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On the Origins of Linear and Non-L inear
Preconditioning

Martin J.Gandér

1 Linear Preconditioning

On December 26, 1823, Gauss sent a letter to his friend Gerling [10] to expla
he computed an approximate least squares solution based on angle meas!
between the locations Berger Warte, Johannisberg, Taufstein and Milsebu
system is symmetric, see Figure 1; it comes from the normal equations, anc
explains (translation by Forsythe [6]):

“In order to eliminate indirectly, | note that, if 3 of the quantiti&sh, c, d are set to 0, the
fourth gets the largest value wheris chosen as the fourth. Naturally, every quantity mus
be determined from its own equation, and heddem the fourth. | therefore set= —201
and substitute this value. The absolute terms then bece®232, —6352,+1074,+46;
the other terms remain the same.”

Die Bedingungsgleichungen sind also:

0=+ 6+67a—13b— 28c— 26d

0= — 7558 —13a+69b— 50c— 6d

0 = ——14604—288—50b+1560-— 78d

0 = 422156 —26a— 6b— 78c+110d;
Summe = 0.

Um nun indirect zu eliminiren, bemerke ich, dass, wenn 3 der Grossen
a, b, ¢, d gleich 0 gesetzt werden, die vierte den grossten Werth bekommt,
wenn d dafiir gewshlt wird. Natiitlich muss jede Grésse aus ihrer eigenen
Gleichung, also d aus der vierten, bestimmt werden. Ich setze also d = — 201
und substituire diesen Werth. Die absoluten Theile werden dann: -+ 5232,
— 6352, --1074, -}-46; das ﬁbri.ge bleibt dasselbe. '

Fig. 1 Letter of Gauss from 1823 explaining what is now known as the Gauss-Seidel meth
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With the new right hand side, Gauss then chooses again the variable to updat
gives the largest value, and we recognize the well known Gauss-Seidel methc
the extra feature that at each step a particular variable is chosen to be upd:
stead of just cycling through all the variables. Note also that the matrix is sir
but consistent (summing all equations gives zero, as indicated by Gauss’ cc
'Summe=0’ in Figure 1), and the method gives one particular solution. Gaus
cludes his letter with the statement in Figure 2 (translation by Forsythe [6]):

Fast jeden Abend mache ich eine neue Auflage des Tableaus, wo immer
leicht nachzuhelfen ist. Bei der Einférmigkeit des Messungsgeschifts gibt dies
immer eine angenehme Unterhaltung; man sieht dann auch immer gleich, ob
etwas zweifelhaftes eingeschlichen ist, was moch wiinschenswerth bleibt, ete.
Ich empfehle Thnen diesen Modus zur Nachahmung. Schwerlich werden Sie je
wieder direct eliminiren, wenigstens nich%, wenn Sie mehr als 2 Unbekannte
haben. Das indirecte Verfahren lisst sich halb im Schlafe ausfiihren, oder
man kann wihrend desselben an andere Dinge denken.

Fig. 2 Gauss explains how relaxing these relaxations are.

“Almost every evening | make a new edition of the tableau, wherever there is easy
provement. Against the monotony of the surveying business, this is always a pleasan
tertainment; one can also see immediately whether anything doubtful has crept in, v
still remains to be desired, etc. | recommend this method to you for imitation. You w
hardly ever again eliminate directly, at least not when you have more than 2 unknowns.
indirect procedure can be done while half asleep, or while thinking about other things.”

A general description of the method was then given by Seidel in [17], whc
proved convergence of the method for the case of the normal equations, prog
do the relaxations cyclically, and also to distribute them to two computers (hu
to do parallel computing

In 1845, Jacobi presented in [12] the variant of Gauss’ method now kna
the Jacobi method, where one simultaneously relaxes all the variables. He at
edges the computations that were performed by his friend Dr. Seidel. Realizi
the method can be slow or even fall if the system is not diagonally dominant el
Jacobi then presents the groundbreaking idea of preconditioning using Jacc
tions, see Figure 3:

“As an example we use the method for the equations from Theoria motus p. 219. The ¢
inal equations are (see Figure 3). If we remove the coefficient 6 in frontiofthe first
equation, the angle of rotation gs= 22°30, and the new equations are...”

