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1 Introduction

The first multilevel method for variational inequalities has been proposed
in Mandel [1984a] for complementarity problems. An upper bound of the
asymptotic convergence rate of this method is derived in Mandel [1984b].
The method has been studied later in Kornhuber [1994] in two variants, stan-
dard monotone multigrid method and truncated monotone multigrid method.
These methods have been extended to variational inequalities of the sec-
ond kind in Kornhuber [1996] and Kornhuber [2002]. Also, versions of this
method have been applied to Signorini’s problem in elasticity in Kornhuber
and Krause [2001]. In Badea [2003] and Badea [2006] global convergence rates
of some projected multilevel relaxation methods of multiplicative type are
given. Also, a global convergence rate was derived in Badea [2008] for a two-
level additive method. Two-level methods for variational inequalities of the
second kind and for some quasi variational inequalities have been analyzed in
Badea and Krause [2012]. In Badea [2014], it was theoretically justified the
global convergence rate of the standard monotone multigrid methods and, in
Badea [2015], this result has been extended to the hybrid algorithms, where
the type of the iterations on the levels is different from the type of the itera-
tions over the levels. Finally, a multigrid method for inequalities containing
a term given by a Lipschitz operator is analyzed in Badea [2016]. Evidently,
the above list of citations is not exhaustive and, for further information, we
can see the review article Gräser and Kornhuber [2009].

This is a review paper regarding the convergence rate of some multilevel
methods for variational inequalities and also, for more complicated problems
such as variational inequalities of the second kind, quasi-variational inequali-
ties and inequalities with a term containing a Lipschitz operator. The meth-
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ods are first introduced as some subspace correction algorithms in a reflexive
Banach space and, under some assumptions, general convergence results (er-
ror estimations, included) are given. In the finite element spaces, we prove
that these assumptions are satisfied and that the introduced algorithms are
in fact one-, two-, multilevel or multigrid methods. The constants in the error
estimations are explicitly written in functions of the overlapping and mesh
parameters for the one- and two-level methods and in function of the number
of levels for the multigrid methods.

In this paper, we denote by V a reflexive Banach space and K ⊂ V is a
non empty closed convex subset. Also, F : K → R is a Gâteaux differentiable
functional and we assume that there exist two real numbers p, q > 1 such that
for any M > 0 there exist αM , βM > 0 for which

αM ||v − u||p ≤< F ′(v)− F ′(u), v − u >
and ||F ′(v)− F ′(u)||V ′ ≤ βM ||v − u||q−1,

for any u, v ∈ K, ||u||, ||v|| ≤ M . In view of these properties, we can prove
that F is a convex functional and 1 < q ≤ 2 ≤ p.

2 One- and two-level methods

In this section we introduce one- and two-level methods of multiplicative
type, first as a general subspace correction algorithm. Details concerning the
proof of its global convergence can be found in Badea [2003]. The one- and
two-level methods are derived from this algorithm by the introduction of the
finite element spaces and details are given in Badea [2006]. Similar results
can be proved for the additive variant of the methods (see Badea [2008]).
We consider the variational inequality

u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K, (1)

and if K is not bounded, we suppose that F is coercive, i.e. F (v) →
∞ as ||v|| → ∞. Then, problem (1) has an unique solution. Let V1, · · · , Vm
be some closed subspaces of V for which we make the following

Assumption 1 There exists a constant C0 > 0 such that for any w, v ∈ K
and wi ∈ Vi with w +

∑i
j=1 wj ∈ K, i = 1, · · · ,m, there exist vi ∈ Vi,

i = 1, · · · ,m, satisfying

w+

i−1∑

j=1

wj+vi ∈ K, v−w =

m∑

i=1

vi,

m∑

i=1

||vi||p ≤ Cp
0

(
||v − w||p +

m∑

i=1

||wi||p
)
.

