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1 Introduction

When we compute numerical solutions of linear elasticity problems for nearly
incompressible materials by using the P1 conforming finite element method,
we need to use sufficiently fine meshes in order to get numerical solutions
with accuracy. This is referred to as volume locking Babuška and Suri [1992].
It is well-known that discontinuous Galerkin (DG) methods are effective in
eliminating locking (see, e.g., Hansbo and Larson [2002]).

We investigate locking effects in a hybrid version of a symmetric interior
penalty (SIP) method, which is one of DG methods, and is called the HSIP
method in this paper. Unknowns in the HSIP method are approximations
to the displacement of the elastic body and to the trace of the displace-
ment on the skeleton. The latter is called the numerical trace. We consider
two formulations of the HSIP method: the HSIP methods using discontin-
uous numerical traces (HSIP-D) and using continuous ones (HSIP-C). The
degrees of freedom of the continuous numerical traces are less than those of
the discontinuous ones. This gives the HSIP-C method an advantage over
the HSIP-D method in practical computations. However, in Kikuchi [2015],
it is numerically demonstrated that the HSIP-C method using P1 elements
for both the two unknowns causes volume locking phenomena. On the other
hand, in Koyama and Kikuchi [2016], it is established that the HSIP-D is
free from locking. In this paper, we mathematically prove that the HSIP-C
method shows locking in the case when P1 elements are employed to approx-
imate displacement and its trace on the skeleton.

We close this section with the introduction of several notations which will
be used throughout this paper. For an arbitrary open subset Ω of R2, we
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denote by L2(Ω) and by Hs(Ω) (s > 0) the usual space of real-valued square
integrable functions on Ω and the real Sobolev space on Ω, respectively (see,
e.g., Brenner and Scott [2008]). We denote by (·, ·)Ω and by ‖ · ‖Ω the inner
product of L2(Ω) and the associated norm, respectively. We equip Hs(Ω)
with the usual norm denoted by ‖ · ‖s,Ω. We denote by | · |s,Ω the usual semi-
norm of Hs(Ω). For the union Γ of arbitrary line segments in R2, we denote
by 〈·, ·〉Γ and by | · |Γ the inner product of L2(Γ ) and the associated norm,
respectively. We use the same notations of the norm, the semi-norm, and the
inner product for vector valued functions as well. In addition, C denotes a
generic positive constant, and can be a different value at each of different
places.

2 Linear plane strain problem

For the two-dimensional displacement u = [u1, u2]
T of an elastic body, the

strain tensor is given by ε(u) =
[
1
2 (∂ui/∂xj + ∂uj/∂xi)

]
1≤i,j≤2

. We use an

underline (resp. double underlines) to denote two dimensional vector (resp.
2 × 2 matrix) valued functions, operators, and their associated spaces. The
isotropic linear elastic stress-strain relation is written by

σ(u) = 2µ ε(u) + λ(div u) δ,

where λ (> 0) and µ (> 0) are the Lamé parameters, and δ is the identity

matrix. We consider the following linear plane strain problem:





−∂σ11(u)

∂x1
− ∂σ12(u)

∂x2
= f1 in Ω,

−∂σ21(u)

∂x1
− ∂σ22(u)

∂x2
= f2 in Ω,

u = 0 on ∂Ω,

(1)

where σ(u) = [σij(u)]1≤i,j≤2, and f = [f1, f2]
T is a distributed external

body force per unit in-plane area. We assume that Ω is a bounded polygonal
domain of R2. In addition we fix µ > 0.

3 The HSIP-D method

Let T h be a triangulation of Ω. We assume that T h has no hanging nodes.
The set of edges of T h is denoted by Eh. For each K ∈ T h, we define EK :={
e ∈ Eh | e ⊂ ∂K

}
. We define the skeleton Γ h of T h by Γ h :=

⋃
e∈Eh e. The

diameter of K is denoted by hK , and the length of an edge e ∈ EK by |e|.
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In addition, we set h := maxK∈T h hK . Assume that a family
{
T h
}
h∈(0, h̄]

of

triangulations is regular.
The HSIP-D method seeks approximations to the solution u of (1) and to

the trace of u on Γ h by using functions belonging to

Uh :=
∏

K∈T h

Pk(K) and Ûh :=
∏

e∈Eh

Pk(e),

respectively, where Pk denotes the set of polynomial functions of order at

most k ≥ 1. So we consider their product space: Uh := Uh× Û
h ⊂ H1(T h)×

L2(Γ h), where Hs(T h) :=
{
v ∈ L2(Ω) | v|K ∈ Hs(K) ∀K ∈ T h

}
(s > 0).

