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Abstract
Elliptic problems with oscillating coefficients can be approximated up to ar-
bitrary accuracy by using sufficiently fine meshes, i.e., by resolving the fine
scale. Well-known multiscale finite elements [5, 9] can be regarded as di-
rect numerical homogenization methods in the sense that they provide ap-
proximations of the corresponding (unfeasibly) large linear systems by much
smaller systems while preserving the fine-grid discretization accuracy (model
reduction). As an alternative, we present iterative numerical homogenization
methods that provide approximations up to fine-grid discretization accuracy
and discuss differences and commonalities.
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1 Introduction

Numerical approximation usually aims at modifications of standard finite
element approximations of partial differential equations with highly oscilla-
tory coefficients that preserve the accuracy known in the smooth case. Us-
ing classical homogenization as a guideline, these modifications are obtained
from local auxiliary problems [2, 4, 7]. The error analysis for these kinds of
methods is typically restricted to coefficients with separated scales and often
requires periodicity [1, 2, 6]. These restrictions were overcome in a recent
paper by Målqvist and Peterseim [9] that provides quasioptimal energy and
L2 error estimates without any additional assumptions on periodicity and
scale separation [5, 9]. While their approach relies on (approximate) orthog-
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onal subspace decomposition, alternative decompositions into a coarse space
and local fine-grid spaces associated with low and high frequencies has been
recently considered by Kornhuber and Yserentant [8]. Here, we review these
two decomposition techniques providing direct [9] and iterative methods [8]
for numerical homogenization in order to better understand conceptual sim-
ilarities and differences. We also illustrate the performance of the iterative
variant by first numerical experiments in d = 3 space dimensions.

Both approaches rely on subspace decomposition in function space while
practical, discrete variants aim at approximating a sufficiently accurate, com-
putationally unfeasible fine-grid solution up to discretization accuracy. This
approximation is either obtained directly from a linear system as derived from
local fine-grid problems [9] or iteratively by repeated solution of coarse- and
local fine-grid problems [8]. Comparing the computational effort, the direct
method requires assembly of the multiscale stiffness matrix and usually leads
to larger local fine-grid problems than the iterative approach. In addition,
the local fine-grid problems involve a saddle point structure [9, Remark 4.5]
rather than positive-definite stiffness matrices [8]. However, in contrast to
iterative homogenization the direct approach provides a reduced multiscale
basis that incorporates all relevant features and has various advantages, e.g.,
in case of many different right-hand sides.

2 Elliptic problems with oscillating coefficients

Let Ω ⊂ Rd, d = 2 or d = 3, be a bounded convex domain with polygonal or
polyhedral boundary ∂Ω. We consider the variational problem

u ∈ V : a(u, v) = (f, v) ∀v ∈ V, (1)

where V = H1
0 (Ω) is a closed subspace of H1(Ω), (·, ·) is the canonical scalar

product in L2(Ω), and f ∈ L2(Ω). The bilinear form a(·, ·) takes the form
a(v, w) =

∫
Ω
∇v(x) · A(x)∇w(x) dx, v, w ∈ V , where A(x) ∈ Rd×d is a sym-

metric matrix with sufficiently smooth, but intentionally highly oscillating
entries and

δ|η|2 ≤ η ·A(x)η ≤ M |η|2 (2)

holds for all η ∈ Rd and almost all x ∈ Ω with positive constants δ, M
independent of x and η. It is well-known that (1) admits a unique solution
and, for ease of presentation, we assume u ∈ V ∩H2(Ω). As a model problem,
one might think of two separate scales

A(x) = α
(
x,

x

ε

)
I, x ∈ Ω, (3)

with the identity matrix I and a fine-scale parameter ε > 0. For periodic
coefficients α, the oscillatory problem (1) can be treated by classical homog-
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enization via the solution of certain continuous cell problems. However, no
scale separation, periodicity, or exact solvability of continuous cell problems
will be assumed throughout the rest of the presentation.

Let TH denote a regular partition of Ω into simplices with maximal diam-
eter H > 0. The corresponding space of piecewise affine finite elements

SH = {v ∈ C(Ω) | v|∂Ω = 0 and v|t affine ∀t ∈ TH}

is spanned by the nodal basis λp ∈ SH , p ∈ NH , where NH stands for the set
of interior vertices of TH . The usual finite element approximation is given by
uH = PSH

u with PSH
: V → SH denoting the Ritz projection defined by

PSH
w ∈ SH : a(PSH

w, v) = a(w, v) ∀v ∈ SH .