For linear problems, the last condition has a more simple form and is named
the stability condition of the space decomposition. To solve problem (1), we
introduce the following subspace correction algorithm.
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Algorithm 1 We start the algorithm with an arbitrary u0 ∈ K. At iteration
n+ 1, having un ∈ K, n ≥ 0, we sequentially compute for i = 1, · · · ,m,

wn+1
i ∈ Vi, u

n+ i−1
m + wn+1

i ∈ K : 〈F ′(un+
i−1
m + wn+1

i ), vi − wn+1
i 〉 ≥ 0,

for any vi ∈ Vi, u
n+ i−1

m +vi ∈ K, and then we update un+
i
m = un+

i−1
m +wn+1

i .

The following result proves the global convergence of this algorithm (see
Theorem 2 in Badea [2003]).

Theorem 1. On the above conditions on the spaces and the functional F , if
Assumption 1 holds, then there exists an M > 0 such that ||un|| ≤ M , for
any n ≥ 0, and we have the following error estimations:

(i) if p = q = 2 we have ||un − u||2 ≤ 2
αM

(
C̃1

C̃1+1

)n [
F (u0)− F (u)

]
.

(ii) if p > q we have ||u− un||p ≤ p
αM

F (u0)−F (u)
[
1+nC̃2(F (u0)−F (u))

p−q
q−1

] q−1
p−q

,

where

C̃1 = βM ( p
αM

)
q
pm2− q

p

[
(1 + 2C0)

(
F (u0)− F (u)

) p−q
p(p−1) +

(
βM ( p

αM
)

q
pm2− q

p

) 1
p−1

C
p

p−1

0 /η
1

p−1

]
/(1− η) and

C̃2 = p−q

(p−1)(F (u0)−F (u))
p−q
q−1 +(q−1)Ĉ

p−1
q−1

.

The value of η in the the expression of C̃1 can be arbitrary in (0, 1), but we
can also chose a η0 ∈ (0, 1) such that C̃1(η0) ≤ C̃1(η) for any η ∈ (0, 1).

One-level methods are obtained from Algorithm 1 by using the finite ele-
ment spaces. To this end, we consider a simplicial regular mesh partition Th
of mesh size h over Ω ⊂ Rd. Also, let Ω = ∪m

i=1Ωi be a domain decomposition
of Ω, the overlapping parameter being δ, and we assume that Th supplies a
mesh partition for each subdomain Ωi, i = 1, . . . ,m. In Ω, we use the linear
finite element space Vh whose functions vanish on the boundary of Ω and, for
each i = 1, . . . ,m, we consider the linear finite element space V i

h ⊂ Vh whose
functions vanish outside Ωi. Spaces Vh and V i

h , i = 1, . . . ,m, are considered
as subspaces of W 1,σ, 1 ≤ σ ≤ ∞, and let Kh ⊂ Vh be a convex set satisfying

Property 1. If v, w ∈ Kh, and if θ ∈ C0(Ω̄), θ|τ ∈ C1(τ) for any τ ∈ Th, and
0 ≤ θ ≤ 1, then Lh(θv + (1 − θ)w) ∈ Kh, where Lh is the P1-Lagrangian
interpolation.

We see that the convex sets of obstacle type satisfy this property, and we
have (see Proposition 3.1 in Badea [2006] for the proof)

Proposition 1. Assumption 1 holds for the linear finite element spaces, V =
Vh and Vi = V i

h, i = 1, . . . ,m, and for any convex set K = Kh ⊂ Vh
having Property 1. The constant C0 in Assumption 1 can be written as C0 =
C(m+ 1)(1 + m−1

δ ), where C is independent of the mesh parameter and the
domain decomposition.
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In the case of the two-level methods, we consider two regular simplicial
mesh partitions Th and TH on Ω ⊂ Rd, Th being a refinement of TH . Besides
the finite element spaces Vh, V

i
h , i = 1, . . . ,m and the convex set Kh, defined

for the one-level methods, we introduce the linear finite element space V 0
H

corresponding to the H-level, whose functions vanish on the boundary of
Ω. The two-level method is obtained from the general subspace correction
Algorithm 1 for V = Vh, K = Kh, and the subspaces V0 = V 0

