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1 Introduction

BDDC (Balancing Domain Decomposition by Constraints) and FETI-DP
(Dual-Primal Finite Element Tearing and Interconnecting) algorithms with
adaptively enriched coarse spaces are developed and analyzed for second
order elliptic problems with high contrast and random coefficients. Among
many approaches to form adaptive coarse spaces, we consider an approach
using eigenvectors of generalized eigenvalues problems defined on each subdo-
main interface, see Mandel and Soused́ık [2007], Galvis and Efendiev [2010],
Spillane et al. [2011, 2013], Klawonn et al. [2015].

The main contribution of the current work is to extend the methods in
Dohrmann and Pechstein [2013], Klawonn et al. [2014] to three-dimensional
problems. In three dimensions, there are three types of equivalence classes on
the subdomain interfaces, i.e., faces, edges, and vertices. A face is shared by
two subdomains. An edge is shared by more than two subdomains. Vertices
are end points of edges. In addition to the generalized eigenvalue problems
on faces, which are already considered in Dohrmann and Pechstein [2013],
Klawonn et al. [2014] for two-dimensional problems, generalized eigenvalues
problems on edges are proposed.

Equipped with the coarse space formed by using the selected eigenvec-
tors, the condition numbers of the resulting algorithms are determined by
the user defined tolerance value λTOL that is used to select the eigenvectors.
An estimate of condition numbers is obtained as CλTOL, where the constant
C is independent of coefficients and any mesh parameters. We note that a
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full version of the current paper was submitted to a journal. We also note
that an adaptive BDDC algorithm for three-dimensional problems was con-
sidered and numerically tested in Mandel et al. [2012] for difficult engineering
applications.

This paper is organized as follows. A brief description of BDDC and FETI-
DP algorithms is given in Section 2. Adaptive selection of coarse spaces is
presented in Section 3 and the estimate of condition numbers of the both
algorithms is provided in Section 4.

2 BDDC and FETI-DP algorithms

To present BDDC and FETI-DP algorithms, we introduce a finite element
space X̂ for a given domain Ω, where the model elliptic problem is defined
as

−∇ · (ρ(x)∇u(x)) = f(x) (1)

with a boundary condition on u(x) and with ρ(x) highly varying and random.
The domain is then partitioned into non-overlapping subdomains {Ωi} and

Xi are the restrictions of X̂ to Ωi. The subdomain interfaces are assumed
to be aligned to the given triangles in X . In three dimensions, the subdo-
main interfaces consist of faces, edges, and vertices. We introduce Wi as the
restriction of Xi to the subdomain interface unknowns, W and X as the
product of the local finite element spaces Wi and Xi, respectively. We note
that functions in W or X are decoupled across the subdomain interfaces.
We then select some primal unknowns among the decoupled unknowns on
the interfaces and enforce continuity on them and denote the corresponding
spaces W̃ and X̃.

The preconditioners in BDDC and FETI-DP algorithms will be developed
based on the partially coupled space W̃ and appropriate scaling matrices.
We refer to Dohrmann [2003], Farhat et al. [2001], Li and Widlund [2006]
for general introduction of these algorithms. The unknowns at subdomain
vertices will first be included in the set of primal unknowns. Additional set of
primal unknowns will be selected by solving generalized eigenvalue problems
on faces and edges. In the BDDC algorithm, they are enforced just like un-
knowns at subdomain vertices after a change of basis, while in the FETI-DP
algorithm they are enforced by using a projection, see Klawonn et al. [2015].

We next define the matrices Ki and Si. The matrices Ki are obtained from
the Galerkin approximation of

a(u, v) =

∫

Ωi

ρ(x)∇u · ∇v dx

by using finite element spaces Xi and Si are the Schur complements of Ki,
that are obtained after eliminating unknowns interior to Ωi. Let R̃i : W̃ → Wi
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be the restriction into ∂Ωi \ ∂Ω and let S̃ be the partially coupled matrix
defined by

S̃ =

N∑

i=1

R̃T
i SiR̃i.

Let R̃ be the restriction from Ŵ to W̃ . The discrete problem of (1) is then
written as

R̃T S̃R̃ = R̃T g̃,

where g̃ is the vector given by the right hand side f(x). The above matrix
equation can be solved iteratively by using preconditioners. The BDDC pre-
conditioner is then given by

M−1
BDDC = R̃T D̃S̃−1D̃T R̃,

where D̃ is a scaling matrix of the form

D̃ =
N∑

i=1

R̃T
i DiR̃i.