We have the well-known error estimate ‖u−uH‖ . H‖u‖H2(Ω), where ‖ ·‖ =

a(·, ·)1/2 signifies the energy norm. Here and throughout this paper, we write
a . b, if a ≤ cb holds with a constant c only depending on the contrast M/δ
and on the shape regularity of TH . Unfortunately, ‖u‖H2(Ω) depends on the
oscillatory behavior of A. For example, we have ‖u‖H2(Ω) = O(ε−1) and thus
‖u−uH‖ . ε−1H in the model case (3). Numerical homogenization is aiming
at a modified finite element space Sms

H with dim Sms
H = dim SH such that

ums
H = PSms

H
satisfies ‖u− ums

H ‖ . H.

3 Direct homogenization by localized orthogonal
decomposition

Let Π : V → SH denote a quasi-interpolation with the property

‖v −Πv‖0,t ≤ CΠH‖∇v‖0,ωt
∀t ∈ TH , ∀v ∈ V, (4)

with local L2-norms ‖ · ‖0,t, ‖ · ‖0,ωt
on t, ωt, respectively, and let ωt be

the union of t′ ∈ TH with t ∩ t′ 6= ∅. A possible choice is the Clément-type
operator [3]

Πv =
∑

p∈NH

vpλp, vp =
1

ωp

∫

ωp

v dx, ωp = int supp λp. (5)

The main idea taken from Målqvist and Peterseim [9] is to consider the a-
orthogonal decomposition

V = Sms
H + V f (6)

into the kernel V f of Π and its a-orthogonal complement Sms
H = (I−PV f )V .

Proposition 1. The Ritz projection ums
H ∈ Sms

H of u on Sms
H satisfies
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‖u− ums
H ‖ . H. (7)

Proof. Orthogonality of the splitting (6) implies that w = u − ums
H ∈ V f

fulfills ‖w‖2 = (f, w). Utilizing the local L2 scalar product (·, ·)t, (4), (2), the
local energy norm ‖ · ‖t, the binomial formula, and the L2 norm ‖ · ‖0, we get

(f, w) =
∑

t∈TH

(f, w)t =
∑

t∈TH

(f, w −Πw)t .
∑

t∈TH

‖f‖0,tH‖∇w‖0,ωt

.
∑

t∈TH

s−1H‖f‖0,ts‖w‖ωt
. 1

2s
−2H2‖f‖20 + 1

2cs
2‖w‖2

with positive s ∈ R. The assertion follows by choosing s sufficiently small. ⊓⊔
Note that different choices of Π give rise to different multiscale methods.

We refer to [5, 9] for a detailed discussion.
A basis λms

p = (I − PV f )λp of Sms
H is obtained from the local problems

µms
p ∈ V f : a(µms

p , v) = a(λp, v) ∀v ∈ V f (8)

for the multiscale corrections µms
p = PV fλp. Unfortunately, the resulting mul-

tiscale basis functions λms
p have global support so that sparsity of the corre-

sponding stiffness matrix is lost. As a way out, Målqvist and Peterseim [9]
consider the localized orthogonal projection

µk
p ∈ V f (ωp,k) : a(µk

p, v) = a(λp, v) ∀v ∈ V f (ωp,k) (9)

with local patches ωp,k of order k ∈ N defined by

ωp,1 = ωp, ωp,k = int {t ∈ TH | t ∩ ωp,k−1 6= ∅}, k > 1, (10)

and V f (ωp,k) = {v ∈ V f | int supp v ∈ ωp,k}. The resulting multiscale finite
element space now reads Sk

H = span {λk
p = λp − µk

p | p ∈ NH}. Exploiting
the decay properties of Green’s functions Målqvist and Peterseim [9] (see
[5] for a later, more elegant proof) were able to show that the desired error
estimate (7) is preserved under localization (9).

Theorem 1. The Ritz projection uk
H of the solution u of (1) to Sk

H admits
the error estimate ‖u− uk

H‖ . H for sufficiently large k & H−1.

