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1 Introduction

We introduce two new nonlinear FETI-DP (Finite Element Tearing and Inter-
connecting - Dual-Primal) methods based on a partial nonlinear elimination
and provide a comparison to Newton-Krylov-FETI-DP, Nonlinear-FETI-DP-
1, and -2 methods [3, 4]. In contrast to classical Newton-Krylov-FETI-DP
methods, where a geometrical decomposition after linearization is performed,
in nonlinear FETI-DP methods, the nonlinear problem is decomposed before
linearization. The approaches help to localize work and thus are well suited
for modern computer architectures. Recently, an inexact nonlinear FETI-DP
implementation using PETSc and BoomerAMG has scaled, for nonlinear hy-
perelasticity, to the largest supercomputers currently available, i.e., to more
than half a million MPI ranks [6] on the JUQUEEN supercomputer (Julich
Supercomputing Centre), more than half a million cores [6] on the Mira su-
percomputer (Argonne National Laboratory), and later [5] the complete Mira
(786K cores). To the best of our knowledge, this is the largest range of paral-
lel scalability reported for any domain decomposition method. Here, we now
describe new variants of nonlinear FETI-DP methods.

2 Nonlinear FETI-DP Methods

In all nonlinear FETI-DP methods, a geometrical decomposition of the com-
putational domain Ω into nonoverlapping subdomains Ωi, i = 1, ..., N is
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performed before linearizing the nonlinear problem. In the more traditional
Newton-Krylov-FETI-DP approach a discrete nonlinear problem A(u) = 0
associated with Ω is linearized first. Let Ki(ui) = fi, i = 1, ..., N, be the
local finite element problem on subdomain Ωi and let Wi be the associated
finite element space; see [4], for a detailed definition. We define the nonlinear,
discrete block operator K(u) and the corresponding vectors u and f by

K(u) :=




K1(u1)
...

KN (uN )


 , u :=




u1

...
uN


 , and f :=




f1
...
fN


 . (1)

As in linear FETI-DP, we decompose the degrees of freedom into variables
interior to subdomains (I), dual interface variables (∆), and primal variables
(Π), e.g., on vertices. Using the standard partial assembly operator RT

Π , [1, 7]

we define the nonlinear, partially assembled operator K̃(ũ) := RT
ΠK(RΠ ũ)

and the right hand side f̃ := RT
Πf . We define the usual space of partially

continuous discrete functions by W̃ ⊂ W := W1 × · · · × WN . Using the
standard FETI-DP jump operator B, we can formulate the nonlinear FETI-
DP master system, first introduced in [3]

K̃(ũ) +BTλ− f̃ = 0
Bũ = 0.

(2)

In [4], two approaches have been suggested to solve the nonlinear system (2):
linearize first (Nonlinear-FETI-DP-1 or NL-1) and eliminate first (Nonlinear-
FETI-DP-2 or NL-2). The first variant is based on a Newton linearization of
the saddle point system and a solution of the resulting linear system. The
second variant is based on a nonlinear elimination of the variable ũ in (2)

before linearization. While in NL-1 nonlinear problems in W̃ are solved as an
initial guess, in NL-2 the solution of nonlinear problems in W̃ is included into
each Newton step, often resulting into faster convergence. In both methods
the quality of the coarse space directly influences the Newton convergence.
Thus, for problems where a good coarse space is known, NL-2 is often the
best choice. However, if a good coarse space is not available, current nonlinear
FETI-DP methods might fail to converge without spending effort in globaliza-
tion. Here, we introduce new nonlinear FETI-DP methods based on a partial
nonlinear elimination. In these methods, all primal variables are linearized
before elimination, which also allows the definition of inexact FETI-DP vari-
ants; see also [6, 7]. In the new methods, the choice of primal variables has
a weaker influence on the Newton convergence and local nonlinear problems
are also computationally cheaper.
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3 Nonlinear FETI-DP Based on Partial Elimination

Derivation of the Method We partition ũ := (ũT
E , ũ

T
L)

T and f̃ :=

(f̃T
E , f̃T

L )T into a set of variables E ⊆ B := [I ∆], and the remaining variables
L := (B \ E) ∪ Π. The variables ũE will be eliminated from the nonlinear
saddle point system (2) while the variables ũL will be linearized. Accordingly,
we partition

K̃(ũ) = (K̃E(ũE , ũL)
T , K̃L(ũE , ũL)