Here the matrices Di are defined for unknowns in Wi and they are introduced
to resolve heterogeneity in ρ(x) across the subdomain interface. In more de-

tail, Di consists of blocks D
(i)
F , D

(i)
E , D

(i)
V , where F denotes an equivalence

class shared by two subdomains, i.e., Ωi and its neighboring subdomain Ωj ,
E denotes an equivalence class shared by more than two subdomains, and V
denotes the end points of E, respectively. We note that those blocks should
satisfy the partition of unity for a given F , E, and V , respectively, and call
them faces, edges, and vertices, respectively. We refer to Klawonn and Wid-
lund [2006] for these definitions.

The FETI-DP preconditioner is a dual form of the BDDC preconditioner.
In our case, the unknowns at subdomain vertices are chosen as the initial set
of primal unknowns and the algebraic system of the FETI-DP algorithm is
obtained as

BS̃−1BTλ = d,

where S̃ is the partially coupled matrix at subdomain vertices and B is a
matrix with entries 0, −1, and 1, which is used to enforce continuity at the
decoupled interface unknowns. The above algebraic system is then solved by
an iterative method with the following projected preconditioner

M−1
FETI = (I − P )BDS̃BT

D(I − PT ),

where BD is defined by

BD =
(
BD,∆ 0

)
=

(
B

(1)
D,∆ · · · B(i)

D,∆ 0
)
.
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In the above, B(i)

D,∆ is a scaled matrix of B
(i)
∆ where rows corresponding to

Lagrange multipliers to the unknowns w(i) ∈ Wi are multiplied with a scaling

matrix (D
(j)
C )T when the Lagrange multipliers connect w(i) to w(j) ∈ Wj and

Ωj is the neighboring subdomain sharing the interface C of ∂Ωi. The interface
C can be F , faces, or E, edges. The matrix P is a projection operator related
to the additional primal constraints and it is given by

P = U(UTFDPU)−1UTFDP ,

where FDP = BS̃−1BT and U consists of columns related to the additional
primal constraints on the decoupled interface unknowns.

3 Adaptively enriched coarse spaces

With the standard choice of primal unknowns, values at subdomain vertices,
edge averages, and face averages, the performance of BDDC and FETI-DP
preconditioners can often deteriorate for bad arrangements of the coefficient
ρ(x). The preconditioner can be enriched by using adaptively chosen primal
constraints. The adaptive constraints will be selected by considering gener-
alized eigenvalue problems on each equivalence class. The idea is originated
from the upper bound estimate of BDDC and FETI-DP preconditioners. In
the estimate of condition numbers of BDDC and FETI-DP preconditioners,
the average and jump operators are defined as

ED = R̃R̃T D̃, PD = BT
DB.

When adaptive constraints are introduced, they are enforced strongly just
like unknowns at vertices after a change of basis formulation in the BDDC
algorithm. In contrast, in the FETI-DP algorithm the additional constraints
are enforced weakly by using a projection P . In general,ED+PD = I does not
hold when adaptively enriched constraints are included in the preconditioners.
Thus the analysis of BDDC and FETI-DP algorithms requires the following
estimates, respectively,

〈S̃(I − ED)w̃a, (I − ED)w̃a〉 ≤ C〈S̃w̃a, w̃a〉,

〈S̃PDw̃, PDw̃〉 ≤ C〈S̃w̃, w̃〉.
In the above, w̃a is strongly coupled at the initial set of primal unknowns
and the adaptively enriched primal unknowns after the change of basis while
w̃ is strongly coupled at the initial set of primal unknowns and satisfies the
adaptive constraints across the subdomain interfaces, vT (wi − wj) = 0 with
v a vector of an adaptive constraint.
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For a face F , shared by two subdomains Ωi andΩj , we restrict the operator
I − ED to F ⊂ ∂Ωi and obtain

((I − ED)w̃a)|F = D
(j)
F (w̃

(i)
F,∆ − w̃

(j)
F,∆), (2)

where w̃
(i)
F,∆ denotes the vector of unknowns on F ⊂ ∂Ωi with zero primal

unknowns and the dual unknowns identical to w̃a. Similarly, for an edge
E ⊂ ∂Ωi,

((I − ED)w̃a)|E =
∑

m∈E(i)

D
(m)
E (w̃

(i)
E,∆ − w̃

(m)
E,∆),

where E(i) denotes the set of subdomain indices sharing the edge E with Ωi.

We now introduce a Schur complement matrix S̃
(i)
C of Si, which are obtained

after eliminating unknowns except those interior to C. Here C can be an
equivalence class, F or E. For semi-positive definite matrices A and B, we
introduce a parallel sum defined as, see Anderson and Duffin [1969],

A : B = A(A+B)+B,

where (A + B)+ denotes a pseudo inverse. The parallel sum satisfies the
following properties

A : B = B : A, A : B ≤ A, A : B ≤ B, (3)

and it was first used in forming generalized eigenvalues problems by Dohrmann
and Pechstein [2013]. We note that a similar approach was considered by
Klawonn et al. [2014] in a more general form. Both are limited to the two-
dimensional problems with only face equivalence classes. In this work, gener-
alized eigenvalue problems for edge equivalence classes will be introduced to
extend the previous approaches to three dimensions.

