

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

## Development of Nonlinear Structural Analysis using Co-rotational Finite Elements with improved Domain Decomposition Method

SangJoon Shin

Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea





DD XXIII International Conference on Domain Decomposition Methods

> 2015. 7.6~7.10 Jeju, Korea

## Contents

## Introduction

- Motivation
- Previous investigation
- Present research objectives

## Formulations

- Original FETI methods
- Proposed FETI approach
- Improved algorithm for nonlinear analysis

## Numerical results

- Computational efficiency test
- Nonlinear structural analysis
- Application to the FSI analysis

## Conclusions and future works



## Introduction

- Formulations
- Numerical results
- Conclusions and Future works



# Motivation

## ✤ Large-size analysis in fluid-structure interaction problem



▲ Multidisciplinary analysis (Gupta, 2000)

▲ Example of large-size FSI analysis

#### • Advancement of the computer hardware/software technologies

- Large-size analysis in the field of aerospace engineering
- Multidisciplinary analysis involves interactions among a number of disciplines.
  - Structural analysis, Aerodynamic analysis, Fluid-structure interaction analysis

An effective solution methodology in the large-size structures has grown significantly in the field of the mechanical and aerospace engineering.

Active Aeroelasticity and Rotorcraft Lab.

- 4/56 -





# Motivation

## \* Efficient strategies for nonlinear structural analysis

- Complex structures consisting of many mechanical components
  - Multi-body dynamics including motion of various joints

• Flexible structures, i.e., rotor blades, flapping wing, show geometrically nonlinear behavior.

An effective solution methodology to flexible multibody systems involving nonlinear kinematic constraints



▲ Dynamics of the helicopter rotor (Heo, 2014)



▲ Multi-body configuration of the flapping wing (Masarati P., 2013) Seoul National University

Active Aeroelasticity and Rotorcraft Lab.

- 5/56 -

Mechanical & Aerospace Engineering



# Motivation

## Solution techniques for structural analysis (1)





## Solution techniques for structural analysis (2)



- Schwarz alternating method (Dryja, 1987)
- The original domain is split into overlapping sub-domains

Active Aeroelasticity and Rotorcraft Lab.

•

۲

FETI method (Farhat, 1991)

Lagrange multipliers enforce

continuity along the interface



# Previous investigation

- Previous FETI approaches
  - Farhat (1991), (1994), (1998), (2001)
    - Method of finite element tearing and interconnecting and its parallel solution algorithm(1991)
    - $\rightarrow$  Fewer inter-processor communications
    - Transient FETI methodology for large-size parallel implicit computations in structural mechanics(1994)
    - $\rightarrow$  Substructure version of Newmark integrator
    - **Two-level FETI** method part I: an optimal iterative solver for bi-harmonic systems(1998)
    - $\rightarrow$  Extension into the fourth order problems
    - **FETI-DP: Dual-primal unified FETI method** part I: faster alternative to two-level FETI method(2001)
    - → Unified all previously developed FETI algorithms into a single dual-primal FETI method
  - Hackbusch (1994), Li (2010), Gueye (2011), Tak (2013)
    - DDM with direct methods have been attempted.

## Present research objectives

- Required enhancement in FETI method
  - Farhat (1991), (1994), (1998), (2001)
    - Preconditioner is required.  $\rightarrow$  Additional mathematical algorithm, i.e., PCPG algorithm
    - $\rightarrow$  difficulty to extending the algorithm to nonlinear problem or applying for multibody system.

#### Proposed FETI approach

- the augmented Lagrangian formulation and direct solver → natural preconditioning and securement of numerical efficiency
- $\rightarrow$  effective extension to nonlinear problem or multibody system.





# Present research objectives

#### Present research objectives

\*DDM: Domain decomposition method



- Derive an augmented Lagrangian formulation as a penalty term of the present proposed FETI method and develop the equation of motion.
- Develop a computation algorithm based on a finite element domain decomposition technique for the analysis of large-size structural problems and its parallelization for a parallel computer hardware.
- Develop a computation algorithm of nonlinear structural analysis based on corotational finite element in the presently proposed FETI method.

## Introduction

## Formulations

Numerical results

## Conclusions and Future works

Active Aeroelasticity and Rotorcraft Lab.