T )T , and

DK̃(ũ) =

[
DũE

K̃E(ũE , ũL) DũL
K̃E(ũE , ũL)

DũE
K̃L(ũE , ũL) DũL

K̃L(ũE , ũL)

]
=:

[
DK̃EE DK̃EL

DK̃LE DK̃LL

]
. (3)

We can reformulate the nonlinear FETI-DP saddle point system (2) as

K̃E(ũE , ũL) +BT
Eλ −f̃E = 0

K̃L(ũE , ũL) +BT
Lλ −f̃L = 0

BE ũE +BLũL = 0,

(4)

with B = [BE BL]. We perform a (local) nonlinear elimination of ũE . To
construct our new nonlinear FETI-DP methods, we first derive a nonlinear
Schur complement in (ũL, λ). Let (ũ

∗
E , ũ

∗
L, λ

∗) be a solution of (4). We assume
there is an implicit function h with the following property in a neighborhood
of (ũ∗

E , ũ
∗
L, λ

∗):
K̃E(h(ũ

∗
L, λ

∗), ũ∗
L) +BT

Eλ
∗ − f̃E = 0. (5)

Here, we consider the first equation from (4). The derivative of the implicit
function is

Dh(ũL, λ) = (DũL
h(ũL, λ), Dλh(ũL, λ)), (6)

whereDũL
h(ũL, λ) = −(DũE

K̃E(h(ũL, λ), ũL))
−1DũL

K̃E(h(ũL, λ), ũL) (7)

and Dλh(ũL, λ) = −(DũE
K̃E(h(ũL, λ), ũL))

−1BT
E . (8)

Inserting the implicit function into equations two and three from (4) we can
define a nonlinear Schur complement by

SL(ũL, λ) :=

[
K̃L(h(ũL, λ), ũL) +BT

Lλ− f̃L
BEh(ũL, λ) +BLũL

]
. (9)

We finally solve the nonlinear problem SL(ũ
∗
L, λ

∗) = 0 with Newton’s method
and obtain the iteration

(
ũ
(k+1)
L

λ(k+1)

)
=

(
ũ
(k)
L

λ(k)

)
− (DSL(ũ

(k)
L , λ(k)))−1SL(ũ

(k)
L , λ(k)). (10)
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Using (7) and (8), the short hand notation introduced in (3), and, for sim-
plicity, omitting the variables and indices, we obtain

DSL(ũL, λ) =

[
DK̃LL −DK̃LEDK̃−1

EEDK̃EL −DK̃LEDK̃−1
EEB

T
E +BT

L

−BEDK̃−1
EEDK̃EL +BL −BEDK̃−1

EEB
T
E

]
.

(11)
It is easy to verify that the derivative of the nonlinear Schur complement
in (11) is equal to the Schur complement of the derivative of the nonlinear
saddle point system in (4). Therefore, we can use any FETI-DP type method
and solve a linear system equivalent to the linear system in (10). In order to

assemble and solve (10) we need to compute h(ũ
(k)
Π , λ(k)) first. We consider

local nonlinear problems in each global Newton step, arising from the first
equation in (4)

K̃E(h(ũ
(k)
L , λ(k)), ũ

(k)
L ) +BEλ

(k) − f̃E = 0. (12)

Since ũ
(k)
L and λ(k) are given as results of the k-th step of the global Newton

iteration (10), we can simply perform a local Newton iteration to find ũ
(k)
E =

h(ũ
(k)
L , λ(k)). The local iteration writes

ũ
(l+1)
E = ũ

(l)
E − (DK̃(ũ

(l)
E , ũ

(k)
L ))−1

EE (K̃E(ũ
(l)
E , ũ

(k)
L ) +BEλ

(k) − f̃E). (13)

Let us finally remark that, since E ∩ Π = ∅, DK̃(ũ
(l)
E , ũ

(k)
L ))EE is block

diagonal and thus all computations in (13) are local to the subdomains.
Two Different Variants We suggest two different choices of E. First,

we define E := B = [I ∆] as the set of interior and dual variables. Conse-
quently, we have L = Π, BE = BB , and BL = 0. This defines the Nonlinear-
FETI-DP-3 (NL-3) method, where local nonlinear problems in uB are solved
in each global Newton step; see Fig. 1. In this method, the coarse space
can slightly influence the convergence of Newton’s method, since primal con-
straints on edges, or faces in three dimensions, influence the variables uB . As a
second choice, we use E := I and thus we have L = ∆∪Π =: Γ , BE = 0, and
BL = BΓ . This leads to the Nonlinear-FETI-DP-4 (NL-4) method, where lo-
cal nonlinear problems in uI are solved in each global Newton step; see Fig. 2.
In this method, the coarse space cannot influence Newton’s method, since the
local problems are independent of the variables on the interface.