H , V1 = V 1
h ,

V2 = V 2
h , . . ., Vm = V m

h . Also, these spaces are considered as subspaces of
W 1,σ, 1 ≤ σ ≤ ∞, and we have the following (see Proposition 4.1 in Badea
[2006] for the proof)

Proposition 2. Assumption 1 is satisfied for the linear finite element spaces
V = Vh and V0 = V 0

H , Vi = V i
h, i = 1, . . . ,m, and any convex set

K = Kh having Property 1. The constant C0 can be taken of the form
C0 = Cm

(
1 + (m− 1)Hδ

)
Cd,σ(H,h), where C is independent of the mesh

and domain decomposition parameters, and

Cd,σ(H,h) =





1 if d = σ = 1 or 1 ≤ d < σ ≤ ∞
(
ln H

h + 1
) d−1

d if 1 < d = σ <∞
(
H
h

) d−σ
σ if 1 ≤ σ < d <∞.

Some numerical results have been given in Badea [2009] to compare the
convergence of the one-level and two-level methods. They concern the two-
obstacle problem of a nonlinear elastic membrane,

u ∈ [a, b] :

∫

Ω

|∇u|σ−2∇u∇(v − u) ≥ 0, for any v ∈ [a, b] (2)

where Ω ⊂ R2, K = [a, b], a ≤ b, a, b ∈ W 1,σ
0 (Ω), 1 < σ < ∞. These

numerical experiments have confirmed the previous theoretical results.

3 Multilevel and multigrid methods

Details concerning the results in this section can be found in Badea [2014] and
Badea [2015]. As in the case of the one- and two-level methods, we consider
problem (1). Let Vj , j = 1, . . . , J , be closed subspaces of V = VJ which will
be associated with the level discretizations, and Vji, i = 1, . . . , Ij , be closed
subspaces of Vj which will be associated with the domain decompositions on
the levels. We consider K ⊂ V a non empty closed convex subset and write
I = max

j=J,...,1
Ij .

To get sharper error estimations in the case of the multigrid method, we
consider some constants 0 < βjk ≤ 1, βjk = βkj , j, k = J, . . . , 1, for which
〈F ′(v + vji) − F ′(v), vkl〉 ≤ βMβjk||vji||q−1||vkl||, for any v ∈ V , vji ∈ Vji,
vkl ∈ Vkl with ||v||, ||v+vji||, ||vkl|| ≤M , i = 1, . . . , Ij and l = 1, . . . , Il. Also,
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we fix a constant p
p−q+1 ≤ σ ≤ p and assume that there exists a constant C1

such that ||∑J
j=1

∑Ij
i=1 wji|| ≤ C1(

∑J
j=1

∑Ij
i=1 ||wji||σ)

1
σ , for any wji ∈ Vji,

j = J, . . . , 1, i = 1, . . . , Ij . Evidently, in general, we can take βjk = 1, j, k =

J, . . . , 1 and C1 = (IJ)
σ−1
σ . In the multigrid methods, the convex sets where

we look for the corrections are iteratively constructed from a level to another
during the iterations in function of the current approximation. In this general
background we make the following

Assumption 2 For a given w ∈ K, we recursively introduce the level convex
sets Kj, j = J, J − 1, . . . , 1, satisfying

- at level J : we assume that 0 ∈ KJ , KJ ⊂ {vJ ∈ VJ : w + vJ ∈ K} and
consider a wJ ∈ KJ ,

- at a level J − 1 ≥ j ≥ 1: we assume that 0 ∈ Kj , Kj ⊂ {vj ∈ Vj : w +
wJ + . . .+ wj+1 + vj ∈ K} and consider a wj ∈ Kj.

Also, we make a similar assumption with that in the case of the -one and
two-level methods,

Assumption 3 There exists two constants C2, C3 > 0 such that for any
w ∈ K, wji ∈ Vji, wj1 + . . . + wji ∈ Kj, j = J, . . . , 1, i = 1, . . . , Ij, and
u ∈ K, there exist uji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij, which satisfy

uj1 ∈ Kj and wj1 + . . .+ wji−1 + uji ∈ Kj , i = 2, . . . , Ij , j = J, . . . , 1,

u− w =

J∑

j=1

Ij∑

i=1

uji,

J∑

j=1

Ij∑

i=1

||uji||σ ≤ Cσ
2 ||u− w||σ + Cσ

3

J∑

j=1

Ij∑

i=1

||wji||σ

The convex sets Kj, j = J, . . . , 1, are constructed as in Assumption 2 with

the above w and wj =

Ij∑

i=1

wji, j = J, . . . , 1.