For a face F , the following generalized eigenvalue problem is considered

AF vF = λÃF vF ,

where

AF = (D
(j)
F )TS

(i)
F D

(j)
F + (D

(i)
F )TS

(j)
F D

(i)
F , ÃF = S̃

(i)
F : S̃

(j)
F ,

and S
(i)
F denote block matrix of Si to the unknowns interior to F . The eigen-

values are all positive and we select eigenvectors vF,l, l ∈ N(F ) with associ-
ated eigenvalues λl larger than a given λTOL. The following constraints will
then be enforced on the unknowns in F ,

(AF vF,l)
T (w

(i)
F − w

(j)
F ) = 0, l ∈ N(F ).

After a change of unknowns, the above constraints can be transformed into
explicit unknowns and they are added to the initial set of primal unknowns
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and denoted by w
(i)
F,Π . The remaining unknowns are called dual unknowns

and denoted by w
(i)
F,∆. Using (2), for the two-dimensional case we obtain that

〈S̃(I − ED)w̃a, (I − ED)w̃a〉 ≤ C
∑

F

(〈AF w̃
(i)
F,∆, w̃

(i)
F,∆〉+ 〈AF w̃

(j)
F,∆, w̃

(j)
F,∆〉)

≤ CλTOL

∑

F

(〈ÃF w̃
(i)
F,∆, w̃

(i)
F,∆〉+ 〈ÃF w̃

(j)
F,∆, w̃

(j)
F,∆〉)

≤ CλTOL

∑

F

(〈S(i)wi, wi〉+ 〈S(j)wj , wj〉),

where the estimate on the dual unknowns are bounded by λTOL in the second

inequality, and (3) and the minimum energy property of S̃
(i)
F are used in the

last inequality.
For an edge E, shared by more than two subdomains, we introduce the

following generalized eigenvalue problem,

AEvE = λÃEvE ,

where

AE =
∑

m∈I(E)

∑

l∈I(E)\{m}
(D

(l)
E )TS

(m)
E D

(l)
E , ÃE =

∏

m∈I(E)

S̃
(m)
E ,

and I(E) denotes the set of subdomain indices sharing E in common, and∏
m∈I(E) S̃

(m)
E is the parallel sum applied to those matrices S̃

(m)
E . For a given

λTOL, the eigenvectors with their eigenvalues larger than λTOL will be se-
lected and denoted by vE,l, l ∈ N(E). The following constraints will then be
enforced on the unknowns in E,

(AEvE,l)
T (w

(i)
E − w

(m)
E ) = 0, l ∈ N(E), m ∈ I(E) \ {i}.

Using the adaptively selected primal unknowns on each face F and edge E,
we can obtain the following estimate

〈S̃(I − ED)w̃a, (I − ED)w̃a〉 ≤ CλTOL〈S̃w̃a, w̃a〉,

where C is a constant depending on the maximum number of edges and faces
per subdomain, and the maximum number of subdomains sharing an edge
but is independent of the coefficient ρ(x).
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4 Condition number estimate

Using the adaptively enriched primal constraints described in Section 3, we
can obtain the following bound of the condition numbers for the given λTOL:

Theorem 1. The BDDC algorithm with the change of basis formulation for
the adaptively chosen set of primal unknowns with a given tolerance λTOL

has the following bound of condition numbers,

κ(M−1
BDDC,aR̃

T S̃aR̃) ≤ CλTOL,

and the FETI-DP algorithm with the projector preconditioner M−1
FETI has the

bound
κ(M−1

FETIFDP ) ≤ CλTOL,

where C is a constant depending only on NF (i), NE(i), NI(E), which are the
number of faces per subdomain, the number of edges per subdomain, and the
number of subdomains sharing an edge E, respectively.

In the above MBDDC,a and S̃a denote the BDDC preconditioner and the
partially assembled matrix of Si after the change of unknowns for the adaptive
primal constraints. We refer to Kim et al. [2015] for detailed proofs of the
above theorem. We note that for the FETI-DP algorithm with the projector
preconditioner the approaches in Toselli and Widlund [2005] can be used to
obtain the upper bound estimate

〈S̃PDw̃, PDw̃〉 ≤ CλTOL〈S̃w̃, w̃〉,

where w̃ is strongly coupled at vertices and the adaptive primal constraints
on F and E are enforced on w̃ by using the projection P .
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