# Original FETI methods

## ✤ Algorithm of the original FETI method (1)



- FETI method is an approach in which **the computational domain is divided into non-overlapping sub-domains**.
- In the FETI method, Lagrange's multipliers are introduced to enforce compatibility at the interface nodes as the interface connecting forces.
- In the static analysis, **each floating sub-domain**, which is under non-boundary condition, **induces a local singularity**.

**Seoul National University** 

Mechanical & Aerospace Engineering

# Original FETI methods

### Algorithm of the original FETI method (2)



- The solution of the problem is obtained in two steps.
  - $\checkmark$  First, the solution of the interface problem yields the Lagrange multipliers.
  - ✓ Second, the displacement field in each sub-domains is evaluated.



# Original FETI methods

Algorithm of the original FETI method (3)



• Unknown variables  $\underline{\lambda}$  and  $\underline{\alpha}$  are solved by using an iterative method. - Preconditioned conjugate projected gradient (PCPG) is required.

# Complex algorithm due to the iterative solver, such as PCPG is required. → difficulty in understanding and implementation

Active Aeroelasticity and Rotorcraft Lab.



#### Features of the proposed FETI approach



Localized Lagrange multipliers:  $\underline{\lambda}^{(i)T} = \left\{ \underline{\lambda}^{[1]T}, \underline{\lambda}^{[2]T}, \cdots, \underline{\lambda}^{[N_b^{(i)}]T} \right\}$ Nodal DOFs and Lagrange multipliers of subdomain *i*:  $\underline{\vec{u}}^{(i)T} = \left\{ \underline{u}^{(i)T}, \underline{\lambda}^{(i)T} \right\}$ Array storing the DOFs of all sub-domains:  $\underline{\vec{u}}^{(i)T} = \left\{ \underline{\vec{u}}^{(1)T}, \underline{\vec{u}}^{(2)T}, \cdots, \underline{\vec{u}}^{(N_s)T} \right\}$ 

- All the developments presented here are applicable to general, threedimensional problems.
- Application of the localized Lagrange multipliers technique to enforce the continuity of the displacement field.

- Each constraint and corresponding Lagrange multipliers are associated with a single sub- domain unambiguously.

Active A
Active A
All the constraints are assumed to be local.
The interface node is defined along the entire interface.



## Formulation of the proposed FETI approach (1)



▲ Classical and localized Lagrange multipliers

- All the constraints are assumed to be local. - The interface node is defined along the entire interface.
- No direct constraint is written between the DOF's of the sub-domains. - Lagrange multipliers become "localized."

multipliers  $V_c = \underline{\lambda}^T \underline{C}, \quad \underline{C} = \underline{u}_1 - \underline{u}_2 = 0$ Localized Lagrange multiplier:  $V_c = \underline{\lambda}^{[1]T} \underline{C}^{[1]} + \underline{\lambda}^{[2]T} \underline{C}^{[2]}$  $\underline{C}^{[1]} = \underline{u}_1 - \underline{c} = \underline{0}, \quad \underline{C}^{[2]} = \underline{u}_2 - \underline{c} = \underline{0}$ 



## Formulation of the proposed FETI approach (2)



Active Aeroelasticity and Rotorcraft Lab.

![](_page_16_Picture_6.jpeg)

Formulation of the proposed FETI approach (3)

**Kinematic constraint:** 

$$\underline{C}^{[j]} = \underline{u}_b^{[j]} - \underline{c}^{[j]} = \underline{0}$$

Potential of constraints: (localized Lagrange multiplier technique + penalty method)

**Generalized forces of constraint:** 

Stiffness matrix of the constraint:

$$\underline{f}^{[j]} = \begin{cases} s\underline{\lambda}^{[j]} + p\underline{C}^{[j]} \\ s\underline{C}^{[j]} \\ -s\underline{\lambda}^{[j]} - p\underline{C}^{[j]} \end{cases} \qquad \qquad \underline{k}^{[j]} = \begin{bmatrix} p\underline{I} & s\underline{I} & -p\underline{I} \\ s\underline{I} & 0 & -s\underline{I} \\ -p\underline{I} & -s\underline{I} & p\underline{I} \\ -p\underline{I} & -s\underline{I} & p\underline{I} \end{bmatrix}$$

![](_page_17_Picture_12.jpeg)

## Algorithm of the proposed FETI approach

![](_page_18_Figure_2.jpeg)

- The potential of kinematic constraint involves two types of DOF's. - Sub-domain DOF's / Interface DOF's
- Each kinematic constraint generates an array of constraint forces and a stiffness matrix.
  - Each kinematic constraint can be viewed as finite element.
- The assembly procedure can be performed in parallel for all sub-domains.