The general subspace correction algorithm corresponding to the multigrid
method is written as (see Algorithm 2.2 in Badea [2014] or Algorithm 1.1 in
Badea [2015]),

Algorithm 2 We start with an arbitrary u0 ∈ K. At iteration n+1 we have
un ∈ K, n ≥ 0, and successively perform:

- at level J: as in Assumption 2, with w = un, we construct KJ .
Then, we write wn

J = 0, and, for i = 1, . . . , IJ , we successively calculate

wn+1
Ji ∈ VJi, w

n+ i−1
IJ

J + wn+1
Ji ∈ KJ ,

〈F ′(un + w
n+ i−1

IJ

J + wn+1
Ji ), vJi − wn+1

Ji 〉 ≥ 0

for any vJi ∈ VJi, w
n+ i−1

IJ

J + vJi ∈ KJ , and write w
n+ i

IJ

J = w
n+ i−1

IJ

J + wn+1
Ji .

- at a level J − 1 ≥ j ≥ 1: as in Assumption 2, we construct Kj with
w = un and wJ = wn+1

J , . . . , wj+1 = wn+1
j+1 .
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Then, we write wn
j = 0, and for i = 1, . . . , Ij, we successively calculate

wn+1
ji ∈ Vji, w

n+ i−1
Ij

j + wn+1
ji ∈ Kj,

〈F ′(un +

J∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j + wn+1
ji ), vji − wn+1

ji 〉 ≥ 0

for any vji ∈ Vji, w
n+ i−1

Ij

j + vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

J + wn+1
ji .

- we write un+1 = un +
J∑

j=1

wn+1
j .

Convergence of this algorithm is given by (see Theorem 1.1 in Badea [2015])

Theorem 2. Under the above conditions on the spaces and the functional F ,
if Assumptions 2 and 3 hold, then there exists anM > 0 such that ||un|| ≤M ,
for any n ≥ 0, and we have the following error estimations:

(i) if p = q = 2 we have ||un − u||2 ≤ 2
αM

( C̃1

C̃1+1
)n[F (u0)− F (u)],

(ii) if p > q we have ||u− un||p ≤ p
αM

F (u0)−F (u)

[1+nC̃2(F (u0)−F (u))
p−q
q−1 ]

q−1
p−q

,

where

C̃1 =
1

C2ε

[
C2

ε
+ 1 + C1C2 + C3

]
,

C̃2 = p−q

(p−1)(F (u0)−F (u))
p−q
q−1 +(q−1)C̃

p−1
q−1
3

with

C̃3 =

αM

p

C2ε


 C2

ε
1

p−1 (αM

p )
q−1
p−1

+
(1 + C1C2 + C3)(IJ)

p−σ
pσ

(αM

p )
q
p

(F (u0)− F (u))
p−q

p(p−1)

]

ε =
αM

p

1

2C2βMI
σ−1
σ + p−q+1

p J
σ−1
σ − q−1

p ( max
k=1,··· ,J

J∑

j=1

βkj)

.

To get the multilevel method corresponding to Algorithm 2, we consider a
family of regular meshes Thj

of mesh sizes hj , j = 1, . . . , J , over the domain
Ω ⊂ Rd and assume that Thj+1

is a refinement of Thj
. Let, at each level j =

1, . . . , J , {Ωi
j}1≤i≤Ij be an overlapping decomposition of Ω, of overlapping

size δj . We also assume that, for 1 ≤ i ≤ Ij , the mesh partition Thj
of Ω

supplies a mesh partition for each Ωi
j , diam(Ωi

j+1) ≤ Chj and I1 = 1.

