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Abstract
We study classical and optimized Schwarz methods for the biharmonic equation. This equation, which needs two different

boundary conditions, is quite different from the classical Laplace equation, and the classical Schwarz method converges much
more slowly than in the Laplace case. Through suitable choices of the transmission conditions, as well as their corresponding
parameters, we obtain an optimized Schwarz method with a convergence rate that is exactly the same as for optimized Schwarz
in the Laplace case. We illustrate our theoretical results with numerical experiments.

Classical Schwarz Method for the Biharmonic Equation

The performance of the classical Schwarz method for fourth order problems has been stud-
ied already in the literature. Brenner analyzed a two level additive Schwarz preconditioner
in [1] and showed that the condition number is of order 1 + (Hδ )4 for large overlap and
1 + (Hδ )3 for small overlap. The FETI method was proposed and studied by Farhat and Man-
del in [2], and Mandel, Tezaur and Farhat in [4], where continuity of the transverse displace-
ments is enforced at the substructure corners, and the condition number is O(1 + log H

h )3.
A non-overlapping Schwarz preconditioner for a discontinuous Galerkin discretization was
introduced by Feng and Karakashian in [3], with a condition number estimate O(1 + H

h )3.
A Schwarz waveform relaxation method was introduced by Nourtier-Mazauric and Blayo
in [5] for the time dependent problem, with an optimal choice of the parameters in the
transmission conditions, illustrated by numerical experiments, but without analysis. The
convergence rate for the classical Schwarz method was studied by Shang and He in [6],
which is the starting point of our poster. We consider the biharmonic equation

∆2u = f in Ω,

where Ω = R2, and the solution u decays at infinity. We assume that Ω is divided into two
subdomains Ω1 = (−∞, x1) × R and Ω2 = (x2,+∞) × R, where x1 > x2. Let Γi, i = 1, 2
be the interface at x = xi, and define L := x1 − x2.

Given an initial approximation u0
2, the classical Schwarz method computes for n = 1, 2, . . .

∆2un1 = f1 in Ω1, ∆2un2 = f2 in Ω2,
un1 = un−1

2 on Γ1, un2 = un1 on Γ2,
∂un1
∂n1

= ∂un−12

∂n1
on Γ1,

∂un2
∂n2

= ∂un1
∂n2

on Γ2.

Taking a Fourier transform in the y direction with k the Fourier symbol, and assum-
ing that the relevant numerical Fourier frequencies |k| lie in the interval [kmin, kmax] with
kmin, kmax > 0, we obtain by a direct computation (see also [6]):
Proposition 1: If L > 0, the convergence factor for the classical Schwarz method with two
subdomains applied to the biharmonic equation is given by

ρ(L) = (|k|L +
√
|k|2L2 + 1)2e−2|k|L = 1− 1

3
k3L3 + O(L5) < 1.

It is the additional factor (|k|L +
√
|k|2L2 + 1)2 which leads to the substantially worse be-

havior of the classical Schwarz method for low frequencies compared to the Laplace case,
where ρLaplace(L) = 1− 2kL + O(L2). We illustrate this in Table 1 and Figure 1.

L h = 1
16 h = 1

32 h = 1
64 h = 1

128

h 853(6) 6469(9) 50906(12) >200000(14)

2h 235(5) 1655(8) 12819(11) 101157(14)

4h 53(4) 305(7) 2189(9) 16971(13)

Table 1: Iteration numbers for the classical Schwarz method (in
parentheses optimized Schwarz method) for the biharmonic equation
with different overlap sizes. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 1: Convergence factors corresponding to an overlap L for the
biharmonic and the Laplace equations.

Optimized Schwarz Method for the Biharmonic Equation

An optimized Schwarz method uses different transmission conditions: given an initial ap-
proximation u0

2, the method computes for n = 1, 2, . . .

∆2un1 = f1 in Ω1,

−
[
−∆un1
∂n1∆u

n
1

]
+

[
p11 p12

p21 p22

] [
un1
∂n1u

n
1

]
= −

[
−∆un−1

2

∂n1∆u
n−1
2

]
+

[
p11 p12

p21 p22

] [
un−1

2

∂n1u
n−1
2

]
on Γ1,

∆2un2 = f2 in Ω2,

−
[
−∆un2
∂n2∆u

n
2

]
+

[
p11 p12

p21 p22

] [
un2
∂n2u

n
2

]
= −

[
−∆un1
∂n2∆u

n
1

]
+

[
p11 p12

p21 p22

] [
un1
∂n2u

n
1

]
on Γ2.

Proposition 2: If the elements in the matrix P = [pij] are chosen in the Fourier domain as

P̃ =

[
2|k|2 2|k|
2|k|3 2|k|2

]
,

we obtain an optimal Schwarz method with convergence in two iterations.
The choice in Proposition 2 corresponds to a transparent transmission condition and re-

quires the implementation of a non-local operator.
Proposition 3: With the simple but structural consistent constant choice

Papprox =

[
2p2 2p
2p3 2p2

]
, p > 0,

the convergence factor of the optimized Schwarz method is

ρ(L) =

(
p− |k|
p + |k|

)2

e−2|k|L < 1,

which is the same as for the optimized Schwarz method applied to Laplace’s equation. In
the numerical experiments, we thus choose p = h−1/2 for the nonoverlapping case to get
ρ = 1−O(

√
h), and p = ( h16)−1/3 for the overlapping case which leads to ρ = 1−O(h

1
3).

Proposition 4: For the nonoverlapping case, if the matrix is of the form

P =

[
p11 p12

p21 p22

]
,

where pij, i, j = 1, 2 are constants independent of each other, then the optimal choice of the
parameters is

p11 = p22 > 0,

p12p21 = p2
11,

p21

p12
= kminkmax.

The corresponding optimal convergence factor is

ρ =

(√
kmax −

√
kmin√

kmax +
√
kmin

)2

< 1.

So the choice Papprox in Proposition 3 is optimal.
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Figure 2: Iteration numbers for the optimized Schwarz method with different overlap sizes.
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