We will denote the first and the second components of v ∈ H1(T h)×L2(Γ h)
by v and v̂, i.e., v = {v, v̂}, unless specifically stated otherwise.

For each K ∈ T h and for each i = 1, 2, we define local lifting operator
RK

i : L2(∂K) −→ QK by (RK
i g, ϕ)K = 〈g, ϕni〉∂K for all g ∈ L2(∂K)

and for all ϕ ∈ QK , where QK := Pk−1(K) and ni is the ith component
of the outward unit normal n on ∂K. We further define lifting operators
RK

div : L2(∂K) −→ QK and RK
ε (g) : L2(∂K) −→ QK as follows Kikuchi

[2015]: RK
div g :=

∑2
i=1 R

K
i gi and RK

ε (g) :=
[
1
2

(
RK

i gj +RK
j gi

)]
1≤i, j≤2

for

g = [g1, g2]
T ∈ L2(∂K).

We introduce the following three bilinear forms: for u, v ∈ H2(T h) ×
L2(Γ h),

ãhη(u, v) := 2µ
∑

K∈T h

[(
ε(u), ε(v)

)
K
+
〈
ε(u)n, v̂ − v

〉
∂K

+
〈
û− u, ε(v)n

〉
∂K

+

(
RK

ε (û− u), RK
ε (v̂ − v)

)

K

]

+η
∑

K∈T h

∑

e∈EK

1

|e| 〈û− u, v̂ − v〉e ,

lh(u, v) :=
∑

K∈T h

[
(div u, div v)K + 〈(div u)n, v̂ − v〉∂K

+ 〈û− u, (div v)n〉∂K +
(
RK

div(û− u), RK
div(v̂ − v)

)
K

]
,

ahη(u, v) := ãhη(u, v) + λlh(u, v), (2)

where η is an interior penalty parameter≥ 0, and (σ, τ )K :=
∑2

i,j=1

∫
K σijτij dx

for σ = [σij ]1≤i,j≤2, τ = [τij ]1≤i,j≤2 ∈ L2(K).

We are now in a position to present a discrete problem, which provides
the HSIP-D method: find uh ∈ V h such that
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ahη(u
h, vh) =

(
f, vh

)
Ω

∀vh ∈ V h, (3)

where L2
D(Γ h) :=

{
v̂ ∈ L2(Γ h) | v̂ = 0 on ∂Ω

}
, V̂ h := Ûh ∩ L2

D(Γ
h), and

V h := Uh × V̂
h
.

Problem (3) has a unique solution for every f ∈ L2(Ω) and for every
η > 0 (see Koyama and Kikuchi [2016]). Moreover the HSIP-D method is
free from locking with respect to the solution set Bλ and the norm |||·|||h
in the sense of Babuška and Suri [1992] (see Koyama and Kikuchi [2016]),
where Bλ :=

{
v ∈ H2(Ω) ∩H1

D(Ω) | ‖v‖2,Ω + λ‖ div v‖1,Ω ≤ 1
}
, H1

D(Ω) :={
v ∈ H1(Ω) | v = 0 on ∂Ω

}
, and

|||v|||2h :=
∑

K∈T h


|v|21,K +

∑

e∈EK


 1

|e| |v̂ − v|2e + |e|
2∑

i,j=1

∣∣∣∣
∂vi
∂xj

∣∣∣∣
2

e




 .

We now introduce a semi-norm on H1(T h)× L2(Γ h) as follows:

|v|2h :=
∑

K∈T h

(
|v|21,K +

∑

e∈EK

1

|e| |v̂ − v|2e

)
∀v ∈ H1(T h)× L2(Γ h).

This semi-norm can be a norm on V h equivalent to |||·|||h, that is, there exists
a positive constant C such that for all h ∈ (0, h̄] and for all vh ∈ V h,

C
∣∣∣∣∣∣vh

∣∣∣∣∣∣
h
≤ |vh|h ≤

∣∣∣∣∣∣vh
∣∣∣∣∣∣

h
. (4)

We define εh : Uh −→ L2(Ω) and divh : Uh −→ L2(Ω) as follows

Kikuchi [2015]: for every vh ∈ Uh and for every K ∈ T h,

εh(vh)|K := ε(vh|K) +RK
ε (v̂h − vh),

(
divh vh

)
|K := div(vh|K) +RK

div(v̂
h − vh). (5)

For all uh, vh ∈ Uh, we have

ãh0 (u
h, vh) = 2µ

(
εh(uh), εh(vh)

)
Ω
, (6)

lh(uh, vh) =
(
divh uh, divh vh

)
Ω

(see Kikuchi [2015]). (7)

For all λ > 0, for all η > 0, for all h ∈ (0, h̄], and for all vh ∈ V h,

ahη(v
h, vh) ≥ αmin{1, η}

∣∣∣∣∣∣vh
∣∣∣∣∣∣2

h
, (8)
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where α is a positive constant independent of λ, η, h, and vh (see Koyama
and Kikuchi [2016]). Note that (8) holds for all η > 0 because bilinear form
ahη includes the terms defined by lifting operators RK

ε and RK
div.

