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1 Eigenvalue problems in elasticity

Eigenvalue analysis is essential basis for many types of engineering analysis. As eigenvalues are

closely related with the frequency and shape of structures, computing the eigensolutions is important

to interpret the dynamic interaction between the structures. If the frequency of structures is close to

the system’s natural frequency, mechanical resonance occurs. It may lead to catastrophic failure or

damage in constructed structures such as bridges, buildings, and towers.

The model problem is described as :

• Ω is a connected and convex polygonal domain.

• Ω+ and Ω− are subdomains in Ω and divided by a interface Γ = ∂Ω+ ∩ ∂Ω−.

• λ and µ denote the Lamé coefficients (0 < µ1 < µ < µ2 and 0 < λ < ∞).

• The Cauchy stress tensor σ := (σij) and linearized strain tensor ǫ := (ǫij) in R
2×2 are given by

σ(u) = 2µ ǫ(u) + λ tr(ǫ(u))I, ǫ(u) =
1

2
(∇u +∇u

T ).

The eigenvalue problem for the linear elasticity equation with interface is

−divσ(u) = ω2u in Ωs (s = +,−), (1.1)

[u]Γ = 0, (1.2)

[σ(u) · n]Γ = 0, (1.3)

u = 0 on ∂Ω,

where ω2 and u are the corresponding eigenvalue and eigenfunction, and the symbol [·] denotes

the jump across the interface Γ.

We formulate the model problem (1.1) into the displacement formulation

a(u,v) = ω2(u,v), (1.4)

where

a(u,v) =

∫

Ω
2µ ǫ(u) : ǫ(v)dx +

∫

Ω
λ divu div v dx, ω2(u,v) = ω2

∫

Ω
u · vdx.

2 Immersed finite element method (IFEM)

We introduce an immersed finite element method based on Crouzeix-Raviart elements.
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Figure 1: A typical interface triangle
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∫

ej
φ̂i1 ds = δij, j = 1, 2, 3,

1

|ej|

∫

ej
φ̂i2 ds = δ(i−3)j, j = 1, 2, 3,

[φ̂i(D)] = 0,

[φ̂i(E)] = 0,[
σ(φ̂i) · n

]
DE

= 0.

For an interface element K (see Figure 1), the piecewise linear basis function φ̂i = (φ̂i1, φ̂i2),
i = 1, 2, · · · , 6, satisfies the interface conditions (1.2), (1.3).

• N̂h(Ω) : IFEM space spanned by basis φ̂.

•Hh(Ω) := (H1
0(Ω))

2 + N̂h(Ω).

The IFEM for the eigenvalue problem (1.1) is to find the eigensolution (ω2h,uh) ∈ C × N̂h(Ω)
such that

ah(uh,vh) = ω2h(uh,vh), ∀vh ∈ N̂h(Ω), (2.1)

where

ah(u,v) : =
∑

K∈Kh

∫

K
2µ ǫ(u) : ǫ(v)dx +

∑

K∈Kh

∫

K
λ divu div v dx

+
∑

e∈Eh

τ

h

∫

e
[u][v]ds, ∀u,v ∈ Hh(Ω).

3 Spectral approximation

We introduce the solution operator T : (L2(Ω))2 → (H1
0(Ω))

2, which associates the solution

T f ∈ (H1
0(Ω))

2 of the following source problem with every f ∈ (L2(Ω))2:

a(T f ,v) = (f ,v), ∀v ∈ (H1
0(Ω))

2.

• The operator T : bounded, self-adjoint and compact.

• (ω2,u) ∈ C \ {0} × (H1
0(Ω))

2 is an eigenpair of (1.4), ⇔ (1/ω2,u) is an eigenpair of T .

In a similar way, the corresponding discrete solution operator Th : (L2(Ω))2 → N̂h(Ω) is defined by

ah(Thf ,vh) = (f ,vh), ∀vh ∈ N̂h(Ω)

with f ∈ (L2(Ω))2. Clearly,

• The operator Th : bounded, self-adjoint, and compact.

• ω2h is an eigenvalue from (2.1) ⇔ ξh = 1/ω2h is an eigenvalue of Th.

We prove the spectrally correct approximation of the IFEM by the spectral properties of compact

and self-adjoint operators in Banach space.

Theorem 3.1. • Non-pollution of the spectrum

• Non-pollution of the eigenspace

• Completeness of the eigenspace

• Completeness of the spectrum

Theorem 3.2. Let ξ be an eigenvalue of T with multiplicity n. Then for h small enough there exist

n eigenvalues {ξ1,h, ..., ξn,h} of Th which converge to ξ as follows

sup
1≤i≤n

|ξ − ξi,h| ≤ Ch2,

where a positive constant C is independent of ξ and h.

4 Numerical results

Straight-line interface
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Figure 2: Eigenfunction of ω2
4 when (µ−, µ+) = (0.5, 5), λ± = 5µ± with straight-line interface. x,y-component of

eigenfunction (above). The log-log plots of h versus the relative error of the first four eigenvalues (below on the right).

Multiple interfaces
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Figure 3: Eigenfunction of ω2
4 when (µ−, µ+) = (0.5, 5), λ± = 5µ± with multiple interfaces. x,y-component of eigen-

function (above). The log-log plots of h versus the relative error of the first four eigenvalues (below on the right).
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