We introduce the linear finite element spaces, Vhj
= {v ∈ C(Ω̄j) : v|τ ∈

P1(τ), τ ∈ Thj
, v = 0 on ∂Ωj}, j = 1, . . . , J , corresponding to the level

meshes, and V i
hj

= {v ∈ Vhj
: v = 0 in Ωj\Ωi

j}, i = 1, . . . , Ij , associated with
the level decompositions. Spaces Vhj

j = 1, . . . , J − 1, will be considered as
subspaces of W 1,σ, 1 ≤ σ ≤ ∞.

The multilevel and multigrid methods will be obtained from Algorithm 2
for a two sided obstacle problem (1), i.e. the convex set is of the form K =
{v ∈ VhJ

: ϕ ≤ v ≤ ψ}, with ϕ, ψ ∈ VhJ
, ϕ ≤ ψ. Concerning the construction

of the level convex sets, we have (Proposition 3.1 in Badea [2014])
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Proposition 3. Assumption 2 holds for the convex sets Kj, j = J, . . . , 1,
defined as,

- for w ∈ K, at the level J , we take ϕJ = ϕ − w, ψJ = ψ − w, KJ =
[ϕJ , ψJ ], and consider an wJ ∈ KJ ,

- at a level j = J − 1, . . . , 1, we define ϕj = Ihj
(ϕj+1 − wj+1), ψj =

Ihj
(ψj+1 − wj+1), Kj = [ϕj , ψj ], and consider an wj ∈ Kj, Ihj

: Vhj+1
→

Vhj
, j = 1, . . . , J − 1, being some nonlinear interpolation operators between

two consecutive levels.

Also, our second assumption holds (see Proposition 2 in Badea [2015]),

Proposition 4. Assumption 3 holds for the convex sets Kj, j = J, . . . , 1,
defined in Proposition 3. The constants C2 and C3 are written as

C2 = CI
σ+1
σ (I + 1)

σ−1
σ (J − 1)

σ−1
σ [
∑J

j=2 Cd,σ(hj−1, hJ )
σ]

1
σ

C3 = CI2(I + 1)
σ−1
σ (J − 1)

σ−1
σ [
∑J

j=2 Cd,σ(hj−1, hJ )
σ]

1
σ

We proved that Assumptions 2 and 3 hold, and have explicitly written con-
stants C2 and C3 in function of the mesh and overlapping parameters. We
can then conclude from Theorem 2 that Algorithm 2 is globally convergent.
Convergence rates given in Theorem 2 depend on the functional F , the maxi-
mum number of the subdomains on each level, I, and the number of levels J .
Since the number of subdomains on levels can be associated with the num-
ber of colors needed to mark the subdomains such that the subdomains with
the same color do not intersect with each other, we can conclude that the
convergence rate essentially depends on the number of levels J .

In the general framework of multilevel methods we take C1 = CJ
σ−1
σ

maxk=1,··· ,J
∑J

j=1 βkj = J and, as functions depending only of J , we have

C2 = C(J − 1)
σ−1
σ Sd,σ(J) and C3 = C(J − 1)

σ−1
σ Sd,σ(J) where

Sd,σ(J) =




J∑

j=2

Cd,σ(hj−1, hJ )
σ




1
σ

=





(J − 1)
1
σ if d = σ = 1

or 1 ≤ d < σ <∞
CJ if 1 < d = σ <∞
CJ if 1 ≤ σ < d <∞.

In the above multilevel methods a mesh is the refinement of that one
on the previous level, but the domain decompositions are almost indepen-
dent from one level to another. We obtain similar multigrid methods by
decomposing the domain by the supports of the nodal basis functions of each
level. Consequently, the subspaces V i

hj
, i = 1, . . . , Ij , are one-dimensional

spaces generated by the nodal basis functions associated with the nodes
of Thj

, j = J, . . . , 1. In the case of the multigrid methods, we can take

C1 = C and maxk=1,··· ,J
∑J

j=1 βkj = C. Now we can write the convergence
rate of the multigrid method corresponding to Algorithm 2 in function of
the number of levels J for a given particular problem. In Badea [2014], the
convergence rate of the multigrid method for the example in (2) has been
written.
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Remark 1. (see also Badea [2014])
1. The above results referred to problems inW 1,σ with Dirichlet boundary

conditions, but they also hold for Neumann or mixed boundary conditions.
2. Similar convergence results can be obtained for problems in (W 1,σ)d.
3. The analysis and the estimations of the global convergence rate which

are given above refers to two sided obstacle problems which arise from the
minimization of functionals defined on W 1,σ, 1 < σ <∞.