4 Volume locking phenomena in the HSIP-C method

In this section, we fix η and assume that k = 1.
We introduce finite element spaces:

Uh
c := Uh ∩H1(Ω), V h

c := Uh ∩H1
D(Ω),

Ûh
c := Ûh ∩C0(Γ h), V̂ h

c := Ûh
c ∩ L2

D(Γ h),

Uh
c := Uh × Û

h

c , V h
c := Uh × V̂

h

c .

Replacing V h by V h
c in (3), we can obtain the HSIP-C method.

We mathematically demonstrate that the HSIP-C method shows locking
by following the method of proof due to Brenner and Scott [2008].

We can naturally identify Û
h

c with Uh
c , that is, there uniquely exists a

linear operator J from Û
h

c onto Uh
c such that J v̂hc = v̂hc on ∂K for every

v̂hc ∈ Û
h

c and for every K ∈ T h.

Lemma 1. There exists a positive constant C such that for all h ∈ (0, h̄],
for all v ∈ H1(Ω), and for all vh ∈ Uh

c ,

|v − J v̂h|1,Ω ≤ C|v − vh|h, (9)

where v = {v, v|Γh}, and C is independent of h, v, and vh.

Proof. The usual scaling argument leads to that there exists a positive con-
stant C such that for all h ∈ (0, h̄], for all K ∈ T h, and for all v ∈ P1(K),

‖v‖1,K ≤ C

(∑

e∈EK

1

|e| |v|
2
e

)1/2

, (10)

where C is independent of h,K, and v. For all v ∈ H1(Ω) and for all vh ∈ Uh
c ,

|v − J v̂h|21,Ω ≤ 2
∑

K∈T h

(
|v − vh|21,K + |vh − J v̂h|21,K

)

(by the triangle and the Schwarz inequalities)

≤ C
∑

K∈T h

(
|v − vh|21,K +

∑

e∈EK

1

|e| |v
h − v̂h|2e

)
(by (10)).
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This yields (9). ⊓⊔
We now pose a hypothesis:

{
vh ∈ V h

c | div vh = 0
}
= {0}. (L)

We understand from the following lemma that many triangulations satisfy
(L) (cf. [Brenner and Scott, 2008, Exercise 11.x.14]).

Lemma 2. Let K1 andK2 be triangular elements whose vertices are {A, B, C}
and {B, C, D}, respectively. Let vhj (j = 1, 2) be continuous piecewise linear

functions on K1 ∪K2. Set v
h := [vh1 , v

h
2 ]

T . Assume that div vh = 0 and that
vh = 0 on the sides AB and BD. If A, B, and D are not collinear, then
vh ≡ 0 on K1 ∪K2.

We leave the proof to readers.

Lemma 3. If (L) holds, then

Ker(divh |V h
c
) =

{
{vh, 0} ∈ V h

c | vh ∈ Uh
}
, (11)

where divh |V h
c
denotes the restriction of divh to V h

c .

Proof. We see from the Green formula that for every v ∈ P 1(K),

div v = RK
div(v) in R. (12)

It follows from (5) and (12) that for all vh ∈ Uh,

(
divh vh

)∣∣∣
K

= RK
div(v̂

h) ∀K ∈ T h. (13)

This implies that divh
(
{vh, 0}

)
= 0 for every vh ∈ Uh. Thus the right-hand

side of (11) is included in Ker(divh |V h
c
).

