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1 Linear Preconditioning

On December 26, 1823, Gauss sent a letter to his friend Gerling [10] to explain how
he computed an approximate least squares solution based on angle measurements
between the locations Berger Warte, Johannisberg, Taufstein and Milseburg. The
system is symmetric, see Figure 1; it comes from the normal equations, and Gauss
explains (translation by Forsythe [6]):

“In order to eliminate indirectly, I note that, if 3 of the quantitiesa, b, c, d are set to 0, the
fourth gets the largest value whend is chosen as the fourth. Naturally, every quantity must
be determined from its own equation, and henced from the fourth. I therefore setd =−201
and substitute this value. The absolute terms then become:+5232,−6352,+1074,+46;
the other terms remain the same.”

Fig. 1 Letter of Gauss from 1823 explaining what is now known as the Gauss-Seidel method.
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With the new right hand side, Gauss then chooses again the variable to update which
gives the largest value, and we recognize the well known Gauss-Seidel method, with
the extra feature that at each step a particular variable is chosen to be updated, in-
stead of just cycling through all the variables. Note also that the matrix is singular,
but consistent (summing all equations gives zero, as indicated by Gauss’ comment
’Summe=0’ in Figure 1), and the method gives one particular solution. Gauss con-
cludes his letter with the statement in Figure 2 (translation by Forsythe [6]):

Fig. 2 Gauss explains how relaxing these relaxations are.

“Almost every evening I make a new edition of the tableau, wherever there is easy im-
provement. Against the monotony of the surveying business, this is always a pleasant en-
tertainment; one can also see immediately whether anything doubtful has crept in, what
still remains to be desired, etc. I recommend this method to you for imitation. You will
hardly ever again eliminate directly, at least not when you have more than 2 unknowns. The
indirect procedure can be done while half asleep, or while thinking about other things.”

A general description of the method was then given by Seidel in [17], who also
proved convergence of the method for the case of the normal equations, proposed to
do the relaxations cyclically, and also to distribute them to two computers (humans)
to do parallel computing1.

In 1845, Jacobi presented in [12] the variant of Gauss’ method now known as
the Jacobi method, where one simultaneously relaxes all the variables. He acknowl-
edges the computations that were performed by his friend Dr. Seidel. Realizing that
the method can be slow or even fail if the system is not diagonally dominant enough,
Jacobi then presents the groundbreaking idea of preconditioning using Jacobi rota-
tions, see Figure 3:

“As an example we use the method for the equations from Theoria motus p. 219. The orig-
inal equations are (see Figure 3). If we remove the coefficient 6 in front ofq in the first
equation, the angle of rotation isα = 22030′, and the new equations are...”

After preconditioning, it takes then only three Jacobi iterations to obtain three accu-
rate digits!

In modern notation, a stationary iterative method for the linear system

Au = f (1)

1 “ ... sich unter zwei Rechner so vertheilen lässt ...”
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Fig. 3 Jacobi’s idea of preconditioning the linear system using Jacobi rotations.

is obtained from a splitting of the matrixA= M−N, followed by the iteration

Mun+1 = Nun+ f. (2)

For Jacobi, we would haveM = diag(A), for Gauss-SeidelM = tril(A), a Schwarz
domain decomposition method with minimal overlap would haveM block diago-
nal, and for multigrid,M represents a V-cycle or W-cycle. Rewriting the stationary
iterative method (2) as

un+1 = M−1Nun+M−1f = (I −M−1A)un+M−1f,

we see that the method converges fast if the spectral radiusρ(I −M−1A) is small,
and it is cheap, if systems withM can easily be solved.

In 1951, Stiefel and Rosser2 gave both a presentation at a symposium on simul-
taneous linear equations and the determination of eigenvalues at the National Bu-
reau of Standards (UCLA), and realized that they presented the same method. The
method of Forsythe, Hestenes and Rosser appeared in a short note in [7], and the
method of Stiefel in a comprehensive and elegant exposition on iterative methods
in [18]. Hestenes, who was also present at the symposium, and Stiefel then wrote
together during Stiefel’s stay at the National Bureau of Standards the famous 1952
conjugate gradient paper [11]3. Independently in 1952, Lanczos had also invented
essentially the same method [15], based on his earlier work on eigenvalues problems
[14], where he already pointed out that solving linear systems with this method was
just a special case.

2 Rosser was working with Forsythe and Hestenes at that time
3 “An iterative algorithm is given for solving a systemAx= k of n linear equations inn unknowns.
The solution is given inn steps.”
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So what is this famous conjugate gradient (CG) method ? To solve approximately
Au= f, A symmetric and positive definite, CG finds at stepnusing the Krylov space4

Kn(A,r0) := {r0,Ar0, . . . ,An−1r0}, r0 := f−Au0

an approximate solutionun ∈ u0+Kn(A,r0) which satisfies

||u−un||A −→ min, ||u||2A := uTAu.

