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1 Introduction

We consider an adaptive coarse space for FETI-DP or BDDC methods in
three dimensions. We have user-given tolerances for certain eigenvalue prob-
lems which determine the computational overhead needed to obtain fast con-
vergence. Similar adaptive strategies are available for many kinds of domain
decomposition methods; see, e.g., Galvis and Efendiev [2010], Dolean et al.
[2012], Spillane and Rixen [2013], Kim and Chung [2015], Klawonn et al.
[2015], Mandel and Soused́ık [2007], Dohrmann and Pechstein.

We will give numerical results for our algorithm for the diffusion equation
on a bounded polyhedral domain Ω, i.e., for the weak formulation of

−∇ · (ρ∇u) = f in Ω,

u = 0 auf ∂ΩD,

ρ∇u · n = 0 auf ∂ΩN .

(1)

Here, ∂ΩD ⊂ ∂Ω is a subset with positive surface measure where Dirichlet
boundary conditions are prescribed. Furthermore, ∂ΩN := ∂Ω \ ∂ΩD is the
part of the boundary where Neumann boundary conditions are given and n
is the outward pointing unit normal on ∂ΩN . The function ρ = ρ(x) will be
called coefficient (distribution).
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2 FETI-DP with Projector Preconditioning and
Balancing

Due to space limitation, we will only provide the most important FETI-DP
operators and the FETI-DP system. For a more detailed description of FETI-
DP; see, e.g., Farhat et al. [2000], Toselli and Widlund [2005]. The FETI-DP
system is given by Fλ = d where
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Here, S̃ΠΠ defines the primal coarse space which, in our case, will be given by
all vertex variables being primal. We now present Projector Preconditioning
and Balancing in a very short form; for a more detailed description see Kla-
wonn and Rheinbach [2012], and for a semidefinite matrix F , Klawonn et al.
[2016a]. Given a matrix U representing constraints UTBw = 0, we define
P := U(UTFU)+UTF and solve the preconditioned system

M−1
PPFλ := (I − P )M−1

D (I − P )TFλ = (I − P )M−1
D (I − P )T d.

Here, M−1
D is the Dirichlet preconditioner. In our computations, we exclu-

sively use patch-ρ-scaling (see Klawonn and Rheinbach [2007]) but other
scalings are possible. We can also use the balancing preconditioner M−1

BP =
M−1

PP + U(UTFU)+UT instead of M−1
PP .

3 Adaptive Constraints and Condition Number Bound

We now present our adaptive approach that is based on modifications of the
approach in Mandel and Soused́ık [2007]; see also Klawonn et al. [2016b]
and Klawonn et al. [2016a]. In Klawonn et al. [2016b], for two dimensions,
a complete theory including a condition number bound for the coarse space
introduced by Mandel and Soused́ık [2007] was given. However, this coarse
space turns out not to be sufficient in three dimensions. In Klawonn et al.
[2016a], we therefore have added certain edge eigenvalue problems to prove
a condition number bound also in three dimensions and in the numerical
experiments, we have focussed on elasticity. In the present paper, we consider
scalar second-order elliptic problems.

For a given subdomain Ωi, we assume that it shares an edge E and an
adjacent face with Ωj and Ωk, respectively, while it only shares the edge E
with Ωl. More general cases can be treated analogously. In the following we
will use the index s ∈ {j, l} to describe simultaneously eigenvalue problems
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and their operators defined on faces (s = j) and edges (s = l), respectively.
Note that eigenvalue problems on faces are defined on the closure of the face.

Let G be a face or an edge shared by Ωi and Ωs. Then, we define

BGis = [B
(i)
Gis

B
(s)
Gis

] as all the rows of [B(i)B(s)] that contain exactly one
+1 and one −1. In the same manner, we define the scaled matrix BD,Gis =

[B
(i)
D,Gis

B
(s)
D,Gis

] as the submatrix of [B
(i)
D B

(s)
D ]. Furthermore, define Sis :=(

S(i) 0
0 S(s)

)
and PDis := BT

D,Gis
BGis .

