
A parallel two-phase flow solver on
unstructured mesh in 3D

Li Luo1,3, Qian Zhang1, Xiao-Ping Wang1 and Xiao-Chuan Cai2

The simulation of two-phase flow is important in many scientific and engineer-
ing processes, for instance, wetting, coating, painting, etc. There are many
publications on phase field modelling of two-phase flows. Gao and Wang [Gao
and Wang, 2014] proposed a gradient stable semi-implicit finite difference
scheme in 2D and 3D by using the convex splitting method for the Cahn-
Hilliard equation and a projection method for the Navier-Stokes equations.
Bao et al. [Bao et al., 2012] presented a finite element method for phase field
problems on 2D domains with rough boundary using unstructured meshes.
The free interface problem is computationally very expensive especially in 3D;
some parallelization strategies were adopted to accelerate the computation
of certain two-phase flows. Shin et al. [Shin et al., 2014] presented a parallel
implementation of the Level Contour Reconstruction Method (LCRM) on
structured meshes for simulating the splash of a drop onto a film of liquid,
in which a weak scaling efficiency of 48% on 32768 processors was reported.

In this paper, we present a new parallel finite element solver on unstruc-
tured 3D meshes and its implementation on a massively parallel computer.
In order to construct a stable and efficient solver for the case of large density
and viscosity ratio, we combine the stabilized schemes for the Cahn-Hilliard
equation and projection-type schemes for the Navier-Stokes equations to fully
decouple the phase function, the velocity, and the pressure. The resulting de-
coupled systems are discretized by a piecewise linear finite element method in
space and solved by a Krylov subspace method. Specifically, systems arising
from implicit discretization of the Cahn-Hilliard equation and the velocity
equation are solved by a restricted additive Schwarz preconditioned GMRES
method, and the pressure Poisson system is solved by an algebraic multigrid
preconditioned CG method. We show numerically that the proposed strategy
works well for 3D problems with complex geometry and is highly scalable in
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terms of the number of iterations and the total computing time on a super-
computer with nearly 10,000 processors.

The paper is organized as follows. In Section 1, a phase field model is
described. The fully decoupled scheme with a finite element discretization
is also presented in this section. The domain decomposition techniques and
scalable solvers are discussed in Section 2. In Section 3, we show two numer-
ical experiments. Performance results of the parallel implementation are also
reported. The paper is concluded in Section 4.

1 Mathematical models and discretization schemes

Let Ω be a bounded domain in R3. The system of interest can be described
by a coupled Cahn-Hilliard-Navier-Stokes equations, as follows:

∂φ

∂t
+ u · ∇φ = Ld∆µ, in Ω, (1)

µ = −ǫ∆φ− φ

ǫ
+

φ3

ǫ
, in Ω, (2)

Reρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · (ηD(u)) + Bµ∇φ, in Ω, (3)

∇ · u = 0, in Ω. (4)

Here, a phase-field variable φ is introduced to describe the transition between
the two homogeneous equilibrium phases φ± = ±1. µ is the chemical poten-
tial, ǫ is the ratio between interface thickness and characteristic length, and
µ∇φ is the capillary force. The mass density ρ and the dynamic viscosity η
are interpolation functions of φ between fluid 1 and fluid 2, ρ = 1+φ

2 +λρ
1−φ
2 ,

η = 1+φ
2 + λη

1−φ
2 , where λρ = ρ2/ρ1 is the ratio of density between the two

fluids and λη = η2/η1 is the ratio of viscosity. u = (ux, uy, uz) where ux, uy, uz

are the velocity components along x, y, z directions, D(u) = ∇u+ (∇u)T is
the rate of stress tensor, p is the pressure, Ld is the phenomenological mobili-
ty coefficient, Re is the Reynolds number and B measures the strength of the
capillary force comparing to the Newtonian fluid stress (and B is inversely
proportional to the capillary number). The motion of the contact line at solid
boundaries Γw can be described by a relaxation boundary condition for the
phase function and the generalized Navier boundary condition (GNBC) for
velocity:

∂φ

∂t
+ uτ1∂τ1φ+ uτ2∂τ2φ = −VsL(φ), on Γw, (5)

(Lsls)
−1uτ1 = BL(φ)∂τ1φ/η − n ·D(u) · τ1, on Γw, (6)

(Lsls)
−1uτ2 = BL(φ)∂τ2φ/η − n ·D(u) · τ2, on Γw, (7)
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where τ1 and τ2 are two unit tangent directions that are orthogonal to each
other along the solid surface, τ1 · τ2 = 0. n is the unit outward normal
direction of the solid surface. Vs is a phenomenological parameter. L(φ) =