The solution of the localized problems (9) is computationally unfeasible,
because dim V f = ∞. As a way out, the continuous solution space V is
replaced by a possibly unfeasibly fine finite element space Sh providing an
approximation uh = PSh

u with accuracy ‖u − uh‖ . H. In the model case
(3), we might choose Sh associated with a uniform partition Th with mesh

size h = Hε−1. Repeating the above reasoning with V f replaced by V f
h =

ker Π|Sh
, V f (ωp,k) replaced by V f

h (ωp,k) = V f (ωp,k) ∩ V f
h , etc., we obtain

the multiscale finite element space Sk
H,h = span {λk

p,h = λp−µk
p,h | p ∈ NH}

with discrete multiscale corrections µk
p,h obtained from
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µk
p,h ∈ V f

h (ωp,k) : a(µk
p,h, v) = a(λp, v) ∀v ∈ V f

h (ωp,k). (11)

For quasi-interpolations Π like the one defined in (5), there is no local basis

of the linearly constrained subspaces V f
h = ker Π|Sh

. Hence, the constraint
Πv = 0 is usually enforced by a Lagrange multiplier so that the algebraic
solution of (11) amounts to solving a saddle point problem. Utilizing essen-
tially the same arguments as before, the error estimates in Proposition 1 and
Theorem 1 directly carry over to the discrete case.

Theorem 2. The Ritz projection uk
H,h of the solution u of (1) to Sk

H,h admits

the error estimate ‖u− uk
H,h‖ . H for sufficiently large k & H−1.

Note that localized orthogonal decomposition can be regarded as a direct
method to approximate uh up to the discretization error by the solution uk

H,h

of a much smaller problem. From such a prespective, multiscale finite element
methods appears to be a kind of model reduction.

4 Iterative homogenization by subspace correction

The main idea of iterative homogenization is to derive an iterative scheme
that allows for solving the given boundary value problem (1) up to a pre-
scribed accuracy with a number of steps that depends only on the contrast
M/δ from (2) and on the shape regularity of TH . To this end, we consider
the splitting

V = SH +
∑

p∈NH

Vp, Vp = H1
0 (ωp), (12)

with ωp defined in (5) and NH consisting of all vertices of TH . This splitting
induces a parallel subspace correction method providing the preconditioner

T = PSH
+

∑

p∈NH

PVp
. (13)

Utilizing basic results from subspace correction [10, 11], spectral equivalence

K−1
1 a(v, v) ≤ a(Tv, v) ≤ K2 a(v, v) ∀v ∈ V, (14)

follows from the stability of the splitting (12). This means that for any v ∈ V
there is a decomposition v = vH +

∑
p∈NH

vp into vH ∈ SH and vp ∈ Vp,

p ∈ NH , such that

‖vH‖2 +
∑

p∈NH

‖vp‖2 ≤ K1‖v‖2 (15)

is satisfied with a constant K1 > 0 and such that
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‖v‖2 ≤ K2(‖vH‖2 +
∑

p∈NH

‖vp‖2) (16)

holds with a constant K2 > 0 for any such decomposition. The following
proposition taken from [8] is crucial for the rest of this exposition.

Proposition 2. The splitting (12) is stable with positive constants K1, K2

depending only on the contrast M/δ and on the shape regularity of TH .

It is not difficult to realize that (16) with K2 = d+2 follows from the Cauchy-
Schwarz inequality. Exploiting the quasi-interpolation Π defined in (5) and
that the functions λp, p ∈ NH , form a partition of unity, it turns out that
(15) holds for the decomposition vH = Πv, vp = λp(v −Πv), p ∈ NH . We
refer to [8] for details.

Note that, in contrast to direct numerical homogenization as explained
above, the quasi-interpolation Π now only enters the proof of the condition
number estimate, but not the algorithm itself.

Employing spectral equivalence (14), we can use the spectral mapping
theorem to obtain usual error bounds for preconditioned cg iterations in
function space.

Theorem 3. The convergence rate ρ of the preconditioned cg iteration with

preconditioner T satisfies ρ ≤
√
κ−1√
κ+1

,κ ≤ K1K2, so that the error estimate

‖u− uν‖ . Tol holds for ν & log(Tol−1) and any given tolerance Tol > 0.

Note that, in contrast to direct numerical homogenization, the achievable
accuracy is independent of the choice of SH .