Active Aeroelasticity and Rotorcraft Lab.

- 19/56 -

![](_page_18_Picture_10.jpeg)

Universit

## Penalty method in the proposed FETI approach

![](_page_19_Figure_2.jpeg)

- The leading entry of matrix  $\underline{\underline{K}}_{bb}^{[j]}$  is a diagonal matrix,  $\underline{p}_{\underline{l}}^{I}$ , which is added to the diagonal entries of stiffness matrix  $\underline{\underline{K}}^{(i)}$  associated with the boundary nodes.
  - Physically, this corresponds to adding springs of stiffness constant *p* connected to the ground at each boundary node of sub-domain *i*.
  - $\underline{\breve{K}}^{(i)}$  is singular for any floating sub-domain,  $\underline{\breve{K}}^{(i)} + \underline{\breve{K}}^{(i)}_{bb}$  is not.
- The Lagrange multipliers can be interpreted as the forces that interconnect the various parts of the structure.

- At convergence, all kinematic constraints will be satisfied.  $\underline{C}^{[j]} = \underline{0}$ 

- Constraint forces reduce to equal and opposite forces. (boundary/interface node)

![](_page_19_Picture_12.jpeg)

### Computational method in the proposed FETI approach

![](_page_20_Figure_2.jpeg)

- Proposed FETI-local approach proceeds in three computational steps.
- Step I sets up the structural interface problem (possible to parallelize).
- Step II obtains the solution of the structural interface problem.
- Active A Step III recovers the solution in each sub-domain (possible to parallelize).

![](_page_20_Picture_7.jpeg)

# Flexible multi-body dynamics simulation

- DYMORE, Simulation tools for flexible multibody systems
  - An FEM-based multibody dynamics analysis
    - ✓ Features beam and shell elements capable of dealing with composite materials
    - ✓ Capable of modeling complex configuration including mechanical joints

![](_page_21_Figure_5.jpeg)

- Finite element-based multibody dynamics approaches
  - $\checkmark$  Yields accurate predictions for complex systems, but at high computational costs
  - ✓ Use the constraints via Lagrange multiplier technique to enforce nonlinear kinematic constraints
  - ✓ Solve the resulting Differential Algebraic Equations using direct solvers.
     → ill-conditioned system matrices involving large condition number are generally induced.

 $\rightarrow$  Significant increase of a number of DOFs and computational time due to the multi-connected structure or multi-disciplinary analysis including aerodynamic loads.

![](_page_21_Picture_12.jpeg)

# Parallel processing of MBD simulation

## Parallelization of DYMORE

- FETI method with localized Lagrange multiplier is implemented (Heo, 2014).
  - The comprehensive analysis of multibody system must satisfy contradictory requirements.
    - ✓ Increasingly accurate predictions and Faster execution times
    - Advanced modeling techniques require an exponential increase in computational resources

#### • Overall solution procedure in parallelized DYMORE

- ① Factorize sub-domain stiffness matrices (Parallel)
- ② Factorize interface stiffness matrix
- ③ Forward-substitute sub-domains (Parallel)
- ④ Solve for interface displacements by forward- and back-substitution
- (5) Solve for sub-domain displacements by back-substitution (Parallel)

![](_page_22_Figure_12.jpeg)

▲ Grids of a beam (Heo, 2014) – partitioned into two sub-domain with multiple interfaces

![](_page_22_Picture_14.jpeg)

▲ Dynamics of the helicopter rotor (Heo, 2014)

- 23/56 -

- ✤ Flexible multibody system including the motion with large amplitude
  - Helicopter or wind turbine blades, missiles, high altitude long endurance aircraft, flapping wings

![](_page_23_Figure_3.jpeg)

- Co-rotational (CR) FEs can be useful for various structural analysis accommodating the motion with large amplitude.
  - $\rightarrow$  modularized and unified algorithm
  - ✓ Need to improve the proposed FETI algorithm
    - For static analysis

(Load incremental Newton-Raphson method + Proposed FETI algorithm)