ǫ∂nφ + Q(φ), Q(φ) = ∂γwf (φ)/∂φ and γwf (φ) = −
√
2
3 cos θs sin(

π
2φ), θs is

the static contact angle. uτ1 = u · τ1 and uτ2 = u · τ2. Ls is the slip length
of liquid, ls = 1+φ

2 + λls
1−φ
2 is an interpolation between two different wall-

fluid slip length, and λls = ls2/ls1 the ratio of slip length. In addition, the
following impermeability conditions un := u · n = 0, and ∂nµ = 0 are also
imposed on the solid boundaries.

We present a semi-implicit finite element method for solving the above
coupled systems on unstructured meshes in 3D. We apply a convex splitting
of the free energy functional and treat the nonlinear term explicitly so that the
resulting matrix does not change in time, and therefore can be pre-computed.
In addition, we consider a pressure stabilized formulation [Guermond and
Salgado, 2009] to decouple the Navier-Stokes equations into a convection-
diffusion equation for velocity and a Poisson equation for pressure. Then,
both of them can be easily approximated by the piecewise linear finite element
methods.

Let Ωh be a conforming mesh of Ω, and Γh
w is the solid boundary of Ωh.

In this paper, we only consider tetrahedral elements and P1 functions. We
define the following finite element spaces

Wh =
{
wh ∈ H1(Ω); wh|E ∈ P1(E), ∀E ∈ Ωh

}
,

Uh =
{
uh ∈

[
H1(Ω)

]3
; uh · n = 0 on Γh

w; uh|E ∈ P1(E)3, ∀E ∈ Ωh

}
,

Mh =
{
qh ∈ Wh; ∂nqh = 0 on Γh

w

}
.

We denote by (·, ·) the L2(Ωh)-inner product and by 〈·, ·〉Γh
w
the L2(Γh

w)-inner
product. Next, we introduce a time step δt > 0. The first-order temporal
discretization in the weak form can be described in the following four steps:

Step 1: Solve the Cahn-Hilliard equation using a convex-splitting method:
find (φn+1

h , µn+1
h ) ∈ Wh ×Wh, such that for ∀ wh ∈ Wh,

(
φn+1
h − φn

h

δt
, wh

)
+ (un

h · ∇φn
h , wh) = −Ld(∇µn+1

h ,∇wh), (8)

(µn+1
h , wh) = ǫ(∇φn+1

h ,∇wh) +
s

ǫ
(φn+1

h , wh) +
1

ǫ

(
(φn

h)
3 − (1 + s)φn

h , wh

)

+

〈(
1

Vs

(
φn+1
h − φn

h

δt
+ un

τ1,h
∂τ1φ

n
h + un

τ2,h
∂τ2φ

n
h

)
+Q (φn

h)

)
, wh

〉

Γw

. (9)

Step 2: Update ρn+1
h , ηn+1

h and ls
n+1
h ∈ Wh:

(ρn+1
h , ηn+1

h , ls
n+1
h ) =

1 + φn+1
h

2
+ (λρ, λη , λls )

1− φn+1
h

2
. (10)
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Step 3: Solve the velocity system of Navier-Stokes equations using a pres-
sure stabilization scheme: find un+1

h ∈ Uh, such that for ∀ vh ∈ Uh,

Re

((
1
2
(ρn+1

h + ρnh)u
n+1
h − ρnhu

n
h

δt
+ ρn+1

h (un
h · ∇)un+1

h +
1

2

(
∇ · (ρn+1

h un
h)
)
un+1
h

)
,vh

)

= −
(
ηn+1
h

(
∇un+1

h + (∇un+1
h )T

)
,∇vh

)
+ B(µn+1

h ∇φn+1
h ,vh)− (2∇pnh −∇pn−1

h ,vh)

−
〈
ηn+1
h

(
Lsls

n+1
h

)−1
un+1
τ1,h

, vτ1,h

〉
Γw

−
〈
ηn+1
h

(
Lsls

n+1
h

)−1
un+1
τ2,h

, vτ2,h

〉
Γw

+ B
〈(

ǫ∂nφ
n+1
h +Q

(
φn+1
h

))
∂τ1φ

n+1
h , vτ1,h

〉
Γw

+ B
〈(

ǫ∂nφ
n+1
h +Q

(
φn+1
h

))
∂τ2φ

n+1
h , vτ2,h

〉
Γw

. (11)

Step 4: Solve the pressure system of Navier-Stokes equations: find pn+1
h ∈

Mh, such that for ∀ qh ∈ Mh,

(
∇(pn+1

h − pnh),∇qh
)
= − ρ̄

δt
Re(∇ · un+1

h , qh). (12)

In the above scheme, s is a stabilization parameter. vn,h = vh · n, vτ1,h =
vh · τ1, vτ2,h = vh · τ2, and ρ̄ = min(1, λρ).