4 Numerical Results

As a first model problem, we consider a scaled p-Laplace equation

−div(α|∇u|2∇u− β∇u) = 1 in Ω, u = 0 on ∂Ω, (14)
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Init: (u
(0)
B , ũ

(0)
Π ) = ũ(0) ∈ W̃ , λ(0) = 0

for k = 0, ..., convergence

for l = 0, ..., convergence

build: K̃(ũ(l)) and DK̃(ũ(l))

solve: (DK̃(ũ(l)))BBδu
(l)
B = KB(ũ(l)) +BT

Bλ(k) − fB //local problems

compute steplength α(l)

update: ũ(l+1) := ũ(l) − α(l)
(
δu

(l)T
B , 0

)T
//update only on B

end

ũ(k) := ũ(l+1)

build: K̃(ũ(k)) and DK̃(ũ(k))

solve: DSΠ(ũ
(k)
Π , λ(k))

(
δũ

(k)
Π

δλ(k)

)
=

(
K̃Π(ũ(k))− f̃Π

BBu
(k)
B

)
//solve equivalent

FETI-DP system

compute steplength α(k)

update: λ(k+1) := λ(k) − α(k)δλ(k)

update: ũ
(k+1)
Π := ũ

(k)
Π − α(k)δũ

(k)
Π

ũ(0) :=
(
u
(l+1)T
B , ũ

(k+1)T
Π

)T

λ(0) := λ(k+1)

end

Fig. 1 Pseudocode of Nonlinear-FETI-DP-3.

Init: (u
(0)
I , ũ

(0)
Γ ) = ũ(0) ∈ W̃ , λ(0) = 0

for k = 0, ..., convergence

for l = 0, ..., convergence

build: K̃(ũ(l)) and DK̃(ũ(l))

solve: (DK̃(ũ(l)))IIδu
(l)
I = KI(ũ

(l))− fI //local problems

compute steplength α(l)

update: ũ(l+1) := ũ(l) − α(l)
(
δu

(l)T
I , 0

)T
//update only on I

end

ũ(k) := ũ(l+1)

build: K̃(ũ(k)) and DK̃(ũ(k))

solve: DSΓ (ũ
(k)
Γ , λ(k))

(
δũ

(k)
Γ

δλ(k)

)
=

(
K̃Γ (ũ(k)) +BT

Γ λ(k) − f̃Γ

BΓu
(k)
Γ

)
//solve equiv-

alent FETI-DP system

compute steplength α(k)

update: λ(k+1) := λ(k) − α(k)δλ(k)

update: ũ
(k+1)
Γ := ũ

(k)
Γ − α(k)δũ

(k)
Γ

ũ(0) :=
(
u
(l+1)T
I , ũ

(k+1)T
Γ

)T

λ(0) := λ(k+1)

end

Fig. 2 Pseudocode of Nonlinear-FETI-DP-4.
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Ω2,C

Ω3,C

Ω1,C

Fig. 3 Left: Example for a decomposition of Ω in N = 9 subdomains, intersected by 3

channels Ωi,C , i = 1, 2, 3. We define ΩC =
⋃

i Ωi,C . Right: Subdomain Ωi with channel

Ωi,C of width H
2
, where H is the size of a subdomain.

Table 1 p-Laplace problem; channels of p-Laplace (p = 4) with high coefficient 1e6 in

standard linear Laplacian matrix. N: number of subdomains; Krylov It.: sum of CG iter-

ations over all Newton steps; local solves:number of local factorizations on subdomains;

coarse solves: number of FETI-DP coarse problem factorizations. Best results are marked

in bold face and red color.

# Krylov # local # coarse Min. Max.

N Solver It. solves solves cond. cond.