#### - For time-transient analysis (Hilbert Hughes Taylor α method + Proposed FETI algorithm)

### ✤ Nonlinear analysis based on co-rotational (CR) framework

- The most recent of the Lagrangian kinematic descriptions (Total-Lagrangian, Updated-Lagrangian, Co-rotational)
- Kinematic assumptions: arbitrarily large displacements and rotations, but small deformations
- Element independent CR (EI-CR)

![](_page_24_Figure_5.jpeg)

✤ Co-rotational formulation for planar element

![](_page_25_Figure_2.jpeg)

• Coordinate systems and element kinematics

- The motion of the element is split in rigid translation and rotation and local deformation with respect to the local frame.

- Element rigid rotation obtained by using translation behavior

$$\tan \theta = \frac{\sum_{i=1}^{N} \left[ x_i \left( Y_i + V_i - Y_c - V_c \right) - y_i \left( X_i + U_i - X_c - U_c \right) \right]}{\sum_{i=1}^{N} \left[ y_i \left( Y_i + V_i - Y_c - V_c \right) + x_i \left( X_i + U_i - X_c - U_c \right) \right]}$$

• Local element rotation obtained by using global rotation dof

$$\mathbf{R}_{G}^{i} = \begin{bmatrix} \cos(\theta_{Gi}) & -\sin(\theta_{Gi}) \\ \sin(\theta_{Gi}) & \cos(\theta_{Gi}) \end{bmatrix} \qquad \mathbf{R}_{L}^{i} = \mathbf{R}^{T} \mathbf{R}_{G}^{i} \qquad \tan \theta_{Li} = \frac{\mathbf{R}_{L}^{i}(2,1)}{\mathbf{R}_{L}^{i}(1,1)}$$

• The local system → with respect to the existing finite element hypothesis - Internal force vector and stiffness matrix in the local frame

$$f = \begin{cases} \frac{\partial \Phi}{\partial u_L} \\ \frac{\partial \Phi}{\partial \theta_L} \end{cases} \qquad k = \begin{bmatrix} \frac{\partial^2 \Phi}{\partial u_{L,i} \partial u_{L,j}^e} & \frac{\partial^2 \Phi}{\partial u_{L,i} \partial \theta_{L,j}} \\ \frac{\partial^2 \Phi}{\partial \theta_{L,i} \partial u_{L,j}} & \frac{\partial^2 \Phi}{\partial \theta_{L,i} \partial \theta_{L,j}} \end{bmatrix} \qquad \text{strain energy}$$

$$u_L \text{ pure nodal translation DOF in the deformed frame}$$

$$\theta_L \text{ pure nodal rotation DOF in the deformed frame}$$

- Internal forces and stiffness matrices along changes of rotation variables
  - Global internal force vector and stiffness matrix

 $\mathbf{f}_{c} = \mathbf{B}^{T} f$ Tangent stiffness matrix  $\mathbf{K}_{c} = \mathbf{B}^{T} k \mathbf{B} + \mathbf{K}_{b}$  $\mathbf{K}_{h} = \mathbf{E} \left[ -\mathbf{F}_{2}^{T}\mathbf{G} - \mathbf{G}^{T}\mathbf{F}_{1}\mathbf{P} \right] \mathbf{E}^{T}$ where - Transformation matrices, E and B  $\mathbf{E} = \mathbf{diag} \begin{bmatrix} \mathbf{R} & \cdots & \mathbf{R} \end{bmatrix}$  $\mathbf{F}_{1i} = \begin{bmatrix} n_{i1} & -n_{i2} & 0 \end{bmatrix}$  $\mathbf{F}_{2i} = \begin{bmatrix} n_{i1} & -n_{i2} & -n_{i3} \end{bmatrix}$ where  $\mathbf{B} = \mathbf{P} \mathbf{E}^{T}$  $\mathbf{P} = \mathbf{I} - \mathbf{A}\mathbf{G} \quad \mathbf{A}_{i} = \{-y_{di} \quad x_{di} \quad 1\}^{T}$  $\cos(\theta) - \sin(\theta) 0$  $\mathbf{G}_{i} = \frac{1}{\sum_{i=1}^{N} (x_{i} x_{di} + y_{i} y_{di})} \{-y_{di} \quad x_{di} \quad 0\}$  $\mathbf{R} = \begin{vmatrix} \sin(\theta) & \cos(\theta) & 0 \end{vmatrix}$ projector matrix extracting the deformational component 0 0 from the total motion

