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1 Introduction

Recent advances in computational science and technologies induce increas-
ing size of the engineering problems, and impact the fields of computational
fluids and structural dynamics as well as multi-physics problems, such as
fluid-structure interactions. At the same time, structural components used in
many engineering applications show geometrically nonlinear characteristics.
Therefore, development of effective solution methodologies for large-size non-
linear structural problems is required seriously in the fields of the mechanical
and aerospace engineering. Especially, general finite element methods require
a large number of elements in order to predict precise stress or deformation,
resulting in increased computational costs due to enlarged computational
time and memory requirement. Therefore, careful selection of grid size and
solution methodology becomes important.

One of the most successful approaches for large-size finite element analy-
sis is the finite element tearing and interconnecting (FETI) method proposed
by Farhat and Roux [1]. The basic idea of FETI is to decompose the com-
putational domain into non-overlapping sub-domains. Lagrange multipliers
are used to enforce compatibility of the degrees of freedom along the inter-
faces between the sub-domains. The manner of handling such interfaces can
distinguish the interface problem. Recently, the dual-primal FETI (FETI-
DP) method [2] was proposed; it is a dual sub-structuring method, which
introduces Lagrange multipliers and a small number of coarse mesh nodes to
enforce the continuity at sub-domain interfaces. The resulting dual problem is
then solved by seeking a saddle-point of the relevant Lagrangian functional.

Department of Mechanical and Aerospace Engineering, Seoul National University

ssjoon@snu.ac.kr · Department of Mechanical and Aerospace Engineering, Seoul Na-

tional University nicejjo@snu.ac.kr · Department of Mechanical and Aerospace Engi-
neering, Seoul National University hyunshigjoo@snu.ac.kr · Rocket Engine Team, Korea

Aerospace Research Institute kjy84@kari.re.kr

26 



The FETI-DP method is a standard preconditioned conjugate algorithm,
which may use an arbitrary initial guess. Thus, the solution of the interface
problem is obtained using an iterative process, which requires an adequate
pre-conditioner. Therefore, to improve solution convergence, iterative solvers
rely on various types of preconditioning techniques. By observing such lim-
itation, the combination of domain decomposition methods with the direct
solvers was significantly investigated, an approach that seems to have received
little attention thus far [3]. Bauchau [4] suggested the use of an augmented
Lagrangian formulation (ALF) in conjunction with both global and local La-
grange multipliers. The use of augmented Lagrangian terms was considered
to improve the conditioning of the flexibility matrix, thereby increasing the
convergence performance of the iterative procedure used to solve the interface
problem. As a preliminary step to the present effort, the authors proposed an
improved domain decomposition approach, the FETI-Local, and the FETI
algorithm was developed for multibody type structures [5]. Moreover, in or-
der to improve the computational efficiency, a parallel version of the column
solver was employed to deal with the interface problem [6].

On the other hand, a co-rotational (CR) formulation has been developed
and improved in accordance with an increased amount of interest during the
last few decades to analyze the geometrical nonlinearity of structures [7]. The
main advantage of the CR framework is that it leads to an artificial sepa-
ration between the material and any geometrical nonlinearity. This concept
was originally developed by Rankin et al. during the formulating procedure
of what is known as the element-independent co-rotational (EICR) descrip-
tion [8]. In addition, Felippa et al. concluded that the CR formulation would
be extremely useful for elements of a simple geometry; they were able to
provide a reasonable solution to the localized failure problem as well [7].
However, such nonlinear structural analysis would be confronted with the
significant computational problem with increasing computational costs due
to enlarged computational time and memory requirement, followed by pre-
diction of precise stress and large deformation. Thus, an effective solution
methodology for large-size nonlinear structural problem would be suggested
through an extension of the CR framework into the FETI-Local method.

This manu script is organi zedas follo ws. Formulation pro 
cedure of the FE TI-Local method will be d escrib ed. Aft erthat, d 
erivation of the CR fr ame-work will be introdu ced. Then, unifi ed 
computational algorithm of the FE TI-Lo caland the CRfr amework 
will be d escrib ed. Finally, computational cost and scalabil ity r 
esults obtain edby the prop osedapproach will be pr esent ed.