4. We can compare the convergence rates we have obtained with similar
ones in the literature in the case of H1 (p = q = 2) and d = 2. In this case,
we get that the global convergence rate of Algorithm 2 is 1 − 1

1+CJ3 . The

same estimate, of 1 − 1
1+CJ3 , is obtained by R. Kornhuber for the asymp-

totic convergence rate of the standard monotone multigrid methods for the
complementarity problems.

Algorithm 2 is of multiplicative type over the levels as well as on each
level, i.e. the current correction is found in function of all corrections on
both the previous levels and the current level. We can also imagine hybrid
algorithms where the type of the iteration over the levels is different from
the type of the iteration on the levels. This idea can be also found in Smith
et al. [1996]. In Badea [2015], such hybrid algorithms (multiplicative over
the levels - additive on levels, additive over the levels - multiplicative on
levels and additive over the levels as well as on levels) have been introduced
and analyzed in a similar manner with that of Algorithm 2. The following
remark contains some conclusions withdrawn in Badea [2015] concerning the
convergence rate (expressed only in function of J) of these hybrid algorithms
for problem (2).

Remark 2. 1. Regardless of the iteration type on levels, algorithms having
the same type of iterations over the levels have the same convergence rate,
provided that additive iterations on levels are parallelized.

2. The algorithms which are of multiplicative type over the levels converge
better, by a factor of between 1/J and 1 (depending on σ), than their additive
similar variants.

4 One- and two-level methods for variational inequalities
of the second kind and quasi-variational inequalities

The results in this section are detailed in Badea and Krause [2012] where one-
and two-level methods have been introduced and analyzed for the second kind
and quasi-variational inequalities. In the case of the variational inequalities
of the second kind, let ϕ : K → R be a convex, lower semicontinuous, not
differentiable functional and, if K is not bounded, we assume that F + ϕ
is coercive, i.e. F (v) + ϕ(v) → ∞, as ‖v‖ → ∞, v ∈ K. We consider the
variational of the second kind

8 Lori Badea



u ∈ K : 〈F ′(u), v − u〉+ ϕ(v)− ϕ(u) ≥ 0, for any v ∈ K (3)

which, in view of the properties of F and ϕ, has a unique solution. An example
of such a problem is given by the contact problems with Tresca friction. To
solve problem (3), we introduce

Algorithm 3 We start the algorithm with an arbitrary u0 ∈ K. At iteration
n + 1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m,

the local corrections wn+1
i ∈ Vi, u

n+ i−1
m + wn+1

i ∈ K as the solution of the
variational inequality

〈F ′(un+
i−1
m + wn+1

i ), vi − wn+1
i 〉+ ϕ(un+

i−1
m + vi)− ϕ(un+

i−1
m + wn+1

i ) ≥ 0,

for any vi ∈ Vi, u
n+ i−1

m +vi ∈ K,and then we update un+
i
m = un+

i−1
m +wn+1

i .