#### ✤ Load incremental Newton-Raphson scheme

![](_page_27_Figure_2.jpeg)

# Parallel algorithm of the proposed FETI approach

## Parallelization of the proposed FETI approach

![](_page_28_Figure_2.jpeg)

Calculation<br/>procedureProposed FETI-localStep IInverse routinePARDISO libraryLinear solver routineStep IIPARDISO library

Step III Linear solver routine

PARDISO library

- Sparse matrix library, PARDISO, is employed to handle the sparsity of the defined matrices, efficiently.
- Message passing interface (MPI) is implemented.
- Collective communication algorithm is applied. (MPI\_REDUCE, MPI\_BCAST).

## Introduction

## Formulations

## Numerical results

## Conclusions and Future works

Active Aeroelasticity and Rotorcraft Lab.

![](_page_29_Picture_7.jpeg)

# Numerical results

• Static analysis with the two-dimensional problems were conducted to examine the computational costs and the scalability.

![](_page_30_Figure_2.jpeg)

- Parallel computations are conducted on a TACHYON system.
- Time transient analysis are conducted by applying the constant and sinusoidal tip loads.
- FSI analysis regarding an axisymmetric engine configuration is conducted.

![](_page_30_Picture_9.jpeg)

## Comparisons of the condition number

| Analysis      | Condition number      | Displacement (m)     |
|---------------|-----------------------|----------------------|
| Original FETI | $4.70 \times 10^{16}$ | $1.6 \times 10^{-3}$ |
| FETI-DP       | 6.98                  | $1.6 \times 10^{-3}$ |
| FETI-local    | 1.17                  | $1.6 \times 10^{-3}$ |

#### ▼ Comparison on the condition number

- Condition number of the original FETI is relatively large.
- Condition number of the flexibility matrix of the proposed methods approaches unity.
- The four methods give the same numerical values for the displacement.

Advantages : Excellent conditioning of the interface problem

![](_page_31_Picture_11.jpeg)

# Computational efficiency test

## Comparisons of the computational costs with FETI-DP

![](_page_32_Figure_2.jpeg)

▲ Computational time and trend of the FETI-local approach

▲ Memory usage trend of the FETI-local approach

- The number of the sub-domains is increased from 4 to 36, but the number of DOFs is kept to a total of 35,378.
- Behavior of the proposed FETI-local is similar to that of the FETI-DP.
- Proposed FETI-local features the smaller computational time and memory usages than FETI-DP does.

![](_page_32_Picture_8.jpeg)

# Computational efficiency test

## ✤ Scalability test with the speed-up capability

![](_page_33_Figure_2.jpeg)

▲ Speed-up result by the FETI-local in parallel computing environment

- Figure shows the scalability of the proposed FETI-local, and it is estimated by the speed-up capability.
  - $S_{ps} = \frac{\text{Time for sequential processing with one processor}}{\text{Time for parallel processing with } p \text{ processors}}$
- Proposed FETI-local approach reinforced with the parallel linear solver improves the computational efficiency.

![](_page_33_Picture_10.jpeg)

# Computational efficiency test

### ✤ Comparisons of the computational costs with existing numerical libraries

| Number of<br>sub-<br>domains | Proposed<br>approach [s] | Number of<br>CPUs | Parallel<br>ScaLAPACK<br>[s] | Number<br>of CPUs | Serial<br>PARDISO<br>[s] | Serial<br>LAPACK [s] |
|------------------------------|--------------------------|-------------------|------------------------------|-------------------|--------------------------|----------------------|
| 4                            | 6.52                     | 4                 | 27.63                        |                   |                          |                      |
| 9                            | 1.84                     | 9                 | 15.37                        |                   |                          |                      |
| 16                           | 0.64                     | 16                | 10.07                        | 1                 | 2.25                     | 00.42                |
| 25                           | 0.45                     | 25                | 8.17                         | j I               | 2.25                     | 99.42                |
| 36                           | 0.53                     | 36                | 7.09                         | İ                 |                          |                      |
| 100                          | 1.03                     | 100               | 5.49                         |                   |                          |                      |

▼ Comparisons of computational time

![](_page_34_Figure_4.jpeg)

▲ Computational time and trend of the FETI-local approach

- The number of the sub-domains is increased from 4 to 100, but the number of DOF's is kept to a total of 7,442.
- Structural analyses consisting of the same DOF's are conducted by the existing numerical libraries, LAPACK, ScaLAPACK and PARDISO, respectively.
- Proposed FETI-local features the smaller computational time usages than other existing numerical libraries do.