The space of functions in Wi ×Ws that are continuous in the primal vari-
ables shared by Ωi and Ωs will be denoted by W̃is. Then, we introduce the
ℓ2-orthogonal projection Πis from Wi × Ws to W̃is as well as a second ℓ2-
orthogonal projection Πis from Wi ×Ws to range(ΠisSisΠis + σ(I −Πis)).
There, σ is a possibly large positive constant, e.g., the maximum of the diag-
onal entries of Sij , to avoid numerical instabilities. Without loss of generality
we can asumme that the projections are symmetric.

Then, we build and solve the generalized eigenvalue problems

ΠisΠisP
T
Dis

SisPDisΠisΠisw
k
is

= µk
is(Πis(ΠisSisΠis + σ(I −Πis))Πis + σ(I −Πis))w

k
is, (2)

for µk
is≥TOL. Let us note that the projections are built such that the right

hand side of the eigenvalue problem (2) is symmetric positive definite; cf.
Mandel and Soused́ık [2007]. For an eigenvalue problem defined on (the
closure of) a face (i.e. s = j), we split the computed constraint columns
uk
ij := BD,GijSijPDijw

k
ij into several edge constraints uk

ij,Em
and a constraint

on the open face uk
ij,F , all extended by zero to the closure of the face. The

splitting avoids coupling of the constraints and preserves a block structure
of the constraint matrix; cf. Mandel et al. [2012]. We then enforce all the
constraints

uk T
ij,Em

BFijwij = 0, m = 1, 2, . . . , uk T
ij,FBFijwij = 0.

For a given edge with corresponding edge eigenvalue problem, we enforce

wk T
il PT

Dil
SilPDil

wil = 0.

For w ∈ Wi ×Ws satisfying the constraints, we have the local estimate

wT
isΠisΠisP

T
Dis

SisPDis
ΠisΠiswis ≤ TOLwT

isΠisΠisSisΠisΠiswis;

cf. Klawonn et al. [2016b]. For w ∈ W̃ we have

(
R(i)w
R(s)w

)
∈ W̃is and there-

fore Πis

(
R(i)w
R(s)w

)
=

(
R(i)w
R(s)w

)
. As argued in Klawonn et al. [2016b] we have

Πis(I − Πis)wis = (I − Πis)wis. This gives PDisΠis(I − Πis)wis = 0 and
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SisΠis(I−Πis)wis = 0. Therefore, for all wis ∈ W̃is with wk T
is PT

Dis
SisPDiswis =

0, µk
is ≥ TOL we obtain

wT
isΠisP

T
Dis

SisPDisΠiswis ≤ TOLwT
isΠisSisΠiswis; (3)

cf. Mandel and Soused́ık [2007].
Let U = (u1, . . . , uk) be the matrix where the adaptive constraints are

stored in its columns. Then, W̃U := {w ∈ W̃ |UTBw = 0} will be the

subspace of W̃ which contains all elements w ∈ W̃ satisfying the adaptively
computed constraints, i.e., Bw ∈ kerUT . We are now ready to give the
following lemma.

Lemma 1. Let NF denote the maximum number of faces of a subdomain,
NE the maximum number of edges of a subdomain, ME the maximum multi-
plicity of an edge and TOL a given tolerance for solving the local generalized
eigenvalue problems. If all vertices are chosen to be primal, for w ∈ W̃U it
holds

|PDw|2
S̃
≤ 4max{NF , NEME}2TOL|w|2

S̃
.

Proof. See Klawonn et al. [2016a].

We can now provide a condition number estimate for the preconditioned
FETI-DP algorithm with all vertex constraints being primal and additional,
adaptively chosen, edge and face constraints.

Theorem 1. Let NF denote the maximum number of faces of a subdomain,
NE the maximum number of edges of a subdomain, ME the maximum multi-
plicity of an edge and TOL a given tolerance for solving the local generalized
eigenvalue problems. If all vertices are chosen to be primal, the condition
number κ(M̂−1F ) of the FETI-DP algorithm with adaptive constraints as

described, e.g., enforced by the projector preconditioner M̂−1 = M−1
PP or the

balancing preconditioner M̂−1 = M−1
BP , satisfies

κ(M̂−1F ) ≤ 4max{NF , NEME}2TOL.

Proof. See Klawonn et al. [2016a].