NK-FETI-DP 864 19 19 95.9 31 265.6

Nonlinear-FETI-DP-1 537 26 26 39.5 151.5
64 Nonlinear-FETI-DP-2 225 34 34 39.6 95.9

Nonlinear-FETI-DP-3 264 36 6 30.4 95.9
Nonlinear-FETI-DP-4 1343 56 17 95.8 32 520.7

NK-FETI-DP 2341 19 19 158.1 59 730.5
Nonlinear-FETI-DP-1 1128 26 26 60.5 255.2

256 Nonlinear-FETI-DP-2 481 34 34 60.6 158.4

Nonlinear-FETI-DP-3 529 38 6 39.6 158.9
Nonlinear-FETI-DP-4 2766 54 18 158.0 60 415.5

where α, β : Ω → R are coefficient functions given by

α(x) =

{
106 if x ∈ ΩC

0 elsewhere
β(x) =

{
0 if x ∈ ΩC

1 elsewhere;
(15)

see Fig. 3 for a definition of ΩC .
In Table 1, we present results for the p-Laplace problem (14). Here, NL-4

and Newton-Krylov-FETI-DP both require many Krylov iterations. The local
nonlinear problems on the interior part of the subdomains solved in NL-4
cannot resolve the strongly global nonlinearity of the channels. Comparable
good results in terms of Krylov space iterations are obtained using NL-2 and
NL-3. The new NL-3 method additionally reduces the number of FETI-DP
coarse solves drastically and thus is potentially faster in a parallel setup. In
contrast to NL-2, where in each global Newton step nonlinear problems in W̃
including the FETI-DP coarse problem have to be solved, in NL-3 and NL-4
the coarse solves are only necessary in the global Newton iteration.

Our second model problem is a nonlinear hyperelasticity problem. We
consider a Neo-Hooke material (ν = 0.3) with a soft matrix material (E =
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Fig. 4 Left: Initial value (reference configuration) and two different materials with ν = 0.3

everywhere, E1 = 210 000 in the red inclusions, and E2 = 210 in the blue matrix material.

Right: Solution when a volume force fv = [0,−10]T is applied.

Table 2 Heterogeneous Neo-Hooke problem; see Fig. 4. Using GMRES as Krylov solver

and primal vertex constraints; d.o.f.: problem size; N: number of subdomains; Krylov It.:

sum of GMRES iterations over all Newton steps; local solves: number of local factoriza-

tions on subdomains; coarse solves: number of FETI-DP coarse problem factorizations.

Best results are marked in bold face and red color.

d.o.f. N Solver #Krylov-It. # local solves # coarse solves

NK-FETI-DP 595 10 10
51 842 64 NL-FETI-DP-4 356 12 6

NK-FETI-DP 939 10 10
206 082 256 NL-FETI-DP-4 491 12 6

210) and stiff inclusions (E = 210 000); see Fig. 4 (left) for the geometry. The
strain energy density function W [2] is given by W (u) = µ

2

(
tr(FTF ) − 3

)
−

µln (det (F )) + λ
2 ln

2 (det (F )) with the Lamé constants λ = νE
(1+ν)(1−2ν) , µ =

E
2(1+ν) and the deformation gradient F (x) := ∇ϕ(x). Here, ϕ(x) = x +

u(x) denotes the deformation and u(x) the displacement of x. The energy
functional of which stationary points are computed, is given by

J(u) =

∫

Ω

W (u)− V (u)dx−
∫

Γ

G(u)ds,

where V (u) and G(u) are functionals related to the volume and traction
forces. The nonlinear elasticity problem is discretized with piecewise linear
finite elements. In Table 2 we present the results for our Neo-Hooke model
problem described in Fig. 4. We only considered continuity in vertices as
primal constraints, which is not an optimal coarse space for highly heteroge-
neous elasticity problems. This leads to divergence of NL-1 and NL-2 when
using no further globalization strategy. Since the coarse space does not influ-
ence the convergence behavior of Newton-Krylov-FETI-DP and NL-4, both
methods converge. Due to the local nonlinear problems solved in NL-4, the
number of GMRES iterations is reduced up to 47% compared to Newton-
Krylov-FETI-DP. Also the number of necessary coarse solves is reduced in
NL-4. Of coarse, in the nonlinear variant, the local work is increased slightly.
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5 Conclusion

We have presented new nonlinear FETI-DP variants based on a partial non-
linear elimination of interior and interface variables. These methods can re-
move the influence of the coarse space to the Newton convergence and can be
superior if a good coarse space is not available. We have seen that the new
methods can reduce the number of FETI-DP coarse solves drastically.
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