# Time transient analysis results

### Time transient analysis of the proposed FETI and FETI-DP method

![](_page_35_Figure_2.jpeg)

▲ Time transient analysis condition

- Standard Newmark method is employed for time transient analysis,
- The plot shows the time transient structural analysis results for proposed time transient FETI and Dual-primal FETI methods.
- The tip deflection shows an oscillation with respect to the static deflection.
- During the 500 time steps, both analyses show good agreement with a difference smaller than 0.01%.

| ▼ Analysis condition  |            |  |  |  |
|-----------------------|------------|--|--|--|
| Time step size (s)    | 0.001      |  |  |  |
| Mass density(kg/)     | 4430       |  |  |  |
| Elastic modulus (GPa) | 114        |  |  |  |
| Poisson's ratio       | 0.33       |  |  |  |
| Input load (N)        | sinusoidal |  |  |  |

![](_page_35_Figure_9.jpeg)

# Time transient analysis results

### ✤ Validation upon the time transient analysis of the proposed FETI method

![](_page_36_Figure_2.jpeg)

▲ Response of tip displacement

| Time step size(s)              | 0.001 |  |  |  |
|--------------------------------|-------|--|--|--|
| Mass density(kg/)              | 4430  |  |  |  |
| External forcing frequency(Hz) | 20    |  |  |  |
| Elastic modulus(               | 114   |  |  |  |
| Poisson's ratio                | 0.33  |  |  |  |
| <b>Input load()</b>            |       |  |  |  |

▼ Analysis condition

- The proposed time transient FETI method is applied to the solution of a two dimensional time transient plane strain problem.
- The present result is compared with those obtained by NASTRAN static analysis result.
- The result shows good agreement with that from NASTRAN.

# Application for three-dimensional problem

![](_page_37_Figure_1.jpeg)

#### Validation of the present shell analysis \*

▲ Load-deflection result comparison between the general shell FEM and the proposed FETI-local

- The number of the sub-domains is increased from 10 to 40, but the number of ۰ DOFs is kept to a total of 86,544.
- The static deflection predicted by the proposed FETI-local compares well ۲ with that by the general shell FEM analysis.

![](_page_37_Picture_7.jpeg)

# Application for three-dimensional problem

### Computation costs for the present shell problem

![](_page_38_Figure_2.jpeg)

- As the number of processors is increased, the computational time is varied from 466.63 to 33.88 (sec), and the maximum memory usage is from 1785 to 179.78 MB per process.
- Figure shows benign scalability characteristics possessed and exhibited by the proposed FETI-local.

![](_page_38_Picture_8.jpeg)

# Application for multi-body analysis

 Parallel implementation for multi-body configuration using linearized planar element

- 40/56 -

![](_page_39_Figure_2.jpeg)

- ▲ Multibody finite element configuration
- ▼ Computational time and memory usage (MB finite element configuration)

| Number of sub-domains | Computational<br>time (s) | Memory usage of each<br>processor (Mb) |
|-----------------------|---------------------------|----------------------------------------|
| 6                     | 155.15                    | 778                                    |
| 9                     | 54.45                     | 393                                    |
| 18                    | 8.95                      | 106                                    |
| 24                    | 4.25                      | 69                                     |
| 36                    | 1.65                      | 43                                     |

![](_page_39_Figure_6.jpeg)

▲ Speed-up result for the MB finite element configuration by the proposed FETI-local method in a parallel computing environment

![](_page_39_Picture_8.jpeg)

![](_page_39_Picture_10.jpeg)

# Application for nonlinear analysis

## Validation of presently employed CR planar element

![](_page_40_Figure_2.jpeg)

▲ Configuration of the nonlinear problem

![](_page_40_Figure_4.jpeg)

- Deflection of the planar plate is compared by increasing the concentrated tip load.
- Present results shows good correlation with those obtained by NASTRAN prediction and both results show geometrically nonlinear deflection.