2 Domain decomposition method: FETI-Local

Consider a planar solid depicted in Fig. 1. To develop a parallel solution
algorithm for this problem, the solid is partitioned into Ns non-overlapping
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Fig. 1: Planar solid separated into four non-overlapping sub-domains by fol-
lowing the FETI-Local.

sub-domains. Each of these sub-domains could themselves be multibody sys-
tems comprising both elastic elements and nonlinear kinematic constraints.
The FETI-Local uses local Lagrange multipliers to impose continuity of dis-
placements at the nodes corresponding to adjacent sub-domains with those
corresponding to the coarse mesh nodes. At corner nodes, i.e., at sub-domain
cross-points, a single interface node is defined, and Lagrange multipliers are
used to enforce equality of the displacements at the coarse mesh with those
corresponding to all the adjacent nodes. Because four sub-domains are as-
sociated at this node, four boundary nodes would be created, one for each
sub-domain. Note that for multiple connections, constraints and Lagrange
multipliers remain localized, i.e., each associated with a single sub-domain.
In finite element formulations, this approach has been used to enforce the
continuity of displacement fields between adjacent incompatible elements [9].
The same approach, called “localized version of the method of Lagrange mul-
tipliers,” has been advocated by Park et al. [10].

In the FETI-Local method, the kinematic continuity conditions between
sub-domain interfaces is enforced via the localized Lagrange multiplier tech-

nique. Let u
[j]
b and c[j] denote the arrays of dofs at a boundary node and

at an interface node, respectively. Kinematic constraint j is written as

C[j] = u
[j]
b − c[j] = 0 and the associated potential is

V [j]
c = sλ[j]T C[j] +

p

2
C[j]T C[j], (1)

where λ[j] is the array of Lagrange multipliers used to enforce the constraint,
and s the scaling factor for those multipliers. The second term of the potential
is a penalty term and p is the penalty coefficient. The potential defined by
eq. (1) combines the localized Lagrange multiplier technique with the penalty
method. This combination is known as the augmented Lagrangian formula-
tion and has been examined extensively [11]. It is an effective approach for
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the enforcement of kinematic constraints in multibody dynamics, as proposed
by Bayo et al. [12].

A variation of the potential defined by eq. (1) is obtained easily.

δV [j]
c =δu

[j]T
b

[
sλ[j] + pC[j]

]
+ δλ[j]T

[
sC[j]

]

+ δc[j]T
[
−sλ[j] − pC[j]

]
,

(2)

The Lagrange multipliers become localized in the formulation, i.e., Lagrange
multipliers are associated with one sub-domain unequivocally. The potential

of kinematic constraint involves two types of dofs, the sub-domain dofs, u
[j]
b

and λ[j], and the interface dofs, c[j]. The constraint forces and stiffness matrix
are partitioned to reflect this fact

f [j] =

{
f [j]

b

f [j]

c

}
, k[j] =

[
k[j]
bb

k[j]
bc

k[j]T
bc

k[j]
cc

]
. (3)

Subscripts (·)b and (·)c denote dofs associated with boundary and interface
nodes, respectively. Partitioning the constraint forces can be defined as fol-
lows.

f [j]

b
=

{
sλ[j] + pC[j]

sC[j]

}
, f [j]

c
= −

{
sλ[j] + pC[j]

}
. (4)

A similar operation for the constraint stiffness matrix leads to

k[j]
bb

=

[
pI sI
sI 0

]
, k[j]

cc
=

[
pI

]
, k[j]

bc
=

[−pI
−sI

]
. (5)

Each constraint element contributes constraint forces and stiffness matri-
ces defined by eqs. (4) and (5), respectively. Using the standard assembly
procedure used in the finite element method, the force arrays and stiffness
matrices generated by all the constraint elements associated with sub-domain
i are assembled into the following sub-domain arrays and matrices

F̌
(i)

b =

N
(i)
b∑

j=1

B[j]T

b
f [j]

b
, Ǩ

(i)

bb
=

N
(i)
b∑

j=1

B[j]T

b
k[j]
bb
B[j]

b
, (6)

where B[j]

b
is the Boolean matrices used for the assembly process, i.e., u

[j]
b =

B[j]

b
ǔ(i). Of course, the assembly procedure can be performed in parallel for

all sub-domains. Similarly, the constraint elements contribute force arrays
and stiffness matrices to the interface problem,

F (i)
c =

N
(i)
b∑

j=1

B[j]T

c
f [j]

c
, K(i)

cc
=

N
(i)
b∑

j=1

B[j]T

c
k[j]
cc
B[j]

c
, (7)
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where B[j]

c
is the Boolean matrices used for the assembly process, i.e., c[j] =

B[j]

c
c. Finally, the constraint coupling stiffness is assembled to find

K(i)

bc
=

N
(i)
b∑

j=1

B[j]T

b
k[j]
bc
B[j]

c
. (8)

By considering the potential energy of the system composed of the strain
energy (A)/the work done by external force(Φ)/additional energy induced by
Lagrange multipliers(Vc), Π = A + Φ + Vc, and the principle of minimum
total potential energy, the governing equations can be expressed as