4 Heuristic Modifications

In this section we introduce two modifications of our algorithm. We will test
the performance of the heuristically reduced coarse spaces along with the
algorithm presented before.

Reducing the number of edge eigenvalue problems Our first mod-
ification consists of discarding edge eigenvalue problems on edges where no
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coefficient jumps occur. Therefore, we traverse the corresponding edge nodes
and check for coefficient jumps. If no jumps occur we will not solve the corre-
sponding edge eigenvalue problem and discard it with all possible constraints.
Let us note that the condition number bound mentioned before might no
longer hold if we use this strategy. However, due to slab techniques, see, e.g.,
Klawonn et al. [2015], the condition number is expected to stay bounded
independently of the coefficients.

Reducing the number of edge constraints The second approach
uses the strategy discussed before and discards additionally edge constraints
from face eigenvalue problems, if there are no coefficient jumps in the neigh-
borhood of the edge.

5 Numerical Results

In this section, we will give numerical results for five different algorithms.
First, we will present results for our new algorithm that is covered by theory
(denoted by ’Alg. Ia’) and two modifications thereof; see also Klawonn et al.
[2016a] where these algorithms were introduced for elasticity. By ’Alg. Ib’
we will denote the modification using only the first strategy presented in
Sect. 4. We will also test a variant using both heuristics of Sect. 4. This
algorithm will be denoted ’Alg. Ic’. The performance of these algorithms will
be compared to the approaches of Mandel et al. [2012]. By ’Alg. III ’ we denote
the ’classic’ approach which discards all edge constraints from face eigenvalue
problems. The coarse space enriched by those edge constraints but without
edge constraints from edge eigenvalue problems will be denoted by ’Alg. II ’.

For all algorithms we will start with an extended first coarse space. Given
the coarse space consisting of primal vertices, we will add some additional
edge nodes. We will set those edge nodes primal that belong to an edge
eigenvalue problem on a short edge, i.e., an edge with only one dual node.
Then, the corresponding edge eigenvalue problem will become superfluous.

We use a singular value decomposition with a drop tolerance of 1e − 6
to orthogonalize all adaptively computed constraints. We use the balancing
preconditioner to enforce the resulting constraints. For simplicity, we assume
ρ(x) to be constant on each finite element and we use ρ-scaling in the form of
patch-ρ-scaling. The coefficient at a node will be set as the maximum coeffi-
cient on the support of the corresponding nodal basis function; cf. Klawonn
and Rheinbach [2007]. In the experiments, we use an irregular partitioning
of the domain using the METIS graph partitioner with options -ncommon=3
and -contig. Let us note that Alg. III might be sufficient if regular decom-
positions are chosen and jumps only appear at subdomain faces; see Mandel
et al. [2012]. We will therefore just test irregular decompositions.

In all tables, “κ” denotes the condition number of the preconditioned
FETI-DP operator, “its” is the number of iterations of the pcg algorithm
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Fig. 1 Composite material (left) and randomly distributed coefficients (right) with irreg-

ular decomposition. High coefficients E2 = 1e+06 are shown in dark purple in the picture;
low coefficients are not shown. Subdomains are shown in different colors in the background
and by half-transparent slices. Visualization for N = 8 and H/h = 5.

and “|U |” denotes the size of the corresponding second coarse space. By “N”
we denote the number of subdomains. For our modified coarse space, we also
give the number of edge eigenvalue problem as “#Eewp“ and in parenthe-
ses the percentage of these in the total number of eigenvalue problems. Our
stopping criterion for the pcg algorithm is a relative reduction of the starting
residual by 10−10, and the maximum number of iterations is set to 500. The
condition numbers κ, which we report in the tables, are estimates from the
Krylov process. We will consider Ω = [0, 1]3, discretized by a structured fine
mesh of cubes, each containing five tetrahedra. We apply Dirichlet boundary
conditions for the face with x = 0 and zero Neumann boundary conditions
elsewhere. Moreover, let f = 0.1 and ρ(x) ∈ {1, 1e+ 6}.