To prove the convergence of the algorithm, we introduce a technical assump-
tion,

m∑

i=1

[ϕ(w +

i−1∑

j=1

wj + vi)− ϕ(w +

i−1∑

j=1

wj + wi)] ≤ ϕ(v)− ϕ(w +

m∑

i=1

wi)

for v, w ∈ K, and vi, wi ∈ Vi, i = 1, . . . ,m, in Assumption 1. In general, ϕ
has not such a property and to show that this assumption holds when the
finite element spaces are used, we have to take a numerical approximation of
ϕ. The convergence of Algorithm 3 is proved by the following

Theorem 3. Under the above assumptions on V , F and ϕ, let u be the so-
lution of the problem and un, n ≥ 0, be its approximations obtained from
Algorithm 3. If Assumption 1 holds, then there exists M > 0 such that such
that ‖un+ i

m ‖ ≤ M , n ≥ 0, 1 ≤ i ≤ m, and we have the following error
estimations:

(i)‖un − u‖2 ≤ p
αM

(
C̃1

C̃1+1

)n [
F (u0) + ϕ(u0)− F (u)− ϕ(u)

]
if p = q = 2,

(ii) ‖u− un‖p ≤ p
αM

F (u0)+ϕ(u0)−F (u)−ϕ(u)
[
1+nC̃2(F (u0)+ϕ(u0)−F (u)−ϕ(u))

p−q
q−1

] q−1
p−q

if p > q,

where

C̃1 = βM (1 + 2C0)m
2− q

p (
p

αM
)

q
p
(
F (u0)− F (u) + ϕ(u0)− ϕ(u)

) p−q
p(p−1) +

βMC0m
p−q+1

p 1

ε
1

p−1
( p
αM

)
q−1
p−1 with ε = αM/

(
pβMC0m

p−q+1
p

)
,

C̃2 = p−q

(p−1)(F (u0)+ϕ(u0)−F (u)−ϕ(u))
p−q
q−1 +(q−1)C

p−1
q−1
1

In the case of the quasivariational inequalities, we consider only the case
of p = q = 2 and let ϕ : K×K → R be a functional such that, for any u ∈ K,
ϕ(u, ·) : K → R is convex, lower semicontinuous and, if K is not bounded,
F (·) + ϕ(u, ·) is coercive, i.e. F (v) + ϕ(u, v) → ∞ as ‖v‖ → ∞, v ∈ K. We
assume that for any M > 0 there exists a constant cM > 0 such that

|ϕ(v1, w2) + ϕ(v2, w1)− ϕ(v1, w1)− ϕ(v2, w2)| ≤ cM ||v1 − v2||||w1 − w2||

Global convergence rates of some multilevel methods for variational and quasi-variational . . . 9



for any v1, v2, w1 w2 ∈ K, ||v1||, ||v2||, ||w1|| ||w2|| ≤M . If ϕ has the above
property, the quasi-variational inequality

u ∈ K : 〈F ′(u), v − u〉+ ϕ(u, v)− ϕ(u, u) ≥ 0, for any v ∈ K

has a unique solution. An example of such a problem is given by the contact
problems with non-local Coulomb friction. We can write three algorithms
depending on the first argument of ϕ.

Algorithm 4 We start the algorithm with an arbitrary u0 ∈ K. At iteration
n+ 1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m, the

local corrections wn+1
i ∈ Vi, u

n+ i−1
m + wn+1

i ∈ K, satisfying

〈F ′(un+
i−1
m + wn+1

i ), vi − wn+1
i 〉+ ϕ(vn+1

i , un+
i−1
m + vi)

−ϕ(vn+1
i , un+

i−1
m + wn+1

i ) ≥ 0,

for any vi ∈ Vi, u
n+ i−1

m +vi ∈ K, and then we update un+
i
m = un+

i−1
m +wn+1

i .

Above, the first argument vn+1
i of ϕ can be taken either un+

i−1
m + wn+1

i or

un+
i−1
m or even un. As we shall see in the next convergence theorem, the

three variants of the algorithm are convergent. Similarly with the case of the
inequalities of the second kind, we introduce the technical assumption

m∑

i=1

[ϕ(u,w +

i−1∑

j=1

wj + vi)− ϕ(u,w +

i∑

j=1

wj)] ≤ ϕ(u, v)− ϕ(u,w +

m∑

i=1

wi)

for any u ∈ K and for v, w ∈ K and vi, wi ∈ Vi, un+
i−1
m + vi ∈ K,

i = 1, . . . ,m, in Assumption 1. Also, in the finite element spaces, ϕ of the
continuous problem is numerically approximated in order to get the above
assumption satisfied. Convergence of the three algorithms is proved by