After preconditioning, it takes then only three Jacobi iterations to obtain three
rate digits!
In modern notation, a stationary iterative method for the linear system

Au =T 1)

1« . sich unter zwei Rechner so vertheilen lasst ...
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Als ein Beispiel mioge hier die Anwendung der Me:
auf die in der Theoria motus p. 219 gegebenen Gleichuny
dienen. Die urspriinglichen Gleichungen sind

27p+ 6g+*r— 88 =0
6p+15g4+ r— 70 =10
*p4 g+54r—107 = 0. i
Schafit man den Coefficienten 6 bei ¢ in der ersten Gleich
fort, so wird = 22°30° ;
p = 0,92390 y 4 0,38268 5"
g = 0,38268 y — 0,92390
und die neuen Gleichungen werden .
29,4853y + * '+ 0,38268r—108,0901
%y 12,5147 y'—0,92390 r 4 30,9967
0,38268 5 — 0,92390)" -+ 84,r  —107

Fig. 3 Jacobi’s idea of preconditioning the linear system using Jacobi rotations.

is obtained from a splitting of the matr&x= M — N, followed by the iteration
Mu™?t = Nu" +f. (2)

For Jacobi, we would havé = diag(A), for Gauss-Seidaé¥l = tril (A), a Schwar
domain decomposition method with minimal overlap would hi/élock diago
nal, and for multigridM represents a V-cycle or W-cycle. Rewriting the statiol
iterative method (2) as

u™t =M INU+ M = (1 =M AU+ M,

we see that the method converges fast if the spectral radius M~1A) is small
and it is cheap, if systems witfl can easily be solved.

In 1951, Stiefel and Rossegave both a presentation at a symposium on si
taneous linear equations and the determination of eigenvalues at the Natio
reau of Standards (UCLA), and realized that they presented the same meth
method of Forsythe, Hestenes and Rosser appeared in a short note in [7],
method of Stiefel in a comprehensive and elegant exposition on iterative m
in [18]. Hestenes, who was also present at the symposium, and Stiefel the:
together during Stiefel’s stay at the National Bureau of Standards the famou
conjugate gradient paper [£1]independently in 1952, Lanczos had also inve
essentially the same method [15], based on his earlier work on eigenvalues pi
[14], where he already pointed out that solving linear systems with this methc
just a special case.

2 Rosser was working with Forsythe and Hestenes at that time

3 “An iterative algorithm is given for solving a systefx = k of n linear equations im unknowns
The solution is given im steps.”
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So what is this famous conjugate gradient (CG) method ? To solve approxil
Au = f, Asymmetric and positive definite, CG finds at stagsing the Krylov spack

Ha(ArO) = {rO A0 A0 0— g AW
an approximate solution” € u®+ (A, r%) which satisfies
lu—u"|a—min,  |julZ:=uAu.

Using Chebyshev polynomials, one can prove the following convergence e
for CG:

Theorem 1. With K (A) := g’:j:((:)) the condition number of A, the iterat® of CG

satisfies the convergence estimate

|u—u"|m2(%§2§+i> u— 0]

We see that the conjugate gradient method converges very fast, if the co
numberk (A) is not very large.

The success of CG motivated researchers to design similar methods sear
a Krylov space for solutions when the system matrix is not symmetric and pt
definite. There are two classes of such methods: the first class are the Mi
Residual methods (MR) which search féYc ug + .#4(A,r°) such that

f—Au"||, — min.
I

MINRES (Paige, Saunders 1975) is such an algorithm, designed for symmet
tems which are not positive definite. GMRES (Saad, Schultz 1986) does th
for arbitrary systems, and QMR (Freund, Nachtigal 1991) tries to solve the
mization problem approximately. The second class of methods is based on o
nalization (OR): they search fo € ug + .#5(A,r%) such that

f—AU" L (A r0).