A composite material We consider a soft matrix material with E = 1
and stiff inclusions in the form of 4N2/3 beams with E = 1e+06; see Fig. 1.
In Table 1, we see that Alg. III always leads to high condition numbers and
even to nonconvergence (its = 500) in three of four cases. The use of edge
constraints from face eigenvalue problems (cf. Alg. II) can neither guarantee
small condition numbers but results in convergence within a maximum of
about 90 iterations. Although only Alg. Ia is covered by our theoretical bound,
Alg. Ia, Ib, and Ic can guarantee condition numbers around the size of the
prescribed tolerance and convergence within 30-40 iterations. Here, Alg. Ic
gives the best performance: it uses the smallest coarse space and leads to
convergence in a small number of iterations.

Let us note that the number of edge eigenvalue problems here is larger
than in the case of linear elasticity (cf. Klawonn et al. [2016a]). This is due to
the fact that, in case of elasticity, we have to select additional primal vertices
to remove hinge modes on curved edges. Then, edge eigenvalue problems on
certain short edges become superfluous. Since this is not necessary for the
diffusion equation, and since it also enlarges the primal coarse space, we do
not carry this out here and accept a higher number of eigenvalue problems.

Random coefficients We now perform 100 runs using randomly gen-
erated coefficients (20% high and 80% low) for different numbers of subdo-
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Composite material, irregular partitioning and H/h = 5

Alg. Ia, Ib, and Ic Alg. II Alg. III

N κ its |U | Eevp κ its |U | κ its |U |
43 a) 9.54 36 1784 41 (14.9%) 9.78 37 1765 2.23e+06 500 609

b) 9.78 36 1783 30 (11.3%)
c) 10.68 39 1475 30 (11.3%)

63 a) 11.72 38 6455 166 (15.1%) 5.13e+05 98 6364 3.13e+06 500 2057
b) 11.72 38 6455 134 (12.6%)

c) 11.72 39 5701 134 (12.6%)

83 a) 12.34 39 15292 390 (14.1%) 2.27e+05 62 15120 2.99e+06 500 4921
b) 12.34 39 15292 334 (12.4%)
c) 12.34 40 13682 334 (12.4%)

Table 1 Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for
TOL = 10 for all generalized eigenvalue problems.

Randomly distributed coefficients, irregular partitioning, and H/h = 5.

Alg. Ia, Ib, and Ic Alg. II Alg. III

N κ its |U | #Eevp κ its |U | κ its |U |
43 x a) 8.81 30.64 1913.92 41 (14.9%) 3.92e+05 43.61 1889.83 2.62e+06 500 675.53

b) 8.81 30.64 1913.92 41 (14.9%)
c) 8.81 30.64 1913.72 41 (14.9%)

x̃ a) 8.76 31 1918 41 (14.9%) 2.31e+05 42.5 1893.5 2.57e+06 500 676
b) 8.76 31 1918 41 (14.9%)
c) 8.76 31 1918 41 (14.9%)

σ a) 0.88 1.32 43.57 - 5.12e+05 10.41 43.25 7.42e+05 0 22.05

b) 0.88 1.32 43.57 -
c) 0.88 1.32 43.67 -

53 x a) 9.26 32.19 3992.86 61 (10.3%) 2.29e+05 55.35 3954.5 2.96e+06 500 1357.53
b) 9.26 32.19 3992.86 61 (10.3%)

c) 9.26 32.19 3992.55 61 (10.3%)
x̃ a) 9.20 32 3997.5 61 (10.3%) 2.01e+05 52.5 3955.5 2.79e+06 500 1359.5
b) 9.20 32 3997.5 61 (10.3%)
c) 9.20 32 3996 61 (10.3%)

σ a) 0.86 0.88 69.31 - 2.09e+05 15.05 68.58 7.52e+05 0 33.67
b) 0.86 0.88 69.31 -
c) 0.86 0.90 69.38 -

Table 2 Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for
TOL = 10 for all generalized eigenvalue problems.

mains; see Table 2. For N ∈ {43, 53}, we see that the classical Alg. III does
not converge in any single run and always leads to a condition number of at
least 1e + 05. Although Alg. II converges in all cases it exhibits a condition
number of 1e + 05 or higher in 71 (N = 43) and 73 (N = 53) runs. The
performance of Alg. Ia, Ib, and Ic is almost identical. For these algorithms,
the condition number is always lower than 15, and convergence is reached
within 35 iterations.
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