Parallel Domain Decomposition Algorithms for Blood Flows in Patient-specific Cerebral Arteries

Wen-Shin Shiu (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong, China)

Joint work with: Eric Haujaun Hu, Zhengzheng Yan, Rongliang Chen, Feng-Nan Hwang, Xiao-Chuan Cai

Abstract

We develop parallel domain decomposition algorithms to simulate blood flows in the patient-specific cerebral artery using geometric information obtained by standard medical imaging techniques. The complicated patient-specific geometry in the human brain makes the problem challenging. We use a Galerkin/least-squares(GLS) finite element method to discretize the 3D incompressible Navier-Stokes equations, which are employed to model the blood flow, and the resulting large sparse nonlinear system of equations is solved by a Newton-Krylov-Schwarz algorithm. From the computed flow fields, we are able to understand some of the behavior of the blood flow in the dysfunctional territories.

Introduction

<section-header>

3D reconstruction of patient-specific cerebrovascular geometry

Computational Techniques

Consider the 3D time-dependent incompressible Navier-Stokes equations:

$\left(\rho\left(\frac{\partial u}{\partial t}+u\cdot\nabla u\right)-\nabla\right)$	$\sigma \cdot \boldsymbol{\sigma} = 0 \text{ in } \boldsymbol{\Omega} \times (0, T)$	where $oldsymbol{\sigma}$ is the Cauchy stress
$\nabla \cdot u = 0$	in $\boldsymbol{\Omega} \times (\boldsymbol{0}, \boldsymbol{T})$	tensor defined as $\sigma = -nI + 2\mu D$
$\langle u = g$	on $\Gamma_{in} \times (0, T)$	boro D is the deformation
u = 0	on $\Gamma_{wall} \times (0, T)$	tensor defined as
$\sigma \cdot n = 0$	on $\Gamma_{out} \times (0,T)$	$D = \frac{1}{-[\nabla u + (\nabla u)^T]}$
$u = u_0$	in $\boldsymbol{\Omega}$ at $\boldsymbol{t}=\boldsymbol{0}$	$2^{\lfloor u \rfloor + \lfloor u \rfloor \rfloor}$

Discretization

• the temporal domain: implicit backward Euler finite difference method

• the spatial domain: P1-P1 stabilized GLS finite element method

Find $u_h^{n+1} \in V_h^g$ and $p_h^{n+1} \in P_h$ such that

$$B(u_h^{n+1}, p_h^{n+1}; v, q) = 0 \quad \forall (v, q) \in V_h^0 \times P_h$$

The GLS formulation can be written as a large, sparse, nonlinear algebraic system F(x) = 0,

where the vector x corresponds to both the nodal velocity u_h and pressure p_h at time $t = (n + 1)\Delta t$.

Newton-Krylov-Schwarz algorithm

• Newton: Inexact Newton's method

$$x^{(k+1)} = x^{(k)} + \lambda^{(k)} s^{(k)}$$
, where $\lambda^{(k)} \in (0, 1]$

• Krylov: Krylov subspace method such as GMRES

 $J_k s^{(k)} = -F(x^{(k)})$, with $s^{(k)} = M_k^{-1} y$

• Schwarz: One-level additive Schwarz preconditioner $M_k^{-1} = \sum_{i=1}^N (R_i^h)^T J_i^{-1} R_i^h$

In this work,

$$B(\boldsymbol{u},\boldsymbol{p};\boldsymbol{v},\boldsymbol{q}) = \left(\rho\left(\frac{\boldsymbol{u}-\boldsymbol{u}^{n}}{\Delta t}\right),\boldsymbol{v}\right) + \left((\rho\nabla\boldsymbol{u})\cdot\boldsymbol{u},\boldsymbol{v}\right) + (\mu\nabla\boldsymbol{u},\nabla\boldsymbol{v}) - (\nabla\cdot\boldsymbol{v},\boldsymbol{p}) - (\nabla\cdot\boldsymbol{u},\boldsymbol{q}) \\ + \sum_{K\in\mathcal{T}^{h}} \left(\rho\left(\frac{\boldsymbol{u}-\boldsymbol{u}^{n}}{\Delta t}\right) + (\nabla\boldsymbol{u})\cdot\boldsymbol{u} + \nabla\boldsymbol{p} - 2\mu\nabla\cdot\nabla\boldsymbol{u},\boldsymbol{\tau}\left((\nabla\boldsymbol{v})\cdot\boldsymbol{v} + \nabla\boldsymbol{q} - 2\mu\nabla\cdot\nabla\boldsymbol{v}\right)\right)_{K} \\ + (\nabla\cdot\boldsymbol{u},\boldsymbol{\delta}\nabla\cdot\boldsymbol{v}).$$

Note: τ and δ are the stabilization parameters suggested in (Franca and Frey, 1992)

Simulation results

- Domain decomposition with 24 subdomains, each subdomain is assigned to a core.
- Overlapping size for the Schwarz preconditioner is set to be 2.
- Subdomain linear system is solved by a sparse ILU(1) decomposition method.
- The Jacobian system is solved inexactly by using an additive Schwarz preconditioned GMRES with forcing term 10^{-4} .
- The convergence of the NKS algorithm when the absolute tolerance 10^{-10} or the relative tolerance 10^{-6} is satisfied.

Concluding remarks

- At the instant of systole, the stenosed artery has larger pressure ratio between inlet and distal portions than normal artery.
- Stenosed artery segment also has larger wall shear stress, and the maximal speed appears at stenosed artery segment.
- From the streamline plots, blood flow looks more disordered during the diastolic period than the systolic period. As the flow speed decreases to a valley of the velocity profile, the motion of blood flow becomes helical rotation at bending segments.
- Future work: add the non-Newtonian fluid property, and move on to fluid-structure interaction method.