[
diag(Ǩ

(α)
+ Ǩ

(α)

bb
) K

bc

KT

bc
K

cc

]{
ǔ
c

}
=

{
Q̌− F̌ b

− F c

}
, (9)

where Q̌
T
= [QT , 0] and ǔ is the displacement of the sub-domain. The sub-

domain stiffness matrix Ǩ
(α)

is now

Ǩ
(α)

=

[
K(α) 0
0 0

]
. (10)

Arrays F̌ b and F c are the assembly of their sub-domain counterparts, F̌
(i)

b

and F (i)
c , respectively, K

cc
=

∑Ns

i=1 K
(i)

cc
and

KT

bc
=

[
K(1)T

bc
,K(2)T

bc
, . . . ,K(Ns)T

bc

]
. (11)

The block-diagonal nature of the leading entry of the system matrix makes
this approach amenable to parallel solution algorithms.

3 Co-rotational (CR) Finite Elements

Figure 2 shows the coordinates defined in the present CR framework and ro-
tational transformations when obeying the elemental kinematics. Beginning
with the fixed frame, a rotational operator, R

o
, can be defined by tracking

the elemental initial state. The rotational operator, R
G
, can be defined by

elemental rotational displacement referring to an undeformed configuration.
The complete behavior included in this case can be decomposed into rigid
body rotation and elastic deformational rotation. According to such kinemat-
ics, the origin of each coordinate is taken at the centroid of the triangle.

In the CR formulation, the existing linearized formulation is selected for
the local system matrices, i.e., the stiffness matrix and the internal load
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Fig. 2: Coordinate in the CR framework.

vector. These physical variables is re-expressed between the local and global
quantities by the introduction of a transformation matrix. The virtual work
with respect to the local and global systems can be obtained in terms of the
local and global internal load vectors and displacements.

V = δqT
G
f
G
= δqT

L
f
L
= δqT

G
BT f

L
(12)

Hence the global internal load vector is obtained with Eq. (12) by taking
the transformation matrix, B, into account.

f
G
= BT f

L
, f

L
=

{
f i

L

}T

i = 1, 2, . . . , Ne, (13a)

f i

L
=

{
ni
1, n

i
2,m

i
}T

i = 1, 2, . . . , Ne. (13b)

By the differentiation of Eq. (12) with respect to the displacements, the
internal load vector can then be

δf
G
= K

G
δq

G
(14)

In addition, by Eqs. (12) and (14) the global stiffness matrix K
G

can be
derived as shown below.

K
G
= BTK

L
B +K

T
, K

T
=

δf
G

δq
G

=
δ(BT f

L
)

δq
G

(15)

In the present transformation procedure regarding the load vector and
stiffness matrix, the computed local elemental loads can naturally be related
to the CR frame rather than to the final deformed frame. Thus, the local
internal load can not be a self-equilibrating set of loads under the deformed
frame. Introducing the projector matrix P , resolves this problem [8]. The
projector matrix P can be considered as a type of 3×3 block matrix related

to the elemental nodes, P ij . The derivative form of P is obtained as follows.
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P
ij
=




∂ui
L

∂uj
G

∂ui
L

∂θj
G

∂θi
L

∂uj
G

∂θi
L

∂θj
G


 (16)

Using the differentiation of the local translational and rotational compo-
nents, it can be

P
ij
= I

3
δij − ΞiΓ jT (17)

where δij is Kronecker’s delta. Let rio = riG + ui
L and then Ξi, Γ j can be

Ξi =
{
−rio,2, r

i
o,1, 1

}T
(18a)

Γ j = s−1
r

{
−rjG,2, r

j
G,1, 0

}T

(18b)

After the projector matrix for the element is constructed, the transfor-
mation matrix between the local and global internal load vectors can be
expressed in terms of the projector matrix.

f
G
= BT f

L
= EPT f

L
(19)

Here, the matrix E = diag(R
r
, R

r
, R

r
). Taking the variation of f

G
, the

resulting global stiffness matrix K
G

can be

K
G
= EPTK

L
PET + E

[
−Γ FT

1 P − F 2Γ
T
]
ET (20)

where the vectors F 1 and F 2 are expressed in terms of F t = PT f
L
.