# Application for nonlinear analysis

## Computation costs for nonlinear analysis

![](_page_41_Figure_2.jpeg)

▲ Configuration of the nonlinear problem

▲ Computational time and trend of the proposed approach

- The number of the sub-domains is increased from 8 to 60, but the number of DOFs is kept to a total of 39,864.
- Figure shows benign scalability characteristics possessed and exhibited by the proposed approach in nonlinear structural analysis.
- By the parallel computation, the proposed approach shows more efficient characteristics when compared with that by PARDISO.

![](_page_41_Picture_11.jpeg)

# Application for nonlinear multi-body analysis

Parallel implementation for multi-body system using the CR planar element

![](_page_42_Figure_2.jpeg)

• To verify an efficiency of the proposed approach, equivalent analysis employing the classical Lagrange multiplier and the sparse linear solver, PARDISO, is conducted and compared.

![](_page_42_Picture_7.jpeg)

# Application for nonlinear multi-body analysis

## Computation costs for multi-body system using the CR planar element

| Proposed approach     |                        | PARDISO        |                        |  |
|-----------------------|------------------------|----------------|------------------------|--|
| Number of sub-domains | Computational time (s) | Number of CPUs | Computational time (s) |  |
| 9                     | 2081.09                |                |                        |  |
| 12                    | 1033.90                |                |                        |  |
| 15                    | 685.28                 | 1              | 002 20                 |  |
| 18                    | 481.93                 | 1              | 902.39                 |  |
| 30                    | 224.76                 |                |                        |  |
| 36                    | 177.03                 |                |                        |  |
| 2500 ¬                |                        |                | _                      |  |

#### ▼ Comparison of computational time

![](_page_43_Figure_4.jpeg)

▲ Computational time and trend of the proposed approach in nonlinear multibody analysis

- As the number of processors is increased, the computational time is varied from 2081.09 to 177.03 (sec).
- Figure shows benign scalability characteristics possessed and exhibited by the proposed approach.
- The proposed approach shows outstanding efficiency upon the computational time by comparing with that by PARDISO.

# Application for FSI Analysis

## CFD/CSD coupling methodology

![](_page_44_Figure_2.jpeg)

▲ CFD-CSD interaction program

#### Interface

- Matched grid (high stability of interpolation)
- Loosely coupled
- Pressure data:  $CFD \rightarrow CSD$
- Deformation data:  $CSD \rightarrow CFD$

# Application to the FSI analysis

## \* Analytical model in FSI analysis

![](_page_45_Figure_2.jpeg)

- An axisymmetric engine configuration.
- Free-stream Mach number is 2.0 and the atmospheric pressure is referred to the standard sea level atmosphere.
- 0.31 throttling ratio and zero angle of attack.
- The three-dimensional grid system consists of 100 blocks and about 1 million grids.
  - Physical time step for CFD is 40 µsec.
  - Physical time step for CSD is 400 µsec.

# Application to the FSI analysis

## Structural results

![](_page_46_Figure_2.jpeg)

▲ Deformation history of the present FSI analysis

- Maximum average von Mises stress is found to be 42 MPa at the rear center body.
- The magnitude of the maximum von Mises stress is found to be 61 MPa at the front center body (tensile yield stress, 434 MPa).
- The main factor that decides dominant frequency is length of the inlet.

#### ▼ Dominant frequency

| -             |                           | n=1       | n=2       | n=3     | n=4            | n=5                |
|---------------|---------------------------|-----------|-----------|---------|----------------|--------------------|
| -             | Theory<br>[Newsome, 1984] | 33.97     | 56.61     | 79.25   | 101.9          | 124.5              |
|               | Fluid                     | 24.51     | 49.02     | 73.8    | 98             | 122                |
|               | FSI                       | 25.23     | 50.46     | 75.70   | 100.93         | 125                |
| Active Aeroel | asticity and Rotoro       | raft Lab. | - 47/56 - | Mechani | cal & Aerospac | e <b>Fngineeri</b> |

![](_page_46_Picture_9.jpeg)

# The FSI analysis using CR elements

### The FSI analysis for NACA0012 plunge wing

#### ▼ Operating condition

| <b>Reynolds number</b>             | 30000  |
|------------------------------------|--------|
| Flow velocity (m/s)                | 10     |
| Water density (kg/m <sup>3</sup> ) | 1000   |
| Plunge amplitude (m)               | 0.0175 |
| <b>Reduced frequency</b>           | 1.82   |