SymmLQ (Paige, Saunders 1975) does this for symmetric indefinite systems
(Saad 1981) for general systems, and BiCGstab (Van Der Vorst 1992) doe
proximately. All these methods converge well, if the spectrum of the mAtis
clustered around 1 provided the matrices are norial (= ATA).

If the spectrum oA\ is not clustered around 1, the old idea of Jacobi can be
find a preconditioner, a matrid, such that the preconditioned system

M~ 1Au=M"1f

4 The name is going back to Krylov [13] studying the solution of systems of second order o
differential equations, and the now called Krylov space only appears implicitly there
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has a spectrum which clusters much better around 1 than the spectrum of the
Aitself. For CG, using Theorem 1 one can even say more specificalliitsabulc
make the condition number(M~*A) much smaller thar (A). In all cases howev
it should be inexpensive to apply 1.

It is sometimes possible to directly design preconditioners with good p
ties: excellent examples in domain decomposition are the additive Schwarz 1
(Dryja and Widlund 1987), FETI (Farhat and Roux 1991) and Balancing Dc
Decomposition (Mandel and Brezina 1993), but it takes a lot of experience ¢
tuition to do so.

A systematic approach for constructing preconditioners is to recall what wi
seen for stationary iterative methods: we neelfeduch that the spectral rad
p(I —M~tA) is small, and it is inexpensive to apg¥y L. The last point is identic
with preconditioning, and note that

p(l —=M~1A)small <= the spectrum ok ~1Ais close to one!

It is therefore natural to first design a gobdfor a stationary iterative method, &
then use it as a preconditioner for a Krylov method.

Theorem 2. Using an MR Krylov method with preconditioner M never gives w
(and usually much better) residual reduction than just using the stationary iter

Proof. The stationary iterative method computes
ul= (I -M At e M = o e

where we introduced;,; := M~ — M~1Au". Multiplying this equation by-M 1A
and addingvi—f on both sides then gives

e = (1 = M A = (1 =M TA) ©)
The preconditioned Krylov method will use the Krylov space
H(M7IATO) = (rOM~IAC . (M1A)1r 0y

to search fou" € u® + . Z,(M~1A r%), i.e. it will determine coefficients; s.t.
n .
u"=ul+ Zai(MflA)'*lro.
i=

Multiplying this equation by-M~*A and addingv—f on both sides then gives
My = P(M A, (4)

p" a polynomial of degrea with p"(0) = 1. Since the MR Krylov method fin
the polynomial which minimizes the residual in norm, it is at least as good .
specific polynomia(l — M~1A)" chosen by the stationary iterative method in (:
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The classical alternating and parallel Schwarz methods are such statiol
erative methods, and also RAS [3] and optimized Schwarz methods [8], a
Dirichlet-Neumann and Neumann-Neumann methods [16]. They all are conv
as stationary iterative methods, while for example additive Schwarz is not [5,

2 Non-Linear Preconditioning

In contrast to linear preconditioning, non-linear preconditioning is a much le
plored area of research. In the context of domain decomposition, a seminal
bution for non-linear preconditioning was made by Cai, Keyes and Young at
[2], namely the Additive Schwarz Preconditioned Inexact Newton method (AS
see also Cai and Keyes [1]. The idea is:

“The nonlinear system is transformed into a new nonlinear system, which has the sam:
lution as the original system. For certain applications the nonlinearities of the new funct
are more balanced and, as a result, the inexact Newton method converges more rapid|