Using Chebyshev polynomials, one can prove the following convergence estimate
for CG:

Theorem 1. With κ (A) := λmax(A)
λmin(A)

the condition number of A, the iterateun of CG
satisfies the convergence estimate

||u−un||A ≤ 2

(√
κ (A)−1√
κ (A)+1

)n

||u−u0||A.

We see that the conjugate gradient method converges very fast, if the condition
numberκ (A) is not very large.

The success of CG motivated researchers to design similar methods searching in
a Krylov space for solutions when the system matrix is not symmetric and positive
definite. There are two classes of such methods: the first class are the Minimum
Residual methods (MR) which search forun ∈ u0+Kn(A,r0) such that

||f−Aun||2 −→ min.

MINRES (Paige, Saunders 1975) is such an algorithm, designed for symmetric sys-
tems which are not positive definite. GMRES (Saad, Schultz 1986) does the same
for arbitrary systems, and QMR (Freund, Nachtigal 1991) tries to solve the mini-
mization problem approximately. The second class of methods is based on orthogo-
nalization (OR): they search forun ∈ u0+Kn(A,r0) such that

f−Aun ⊥ Kn(A,r0).

SymmLQ (Paige, Saunders 1975) does this for symmetric indefinite systems, FOM
(Saad 1981) for general systems, and BiCGstab (Van Der Vorst 1992) does it ap-
proximately. All these methods converge well, if the spectrum of the matrixA is
clustered around 1 provided the matrices are normal (AAT = ATA).

If the spectrum ofA is not clustered around 1, the old idea of Jacobi can be used:
find a preconditioner, a matrixM, such that the preconditioned system

M−1Au = M−1f

4 The name is going back to Krylov [13] studying the solution of systems of second order ordinary
differential equations, and the now called Krylov space only appears implicitly there
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has a spectrum which clusters much better around 1 than the spectrum of the matrix
A itself. For CG, using Theorem 1 one can even say more specifically thatM should
make the condition numberκ (M−1A) much smaller thanκ (A). In all cases however
it should be inexpensive to applyM−1.

It is sometimes possible to directly design preconditioners with good proper-
ties: excellent examples in domain decomposition are the additive Schwarz method
(Dryja and Widlund 1987), FETI (Farhat and Roux 1991) and Balancing Domain
Decomposition (Mandel and Brezina 1993), but it takes a lot of experience and in-
tuition to do so.

A systematic approach for constructing preconditioners is to recall what we have
seen for stationary iterative methods: we neededM such that the spectral radius
ρ(I −M−1A) is small, and it is inexpensive to applyM−1. The last point is identical
with preconditioning, and note that

ρ(I −M−1A) small ⇐⇒ the spectrum ofM−1A is close to one!

It is therefore natural to first design a goodM for a stationary iterative method, and
then use it as a preconditioner for a Krylov method.

Theorem 2. Using an MR Krylov method with preconditioner M never gives worse
(and usually much better) residual reduction than just using the stationary iteration.

Proof. The stationary iterative method computes

un = (I −M−1A)un−1+M−1f = un−1+ rn−1
stat ,

where we introducedrn
stat :=M−1f−M−1Aun. Multiplying this equation by−M−1A

and addingM−1f on both sides then gives

rn
stat = (I −M−1A)rn−1

stat = (I −M−1A)nr0. (3)

The preconditioned Krylov method will use the Krylov space

Kn(M
−1A,r0) := {r0,M−1Ar0, . . . ,(M−1A)n−1r0}

to search forun ∈ u0+Kn(M−1A,r0), i.e. it will determine coefficientsαi s.t.

un = u0+
n

∑
i=1

αi(M
−1A)i−1r0.

Multiplying this equation by−M−1A and addingM−1f on both sides then gives

rn
kry = pn(M−1A)r0, (4)

pn a polynomial of degreen with pn(0) = 1. Since the MR Krylov method finds
the polynomial which minimizes the residual in norm, it is at least as good as the
specific polynomial(I −M−1A)n chosen by the stationary iterative method in (3).
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The classical alternating and parallel Schwarz methods are such stationary it-
erative methods, and also RAS [3] and optimized Schwarz methods [8], and the
Dirichlet-Neumann and Neumann-Neumann methods [16]. They all are convergent
as stationary iterative methods, while for example additive Schwarz is not [5, 9].

2 Non-Linear Preconditioning

In contrast to linear preconditioning, non-linear preconditioning is a much less ex-
plored area of research. In the context of domain decomposition, a seminal contri-
bution for non-linear preconditioning was made by Cai, Keyes and Young at DD13
[2], namely the Additive Schwarz Preconditioned Inexact Newton method (ASPIN),
see also Cai and Keyes [1]. The idea is:

“The nonlinear system is transformed into a new nonlinear system, which has the same so-
lution as the original system. For certain applications the nonlinearities of the new function
are more balanced and, as a result, the inexact Newton method converges more rapidly.”