#### ▼ Wing structural properties

|                     | Value |                                       | Value |
|---------------------|-------|---------------------------------------|-------|
| Semi-span width (m) | 0.3   | Poisson's ratio                       | 0.3   |
| Chord length (m)    | 0.1   | Material density (kg/m <sup>3</sup> ) | 7800  |
| Thickness (m)       | 0.001 | Young's modulus (GPa)                 | 210   |

![](_page_47_Figure_6.jpeg)

▲ Schematic of the present flapping wing structural analysis

![](_page_47_Figure_8.jpeg)

- ▲ Experiment of NACA0012 plunge wing [Heathcote, Univ. of Bath (2008)]
- CR planar element was employed for the present FSI analysis.

![](_page_47_Picture_12.jpeg)

- 48/56 -

# The FSI analysis using CR elements

![](_page_48_Figure_1.jpeg)

#### ✤ Aerodynamic and structural results

- Both thrust coefficient and wing tip displacement response show good correlation with experimental results.
- Currently, **CR shell element is developed and it will be applied for the FSI** analysis by including the presently improved FETI approach.

![](_page_48_Picture_8.jpeg)

# Application of the CR shell and proposed approach

Modeling examples using the CR shell and proposed FETI approach \*

![](_page_49_Figure_2.jpeg)

#### ▲ Consideration of realistic geometrical boundary condition and efficient computation

Active Aeroelasticity and Rotorcraft Lab.

![](_page_49_Picture_7.jpeg)

## Introduction

- Formulations
- Numerical results

## **Conclusions and Future works**

Active Aeroelasticity and Rotorcraft Lab.

![](_page_50_Picture_7.jpeg)

- An efficient domain decomposition method capable of large-size structural analysis is developed.
  - The general DDM is performed first, and the ALF is used to enforce continuity of the displacement field at the sub-domain interface.
  - The proposed approach with localized Lagrange multiplier approach is introduced.
- The solution strategy and the computational algorithm of the proposed approach are developed.
  - The proposed approach proceeds in three computational steps.
  - The proposed FETI-local methodology is implemented in a parallel computing hardware using MPI.
- Condition number of the interface system matrix of the proposed methods approached unity.

# Conclusions

> The proposed approach is implemented in the parallel hardware.

- The overall behavior of the proposed parallel algorithm is better than that of the original FETI-DP.
- The proposed approach has an advantage that a parallel solver for linear equations can be implemented easily for the interface problem.
- The scalability characteristics of the proposed FETI-local is compared for the various examples. (80-92 % of parallel efficiency is achieved)
- The proposed approach is improved by applying for the nonlinear structural analysis.
  - The scalability characteristics of the proposed approach is examined by various examples.

![](_page_52_Picture_10.jpeg)

## Future works

- The computational costs can be reduced by using characteristics of a sparse matrix for the proposed FETI-mixed algorithm.
- > The solution strategy for the interface problem will be discussed.
- It is expected that the proposed approach will be extended to the timetransient solution of the nonlinear kinematic constraints.

![](_page_53_Picture_7.jpeg)

## Acknowledgement

- Kwak, JunYoung
  - Senior Researcher, Korea Aerospace Research Institute (<u>kjy84@kari.re.kr</u>)
- Chun, TaeYoung
  - Researcher, LIGNex1, (<u>sao67174@snu.ac.kr</u>)
- Cho, Haeseong
  - Graduate student, Seoul National University (<u>nicejjo@snu.ac.kr</u>)
- Joo, Hyunshig
  - Graduate student, Seoul National University (joohyunshig@snu.ac.kr)
- Park, ChulWoo
  - Graduate student, Seoul National University (<u>kjbs4106@snu.ac.kr</u>)
- Bauchau, Olivier A.
  - Professor, Hong Kong University of Science and Technology (<u>olivier.bauchau@outlook.com</u>)

This work was supported by a grant to Bio-Mimetic Robot Research Center funded by Defense Acquisition Program Administration and also be by National Research Foundation of Korea (NRF) Grant funded by the Korean Government (2011-0029094).

![](_page_55_Picture_0.jpeg)

Active Aeroelasticity and Rotorcraft Lab.

![](_page_55_Picture_4.jpeg)