Remark 1. The time discretization scheme constructed above leads to a de-
coupled system for the phase function, the velocity, and the pressure. At
each time step, we solve a convection-diffusion equation for u, a system of
convection-diffusion/elliptic equations for (φ, µ), and a Poisson equation for
p. The matrices from the last two equations do not change in time, and can
then be pre-computed for computational efficiency.

2 Scalable solvers based on domain decomposition and
algebraic multigrid techniques

In the scheme formulated in the previous section, there are three linear sys-
tems of equations to be solved at each time step. For the nonsymmetric
problems in Step 1 and Step 3, we employ a restricted additive Schwarz
preconditioned GMRES method to solve the linear systems of phase func-
tion and velocity. The choice of subdomain solver is critical to the Schwarz
preconditioner. One of the popular choices is the incomplete LU (ILU) factor-
ization. A large number of fill-ins levels helps in reducing iterations, but leads
to an expensive solver in terms of the compute time and the memory usage.
The impact of these factors will be discussed in numerical experiments. To
solve the symmetric positive definite problem in Step 4, we employ an alge-
braic multigrid (AMG) preconditioned CG method. A scalable AMG solver
BoomerAMG [Henson and Yang, 2002] is used as a preconditioner to effec-
tively solve the pressure Poisson equation.
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3 Numerical experiments

In this section, we present some numerical experiments and analyze the par-
allel performance of the proposed algorithm. The algorithm is implemented
using a finite element package libMesh [Kirk et al., 2006] for generating the
stiffness matrices, and a parallel scientific computing library PETSc [Balay
et al., 2016] for the preconditioned Krylov subspace solvers. The compu-
tational mesh is generated using Gmsh [Geuzaine and Remacle, 2009] and
partitioned using MeTiS [Karypis and Kumar, 1995]. Two numerical exper-
iments will be presented including a droplet spreading over a rough surface
and a two-phase flow in a bumpy channel.

We first consider a droplet spreading over a rough solid surface with par-
allel stripped texture. Along the y-axis the bottom surface is parametrized
by a wave function x = 0.025sin(40y) with y ∈ [−0.025π, 0.5π], and along the
z-axis the function is translated from z = 0 to z = 0.5π. The height of the
domain is 1.2. A spherical drop is initially located at (0.35, 0.2375π, 0.25π)
with radius 0.3. The initial speed is (−1, 0, 0). A nonuniform mesh is gener-
ated such that near the bottom boundary the mesh is finer. The mesh has
3,055,992 elements and 535,509 vertices. The average mesh size near the bot-
tom surface is h = 5.64× 10−2 and the time step size is δt = 2× 10−4. Other
parameters used are as follows: λρ = 0.001, λη = 0.1, λls = 1, Re = 1000,
θs = 50◦, ǫ = 0.02, B = 12, Ld = 5 × 10−4, Vs = 500, Ls = 0.038, and
s = 1.5. The initial condition and the droplet spreading at t = 0.4 as well as
a sample partition are shown in Fig 1.

(a) (b) (c)

Fig. 1 (a) Initial condition, (b) the evolution of interface at t = 0.4, and (c) a sample

partition into 16 subdomains for the droplet spreading case.

We next consider a flow of two immiscible fluids (red represents fluid 1 and
blue represents fluid 2) in a bumpy channel is driven by the pressure gradient
between the inflow boundary (x = −0.5, p = 4000) and the outflow boundary
(x = 0.5, p = 0). The other boundaries are solid surfaces. The computational
domain is [−0.5, 0.5]× [−0.075, 0.075]× [−0.075, 0.075], and the radius of the
cylinder bumps is 0.05. The mesh has 588,696 elements and 113,457 vertices.

342 Li Luo, Qian Zhang, Xiao-Ping Wang, Xiao-Chuan Cai



The average mesh size is h = 9.15×10−3 and the time step size is δt = 10−4.
Other parameters are as follows: λρ = 0.1, λη = 0.1, λls = 10, Re = 100,
θs = 120◦, ǫ = 0.005, B = 12, Ld = 5 × 10−4, Vs = 200, Ls = 0.0025, and
s = 1.5. The initial condition and the evolution of interface at t = 0.28 as
well as a sample partition are shown in Fig 2.