Instead of solvingF(u) = 0, one solves insteadG(F(u)) = 0 where according to
the authors the functionG should have the properties: 1) ifG(v) = 0 then v =
0, 2) G ≈ F−1 in some sense, 3)G(F(v)) is easy to compute, and 4) applying
Newton,(G(F(v)))′w should also be easy to compute. The authors then define the
ASPIN preconditioner as follows: forF : Rm → Rm, defineJ (overlapping) subsets
Ω j for the indices{1,2, . . . ,m}, such that

⋃
j Ω j = {1,2, . . . ,m}, and corresponding

restriction matricesRj , e.g.Ω1 = {1,2,3} =⇒ R1 = [I 0]3×m, I the 3×3 identity
matrix. Define the solution operatorTj : Rm → R|Ω j | such that

RjF(v−RT
j Tj(v)) = 0. (5)

Then ASPIN solves using inexact Newton

J

∑
j=1

RT
j Tj(u) = 0. (6)

It is not easy to understand where this transformation comes from5. Let us first look
at a fixed point iteration like Gauss-Seidel or Jacobi for this nonlinear problem. If
we denote the unknowns corresponding to the subsetsΩ j by u j , the corresponding
block Jacobi fixed point iteration would be to solve forn= 0,1,2, . . .

F1(un+1
1 ,un

2, . . . ,u
n
J) = 0

F2(un
1,u

n+1
2 , . . . ,un

J) = 0
...

FJ(un
1,u

n
2, . . . ,u

n+1
J ) = 0

=⇒

un+1
1 = G1(un

2, . . . ,u
n
J)

un+1
2 = G2(un

1,u
n
3, . . . ,u

n
J)

...
un+1

J = GJ(un
1,u

n
2, . . . ,u

n
J−1)

(7)

5 “ASPIN may look a bit complicated ...” (Cai, Keyes 2002).
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where we denoted the solutions of the non-linear equationFj by G j . At the fixed
point, which solvesF(u) = 0, we must haveu = G(u), and thus instead of solving
F(u) = 0 using Newton’s method, one can instead solveu−G(u) = 0 using New-
ton’s method. This gives us a very general idea of non-linear preconditioning: one
first designs a fixed point iteration (like the stationary iterative method in the linear
case); but then one does not use this method directly, one applies Newton’s method
to the equation at the fixed point (like one applies a Krylov method to the fixed point
of the stationary iterative method).

Theorem 3. ASPIN in the case of no algebraic overlap (which means minimal ge-
ometric overlap of one mesh size) is identical to solving with an inexact Newton
method the non-linear block Jacobi iteration equations at the fixed point.

Proof. The definition of the solution operator in (5) shows that we can use it to
replaceG j in (7), namely

un+1
j = Rjun−Tj(un).

Now in the case of no algebraic overlap (minimal geometric overlap), the sum in
(6) just composes the operatorsTj in a large vector, there is never actually a sum
computed, and thus (6) represents precisely (7) at the fixed point, i.e.

0= u−G(u) = u−
J

∑
j=1

RT
j (Rju−Tj(u)) =

J

∑
j=1

RT
j Tj(u),

where we used thatu−∑J
j=1RT

j Rju = 0 in the case of zero algebraic overlap.

Remark 1.In the case of more overlap, ASPIN has the same problem as the additive
Schwarz method in the overlap, it is inconsistent and can only be used as a precondi-
tioner [5, 9], where a Krylov method must correct this inconsistency. In the case of
ASPIN, Newton must to the same; ASPIN then does not correspond to a consistent
fixed point iteration in the case of more than minimal overlap.

3 Conclusion

We have explained how first stationary iterative methods were invented for linear
systems of equations by Gauss and Jacobi, and how Jacobi had already the idea
of preconditioning in 1845. With the invention of Krylov methods, stationary it-
erations have lost their importance as solvers, but good splittings from stationary
iterative methods found great use as preconditioners for Krylov methods. In the
case of non-linear problems, one can follow the same principle: one first conceives
a fixed point iteration for the non-linear problem, like a non-linear iterative domain
decomposition method, or the full approximation scheme from multigrid. One then
however does not use this fixed point iteration as a solver, one solves instead the
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equations at the fixed point:this is the meaning of non-linear preconditioning. This
observation allowed the authors in [4] to devise a new non-linear preconditioner
called RASPEN, which avoids the problem ASPIN has in the overlap, and also
introduces the coarse grid correction in a consistent way by using the full approx-
imation scheme from multigrid. It is also shown in [4] that one can actually use
the exact Jacobian, since the non-linear subdomain solvers provide this information
already, and extensive numerical experiments in [4] show that RASPEN performs
significantly better as non-linear preconditioner than ASPIN.
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