Instead of solving=(u) = 0, one solves insteaG(F (u)) = 0 where according |
the authors the functio® should have the properties: 1) G(v) = 0 thenv =
0, 2) G~ F~1in some sense, 3p(F(v)) is easy to compute, and 4) apply
Newton,(G(F(v)))'w should also be easy to compute. The authors then defil
ASPIN preconditioner as follows: fdf : R™ — R™, defineJ (overlapping) subse
Qj for the indices(1,2,...,m}, such thatJ; Qj = {1,2,...,m}, and correspondir
restriction matrice®;, e.9.Q; = {1,2,3} = Ry = [l 0]5,,,, | the 3x 3 identity
matrix. Define the solution operat®y : R™ — RI?il such that

RiF (v—R[Tj(v)) =0. (5)

Then ASPIN solves using inexact Newton
2 T
Z R Tj(u) =0. (6)
=1

It is not easy to understand where this transformation come<frioat us first lool
at a fixed point iteration like Gauss-Seidel or Jacobi for this nonlinear probl
we denote the unknowns corresponding to the sul@getsy uj, the correspondir
block Jacobi fixed point iteration would be to solve for 0,1,2, ...

Fﬂu?”,u%,...,ug) =0 u?*i = Gy(ud,...,ul)
F(uf,udt, ... ,u)) =0 uptt = Gy(uf,u,....uj)

= . (7)
Fy(uf,uf,...,ul") =0 uit = Gy(uj,ug,...,uj ;)

5“ASPIN may look a bit complicated ...” (Cai, Keyes 2002).
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where we denoted the solutions of the non-linear equéjony G;. At the fixec
point, which solves- (u) = 0, we must havel = G(u), and thus instead of solvil
F (u) = 0 using Newton’s method, one can instead saiveG(u) = 0 using New
ton’s method. This gives us a very general idea of non-linear preconditionin
first designs a fixed point iteration (like the stationary iterative method in the
case); but then one does not use this method directly, one applies Newton’s
to the equation at the fixed point (like one applies a Krylov method to the fixed
of the stationary iterative method).

Theorem 3. ASPIN in the case of no algebraic overlap (which means minim:
ometric overlap of one mesh size) is identical to solving with an inexact N
method the non-linear block Jacobi iteration equations at the fixed point.

Proof. The definition of the solution operator in (5) shows that we can use
replaceG;j in (7), namely

uftt = Riu" =Ty (u").
Now in the case of no algebraic overlap (minimal geometric overlap), the s

(6) just composes the operatdisin a large vector, there is never actually a
computed, and thus (6) represents precisely (7) at the fixed point, i.e.

J J
0=u—Gu)=u-— J;RJT(RJU ~Tj(u) = JZlRJ-TTj(u%

where we used that— z]-’:l RJ-T Rju = 0 in the case of zero algebraic overlap.

Remark 11In the case of more overlap, ASPIN has the same problem as the a
Schwarz method in the overlap, it is inconsistent and can only be used as a pr
tioner [5, 9], where a Krylov method must correct this inconsistency. In the ¢
ASPIN, Newton must to the same; ASPIN then does not correspond to a cor
fixed point iteration in the case of more than minimal overlap.

3 Conclusion

We have explained how first stationary iterative methods were invented for
systems of equations by Gauss and Jacobi, and how Jacobi had already
of preconditioning in 1845. With the invention of Krylov methods, stationar
erations have lost their importance as solvers, but good splittings from stal
iterative methods found great use as preconditioners for Krylov methods.
case of non-linear problems, one can follow the same principle: one first cor
a fixed point iteration for the non-linear problem, like a non-linear iterative dc
decomposition method, or the full approximation scheme from multigrid. One
however does not use this fixed point iteration as a solver, one solves insti

143



144

Martin Gander

equations at the fixed pointhis is the meaning of non-linear preconditionifthis
observation allowed the authors in [4] to devise a new non-linear precond
called RASPEN, which avoids the problem ASPIN has in the overlap, ani
introduces the coarse grid correction in a consistent way by using the full a
imation scheme from multigrid. It is also shown in [4] that one can actuall
the exact Jacobian, since the non-linear subdomain solvers provide this infor
already, and extensive numerical experiments in [4] show that RASPEN pe
significantly better as non-linear preconditioner than ASPIN.
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