = 81 (<-scaling) :

	Glob	bal $ au$ –test	E Local $ au$ -test Simultaneou		ultaneous	usual BDD		GenEO	
E_2/E_1	it	solves	it	solves	it	solves	it	solves	it
1	26	4624	25	4602	14	7212	36	583 2	23
10	26	5036	28	5213	14	7212	44	7128	23
10 ²	30	6096	25	5164	15	7786	76	12312	21
10 ³	23	5374	25	5133	16	8360	126	20412	22
10 ⁴	22	5212	25	5176	16	8360	139	22518	22
10 ⁵	22	5212	24	5041	16	8360	141	22842	23
	dim < 554 $dim < 554$		n < 423	din	ı < 1428	<i>dim</i> < 353		<i>dim</i> < 372	
Variable number of subdom				nains	for E_2/E_1 =	$= 10^5$ ((k scalin	g):	
	Global τ -test		Local τ -test		Simultaneous		usual BDD		GenEO
Ν	it	solves	it	solves	it	solves	it	solves	it
25	20	1784	22	1447	17	2530	69	3450	20
36	24	2392	23	2150	16	3476	87	6264	20
49	20	3364	24	3146	16	4844	110	10780	20
64	21	5264	24	4137	17	7006	152	19456	20
	dim < 693 dim <		n < 379	<i>dim</i> < 1193		<i>dim</i> < 320		<i>dim</i> < 327	

Conclusion

Reliability, Efficiency and Simplicity through adaptive coarse spaces and adaptive multiple search directions.

Perspectives

- Test on industrial test cases and measure CPU times.
- Use the τ -test to recycle part of the minimization spaces.
- Simultaneous BDD: Theoretical Analysis at the PDE level.
- Adaptive Multi PCG for other DD methods: when λ_{max} is known or neither λ_{min} or λ_{max}.

P

N. S., D. J. Rixen,

Automatic spectral coarse spaces for robust FETI and BDD algorithms. IJNME, 2013.

P. Gosselet, D. J. Rixen, F.-X. Roux, and N. S.

Simultaneous FETI and block FETI: Robust domain decomposition with multiple search directions. International Journal for Numerical Methods in Engineering, 2015.

🖳 N. S.

Adaptive Multi Preconditioned Conjugate Gradient: Algorithm, Theory and an Application to Domain Decomposition Submitted, Preprint available online <hal-01170059>, 2015.

Downloadable at http://www.ann.jussieu.fr/~spillane/