4 Unified Computational Algorithm

The FETI-Local proceeds in the three computational steps as follows. Step
I sets up the structural interface problem, Step II evaluates the solution of
the structural interface problem, and Step III recovers the solution in each
sub-domain. In order to involve nonlinear structural analysis, iterative com-
putational algorithm is developed. A load incremental Newton-Rhapson iter-
ative scheme is employed. The unified computational algorithm is depicted in
Fig. 3. The purpose of Step I is to set up the interface problem. For each sub-
domain, this involves the evaluation and assembly of the stiffness matrix, the
factorization of the stiffness matrix, and the assembly of the interface stiffness
matrix. In Step II, the solution of the interface problem is computed first. In
this step, the stiffness matrix corresponding to the interface nodes existing in
the individual sub-domains needs to be distributed to each processor. Using
the MPI REDUCE routine, the matrix data are collected to a root process.
In Step III, the final solution for each sub-domain is obtained by the linear
solver. From Step II, array c, degrees of freedom at the interface nodes, is
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Fig. 3: Unified computational algorithm.

obtained. Thus, the displacement of each sub-domain is obtained easily. The
MPI BCAST routine sends the value of array to all the other processes first,
and then, the solution of a linear equation for each sub-domain. In order to
handle the sparsity of the system matrix generated in each computational
step, i.e. Eq. (9), the sparse linear solver, PARDISO, is implemented. Such
process is illustrated in Fig. 4.

Fig. 4: Parallel implementation of the FETI-Local.
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 5 Numerical Investigation regarding Nonlinear

Problems

Numerical assessment of the present FETI-Local method was performed by
comparing with the standard FETI method by iterative solvers in the pre-
vious studies conducted by the present authors [5, 6]. The present approach
developed herein is applied to the solution of a static, two-dimensional non-
linear problems. The parallel computations were executed in the TACHYON
system [13], which is one of the supercomputers operated by Korea Institute
of Science and Technology Information. Section 5.1 will discuss the results for
the two-dimensional configuration: the computational cost and scalability in
a parallel environment are examined. Section 5.2 will examine an application
for nonlinear flexible multi-body dynamics.

5.1 Computational Efficiency for Nonlinear Problem

Before the examination of computational efficiency for the analysis of the CR
finite element with the FETI-Local method, geometrically nonlinear charac-
teristic of a cantilevered plate discretized by the CR finite element is eval-
uated. The geometry and operating condition are described in Fig. 5a. The
resulting tip deflection is compared with those predicted by MSC.NASTRAN.
Comparison shows excellent correlation between the CR planar element and
MSC.NASTRAN prediction and it is illustrated in Fig. 5b. Then, the analysis

(a) Analysis condition (b) Comparison of tip deflection

Fig. 5: Nonlinear analysis regarding a cantilevered plate using the CR finite
element

of the CR finite element with FETI-Local method is performed by using the
same condition (Fig. 5a). However, the tip load is chosen to be 150N. The
number of the sub-domains is increased from 8 to 60, but the number of DOFs
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is kept to a total of 39,864. Figure 6 shows benign scalability characteristics
exhibited by the CR finite element with FETI-Local method.

Fig. 6: Computational time and trend of the nonlinear analysis regarding a
cantilevered plate.

5.2 Application for Nonlinear Flexible Multi-body
Dynamics

In this section, the analysis of the CR finite element with the FETI-Local
method is applied to the large scale multi-body system. Analysis condition
and resulting deformed configuration is depicted in Fig 7. In parallel com-
putation, the number of the sub-domains is increased from 9 to 36, but the
number of DOFs is kept to a total of 32,400. To verify an efficiency of the
FETI-Local method in nonlinear flexible multi-body system, equivalent se-
rial analysis employing the classical Lagrange multiplier and PARDISO, is
conducted and compared. As the number of processors is increased, the com-
putational time is varied from 2081.09 to 177.03 (sec). Figure 8 shows benign
scalability characteristics possessed and exhibited by the analysis of the CR
finite element with the FETI-Local method.

6 Conclusion

The development of a nonlinear structural analysis using CR finite element fi-
nite element with a domain decomposition algorithm relying on direct solvers
only was described. While the FETI-Local method uses the domain decom-
position concept that characterizes classical FETI methods, The continuity
of the displacement field within sub-domain interfaces is enforced by using
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(a) Analysis condition (b) Deformed configuration

Fig. 7: Analysis condition and deformed configuration of multi-body system.

Fig. 8: Computational time and trend of multi-body analysis.

a combination of the localized Lagrange multiplier and of the augmented
Lagrangian formulation. Therefore, well-conditioned stiffness matrices is de-
rived. Moreover, direct solvers can be used for both sub-domain and interface
problems. The FETI-Local method was further improved by employing the
sparse matrix solver to handle the sparsity within the governing equation.
The computational cost and scalability of the analysis of the CR finite ele-
ment with the FETI-Local method was compared to those of the sparse linear
equation solver, PARDISO. Good scalability characteristics of the analysis of
the CR finite element with the FETI-Local method were demonstrated for a
general nonlinear analysis and flexible multi-body dynamic analysis.
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