Of course, the preconditioner (13) is computationally unfeasible, because
the evaluation of the local Ritz projections PVp , p ∈ NH , amounts to the
solution of continuous variational problems. As in the previous section, the
continuous solution space V is therefore replaced by a, possibly unfeasibly
large, finite element space Sh ⊂ V that provides an approximation uh = PSH

u
with accuracy of order H. We then consider the discrete splitting

Sh = SH +
∑

p∈NH

Vp,h, Vp,h = Sh ∩H1
0 (ωp), (17)

and the associated preconditioner

Th = PSH
+

∑

p∈NH

PVp,h
. (18)

Similar arguments as in the continuous case provide the stability of the
discrete splitting (17) with constants K1, K2 depending only on the contrast
M/δ from (2) and on the shape regularity of TH . Hence, spectral equivalence

K−1
1 a(v, v) ≤ a(Thv, v) ≤ K2 a(v, v) ∀v ∈ Sh (19)
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follows from well-known results, e.g., in [10, 11]. As a consequence, the
preconditioned cg iteration in Sh with preconditioner Th exhibits mesh-
independent convergence rates.

Theorem 4. The preconditioned cg iteration with preconditioner Th provides
the error estimate ‖u− uν

h‖ . H for ν & log(H−1) iteration steps as applied
to a fixed initial iterate u0

h ∈ Sh.

Note that the achievable accuracy is limited only by the selection of the space
Sh but not by the space SH as opposed to the direct approach.

Each evaluation of the preconditioner Th requires the evaluation of the
Ritz projections to SH and Vp,h, p ∈ NH , respectively. As local bases of these
subspaces are readily available, this amounts to the solution of symmetric,
positive-definite, linear systems associated with the coarse grid TH and with
the local fine grids ωp ∩ Th, p ∈ NH , and not to saddle point problems (11)
as in direct numerical homogenization.

Similar results can be achieved for successive subspace corrections based
on the splitting (17). We refer to [8] for further information.

5 Numerical experiments

We consider the unit cube Ω = (0, 1)3 and its uniform partition into cubes of
edge length H = 1/8 which are further subdivided into cubes of edge length
h = 1/32 (one more uniform refinement step would lead to computations with
more than 2·106 unknowns). The simplical partitions TH and Th are obtained
by subdividing each cube into six tetrahedra by the Coxeter-Freudenthal-
Kuhn triangulation. We consider (1) with f ≡ 1 in the model case (3) with a
scalar coefficient α(x) which is piecewise constant on a 32×32×32 cube grid,
with values that are uniformly distributed random numbers in an interval
with lower bound δ = 1 and upper bound M.

The reduction factors for the energy error ‖uh−uν
h‖ of the preconditioned

cg iteration with preconditioner Th given in (18) and initial iterate u0
h =

uH is listed in Table 1 for the ratios M/δ = 1, 10, 102, 104, and 106. The
convergence speed does not decrease significantly from M/δ = 100, i.e., the
simple Laplace equation, to larger and larger contrast, less and less covered
by theory. The stopping criterion ‖uh − uν

h‖ ≤ ‖uh/2 − uh‖ ≤ ‖u − uh‖ was
reached with at most ν = 2 iteration steps for all considered values of M/δ.
Replacing ωp in (12) by ωp,k, k > 1, thus introducing larger overlap, leads
to a further improvement of reduction factors. Though error reduction will
probably saturate at slightly larger values for mesh sizes h < 1/32, we found
a similar convergence behavior for h = 1/512 in 2D and these computations
confirm the potential of iterative methods for numerical homogenization.
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step M/δ = 100 M/δ = 101 M/δ = 102 M/δ = 104 M/δ = 106

1 0.42289 0.43180 0.43730 0.43673 0.43747

2 0.40494 0.43488 0.44331 0.44399 0.44364

3 0.29253 0.34578 0.34930 0.34953 0.35052

4 0.32946 0.30560 0.30561 0.30714 0.30635

5 0.38972 0.39920 0.40461 0.39976 0.39907

6 0.38917 0.37999 0.38262 0.37489 0.37601

7 0.30847 0.34791 0.35729 0.35498 0.35238

8 0.33201 0.36407 0.38412 0.38667 0.37269

9 0.40475 0.45993 0.47379 0.47412 0.46402

10 0.34971 0.41312 0.41947 0.42260 0.41620

Table 1 Error reduction factors of preconditioned cg iteration with preconditioner Th.
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