(a) (b) (c)

Fig. 2 (a) Initial condition, (b) the evolution of interface at t = 0.28, and (c) a sample

partition into 8 subdomains for the bumpy channel flow case.

3.1 Parallel performance

In this subsection, we focus on the bumpy channel flow case and report the
parallel performance of the proposed solution algorithm. The scalability tests
are performed on the Tianhe 2 supercomputer which ranks # 2 on the latest
Top 500 list. Each node of Tianhe 2 has 24 processors and 64 GB memory.
For the rest of the section, “np” denotes the number of processors, “GMRES”
and “CG” denote the average number of GMRES and CG iterations per time
step, respectively. “sp.” represents the speedup. All timings are reported in
seconds. The restart value of GMRES is fixed at 50. 10−6 is used as the
relative stopping condition for linear solvers.

The unstructured mesh has 301,412,352 elements and 51,270,353 vertices.
We focus on how different levels of ILU fill-ins in the subdomain solver of
Schwarz preconditioner affect the parallel efficiency. The overlapping size is
fixed to 1. The number of processors increases from np = 1,920 to 5,760
to 9,600. The results for different levels of ILU fill-ins at different np are
summarized in the first 8 columns in Table 1. The results show that at least
2 levels of ILU fill-ins are needed for the Cahn-Hilliard system. Increasing the
level of fill-ins helps reducing the number of GMRES iterations, this effect
is more obvious for the Cahn-Hilliard system. However, higher level of fill-
ins may cost more computation time. The table also suggests that ILU(3) is
the best choice for the Cahn-Hilliard system and ILU(1) is the best choice
for the velocity system. We have also considered the effect of varying the
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Table 1 The average number of iterations, compute time per time step, and speed up for

solving Cahn-Hilliard system, the velocity system, and the pressure system.“-” means the
case fails to converge.

Cahn-Hilliard system velocity system pressure system

#unknowns=102,540,706 #unknowns=153,811,059 #unknowns=51,270,353

np subsolve GMRES time sp. GMRES time sp. sweep CG time sp.

1,920 ILU(1) 441.4 21.36 1 35 13.72 1 1 24.1 2.74 1

1,920 ILU(2) 39.9 4.36 1 26.7 17.18 1 2 20.2 3.31 1
1,920 ILU(3) 12.7 3.60 1 17.2 25.61 1 3 19.8 3.92 1

5,760 ILU(1) - - - 30 4.57 3.00 1 24.1 1.15 2.38

5,760 ILU(2) 42.2 1.80 2.42 13.1 6.06 2.83 2 20.7 1.42 1.63

5,760 ILU(3) 13.4 1.43 2.52 7 9.38 2.73 3 19.7 1.66 2.36

9,600 ILU(1) - - - 29.8 3.38 4.06 1 24.8 0.95 2.88

9,600 ILU(2) 40.6 1.29 3.38 14.3 4.27 4.02 2 21 1.13 2.92

9,600 ILU(3) 13.7 1.09 3.30 9.8 6.63 3.86 3 19.9 1.34 2.93

number of sweeps of the smoother in the AMG preconditioner for solving the
pressure system. The last 4 columns in Table 1 shows that the number of CG
iterations seems to be independent of np for all cases. However, increasing the
number of sweeps does not improve the convergence of the linear solver much
but requires more computational time, therefore one sweep of smoother is
preferable for the multigrid method. Combining the above choices, we present
the speedups and computational time for each system (marked as “total”
including Step 1, 3, and 4 of the algorithm) starting from 1,440 processors
in Fig 3. Excellent speedup is achieved when np is up to 2,880 and the final
speedup is 4.39 out of 6.67 on a fixed-size system which is reasonably good.
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Fig. 3 Speedup (a) and distribution of total compute time (b) for the two-phase flow in

a bumpy channel.
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4 Conclusions

In this paper we introduce a parallel finite element method on 3D unstruc-
tured meshes for the two-phase flow problem modelled by a phase-field model
consisting of the coupled Cahn-Hilliard and Navier-Stokes equations. A re-
stricted additive Schwarz preconditioned GMRES method is used to solve the
systems arising from implicit discretization of the Cahn-Hilliard equation and
the velocity equation, and an algebraic multigrid preconditioned CG method
is used to solve the pressure Poisson system. Numerical experiments suggest
that the overall algorithm scales well on unstructured meshes for problem-
s with up to 150 millions unknowns and on machines with close to 10,000
processors.
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