Conversely, we suppose that vh ∈ V h
c satisfies divh vh = 0. We find from

(13) and (12) that for each K ∈ T h,

0 =
(
divh vh

)∣∣∣
K

= RK
div(v̂

h) = RK
div

(
(J v̂h)|∂K

)
= div

(
(J v̂h)|K

)
,

and hence div
(
J v̂h

)
= 0 in Ω. Since J v̂h ∈ V h

c , it follows from hypothesis

(L) that J v̂h = 0 in Ω. This implies that v̂h = 0 on Γ h. Thus vh belongs to
the right-hand side of (11). ⊓⊔

We now define mapping divh
1 : V h

c /Ker(divh |V h
c
) −→ L2(Ω) by

divh
1 [v

h] := divh vh ∀vh ∈ V h
c ,

where [vh] is the set of equivalence class of vh ∈ V h
c . Since divh

1 is injective
and V h

c /Ker(divh |V h
c
) is finite dimensional, there exists a positive constant
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C(h) such that for all vh ∈ V h
c ,

inf
χh∈Uh

∣∣∣∣∣∣vh + {χh, 0}
∣∣∣∣∣∣

h
≤ C(h)

∥∥∥divh vh
∥∥∥
Ω
. (14)

Using (9) with v ≡ 0 and (4), we get

∣∣∣J v̂h
∣∣∣
1,Ω

≤ C inf
χh∈Uh

∣∣∣∣∣∣vh + {χh, 0}
∣∣∣∣∣∣

h
∀vh ∈ V h

c . (15)

Combining (14) and (15) gives us

∣∣∣J v̂h
∣∣∣
1,Ω

≤ C(h)
∥∥∥divh vh

∥∥∥
Ω

∀vh ∈ V h
c . (16)

Proposition 1. Let u ∈ H2(Ω) ∩H1
D(Ω) satisfy

div u = 0. (17)

For each λ > 0, let uh
λ ∈ V h

c satisfy

ahη(u
h
λ, v

h) = ahη(u, v
h) ∀vh ∈ V h

c , (18)

where u := {u, u|Γh}. Assume that (L) holds. Then we have

∣∣∣J ûh
λ

∣∣∣
1,Ω

−→ 0 (λ −→ ∞). (19)

Proof. We first introduce the following trace inequality: for all h ∈ (0, h̄], for
all K ∈ T h, for all e ∈ EK , and for all v ∈ H1(K),

|v|2e ≤ C
(
|e|−1‖v‖2K + |e||v|21,K

)
, (20)

where C is a positive constant independent of h, K, e, and v.
It follows from (18), (17), and (20) that we have

ahη(u
h
λ, u

h
λ) = ahη(u, u

h
λ)

= 2µ
∑

K∈T h

[ (
ε(u), ε(uh

λ)
)
K
+
〈
ε(u)n, ûh

λ − uh
λ

〉
∂K

]

≤ C‖u‖2,Ω
∣∣∣∣∣∣uh

λ

∣∣∣∣∣∣
h
, (21)

where C is a positive constant independent of h, λ, and u. Using (8), we
obtain ∣∣∣∣∣∣uh

λ

∣∣∣∣∣∣
h
≤ C‖u‖2,Ω. (22)

Combining (6), (7), (2), (21), and (22) leads us to

‖divh uh
λ‖2Ω ≤ λ−1C‖u‖22,Ω −→ 0 (λ −→ ∞),
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and thus, by (16), we get (19). ⊓⊔

Theorem 1. Assume that (L) holds for every h ∈ (0, h̄]. There exists a
positive constant C independent of h such that

lim inf
λ−→∞

sup
w∈Bλ

∣∣∣∣∣∣w −wh
λ

∣∣∣∣∣∣
h
≥ C ∀h ∈ (0, h̄], (23)

where w := {w, w|Γh} and wh
λ ∈ V h

c is the solution of (18) after replacing
u by w.

Proof. There exists a u ∈ H2(Ω) ∩ H1
D(Ω) such that ‖u‖2,Ω = 1 and (17)

holds Brenner and Scott [2008]. Then u ∈ Bλ for all λ > 0. For every h ∈
(0, h̄] and for every λ > 0,

sup
w∈Bλ

∣∣∣∣∣∣w −wh
λ

∣∣∣∣∣∣
h
≥
∣∣∣∣∣∣u− uh

λ

∣∣∣∣∣∣
h
≥ C

∣∣∣u− J ûh
λ

∣∣∣
1,Ω

(by (9))

≥ C

(
|u|1,Ω −

∣∣∣J ûh
λ

∣∣∣
1,Ω

)
, (24)

where C is independent of h and λ.
We can conclude from (19) and (24) that (23) holds. ⊓⊔

Remark 1. For a meaning of (23), see Brenner and Scott [2008]. Using (23),
we can also prove that the HSIP-C method with k = 1 shows locking of order
h−1 with respect to the solution set Bλ and the norm |||·|||h in the sense of
Babuška and Suri [1992] (see Koyama and Kikuchi [2016]).
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