Theorem 4. Under the above assumptions on V , F and ϕ, let u be the
solution of the problem and un, n ≥ 0, be its approximations obtained
from one of the variants of Algorithm 4. If Assumption 1 holds, and if
αM

2 ≥ mcM +
√
2m(25C0 + 8)βMcM , for any M > 0, then there exists an

M > 0 such that ‖un+ i
m ‖ ≤M , n ≥ 0, 1 ≤ i ≤ m, and we have the following

error estimation

‖un − u‖2 ≤ 2
αM

(
C̃1

C̃1+1

)n [
F (u0) + ϕ(u, u0)− F (u)− ϕ(u, u)

]
.

where
C̃1 = C̃2/C̃3 with C̃2 = βMm(1 + 2C0 +

C0

ε1
) + cMm(1 + 2C0 +

1+3C0

ε2
),

C̃3 = αM

2 − cM (1 + ε3)m and ε1 = ε2 = 2cMm
αM
2 −cMm

, ε3 =
αM
2 −cMm

2cMm .

Remark 3. 1. Extension of the previous methods (given for variational in-
equalities of the second kind and quasi-variational inequalities) to methods
with more than two levels, having an optimal rate of convergence, is not very
evident because of the technical conditions we have introduced, which are not
satisfied when the domain decompositions on the coarse levels are considered.
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2. By using Newton linearizations of ϕ, R. Kornhuber introduced multi-
grid methods for complementarity problems and estimated the asymptotic
convergence rates.

5 Multigrid methods for inequalities with a term given
by a Lipschitz operator

In this section, we estimate the global convergence rate of a multigrid method
for the particular case of quasi-variational inequalities when the inequality
contains a term given by a Lipschitz operator. Details concerning the results
of this section can be found in Badea [2016]. As in the previous section,
we consider the case when p = q = 2 and αM = α, βM = β, i.e. they
not depend on M . Let T : V → V ′ be a Lipschitz continuous operator
||T (v)− T (u)||V ′ ≤ γ||v − u|| for any v, u ∈ V, and we consider the problem

u ∈ K : 〈F ′(u), v − u〉+ 〈T (u), v − u〉 ≥ 0 for any v ∈ K.

In the following algorithm, each iteration contains κ intermediate iterations
in which the argument of T is kept unchanged.

Algorithm 5 We start the algorithm with an arbitrary u0 ∈ K. Assuming
that at iteration n+ 1 we have un ∈ K, n ≥ 0, we write ũn = un and carry
out the following two steps:
1. We perform κ ≥ 1 iterations of Algorithm 2 starting with ũn and keeping
the argument of T equal with un, i.e. we apply Algorithm 2 to the inequality

ũ ∈ K : 〈F ′(ũ), v − ũ〉+ 〈T (un), v − ũ〉 ≥ 0 for any v ∈ K

After the κ iterations we get the approximation ũn+κ of ũ.
2. We write un+1 = ũn+κ.

Convergence condition of Theorem 4 depends on the number m of the sub-
spaces in the one- or two-level methods. We will see in the next theorem that
if the Lipschitz constant of the operator T is small enough, the convergence
condition of the above algorithm is independent of the number of levels and
the number of subdomains on the levels.

Theorem 5. We assume that V , F and T satisfy the above conditions and

that Assumptions 2-3 hold. Then, if γ/α < 1/2 and κ satisfies ( C̃
C̃+1

)κ <
1−2 γ

α

1+3 γ
α+4 γ2

α2 + γ3

α3

, Algorithm 5 is convergent and we have the following error

estimation

‖un − u‖2 ≤ 2
α [2

γ
α + ( C̃

C̃+1
)κ(1 + 3 γ

α + 4 γ2

α2 + γ3

α3 )]
n

·[F (u0) + 〈T (u), u0〉 − F (u)− 〈T (u), u〉],

where C̃ =
1

C2ε

[
1 + C2 + C1C2 +

C2

ε

]
, ε =

α

2βI(maxk=1,··· ,J
∑J

j=1 βkj)C2

.
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