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1 Introduction and model problem

Subdomain iterations which lead to a nilpotent iteration operator converge in a
number of steps, and thus are equivalent to direct solvers. Such methods he
to very powerful new algorithms over the last few years, like the sweeping pre
ditioner of Engquist and Ying [4, 5], or the source transfer domain decompos
method of Chen and Xiang [1, 2]. Their underlying mathematical structure art
timal Schwarz methods, see [14, 6, 7] and references tHerein

We study here under which conditions the classical Neumann-Neumann, Dil
Neumann and optimal Schwarz method can be nilpotent for the model problel

nu—odwu=finQ:=(0,1), u(0)=u(l)=0, (1)

and a decomposition of the domain infosubdomainsQ;j := (xj_1,Xj), with

0=Xp <X <...<x3=1and subdomain lengthy := x; — xj_1. For two sub-
domains, we show that they all can be made nilpotent. For three subdon
Neumann-Neumann can not be made nilpotent any more, but Dirichlet-Neu
can. For four subdomains, also Dirichlet-Neumann can not be made nilpoter
more for general decompositions, but for decompositions with subdomains of
size, Dirichlet-Neumann can be made nilpotent for an arbitrary number of st
mains. Optimal Schwarz methods are always nilpotent for an arbitrary numk
subdomains, even unequal ones. Our results indicate that for more general pre
and more than two subdomains, only the optimal Schwarz method will be nilpc
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1 Optimal here is not in the sense of scalable, but really optimal: faster convergence is not pi
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2 The Neumann-Neumann algorithm

For two subdomains] = 2, the Neumann-Neumann algorithm applied to (1) is

nugn) — axxu§“> =fin Q;, I’]L,Uj(n) — axxz,uj(”) =0inQ;,
U o) =, Ony ;" () = Gy (x2) + dny 15" (0),

j
v+ = b — 9 (" () + 45" (x2)),

2)
with h(© an initial guess@ a relaxation parameter, and in each iteratigh(0) =
W (1) = 0 andyi" (0) = g (1) = 0.

Since the problem s linear, it suffices to consider the homogeneous case ¢
tion (1) and analyze the convergence of (2) to the zero solutiom Bod andf =0,
the differential equations in (2) can readily be soKezhd we obtain for the rela
ation after a short calculation the relation

_tanhy/tl1)  tanh(y/tl2)
" tanh(y/tlo) - tanh(,/t¢1)’

Proposition 1. For two subdomains, the Neumann-Neumann algori{@jis con-

vergent iff0 < 6 < 6y, 6; = #(n) Moreover, convergence is reached after
9*
n

iterations for@ := -, which in the symmetric case (i.e. % 3) becomed := %,
i.e. the method is then nilpotent.

™D = (1-62+¢nm)Hh™, o(t)

t>0. (3)

Proof. The convergence factor of the Neumann-Neumann algorithm @ js.=
|11—-6(2+¢(n))|, and thus the algorithm is convergentgf , < 1, which is equiv

alent to requiring that & 6 < 6. Moreover,pg , vanishes whei := 97”, which
makes the algorithm nilpotent.

Proposition 2. For three subdomains, it is not possible to make the Neun
Neumann algorithm nilpotent in general.

Proof. We consider the analogous definition of the Neumann-Neumann alg:
from (2) for three equal subdomains, ixg.= 0, = 3, X, = £, x3 = 1, and obtai
after a short calculation as in Proposition 1 with explicit subdomain solutions

1 6
h(1n+1) _ (1~ 91(2124_ é) -2 ) h(ln) | @
h{d) -Z  1-6,(4+%)) \n!

wheres := sinh(,/1/3) andc := cosh(,/17/3). Convergence in a finite numi
of iterations is possible iff the spectral radius of the iteration matrix in (4) van
which means that the characteristic polynomial must be a monomial of degree
fact that the other coefficients must vanish implies that the relaxation pararéig
and 6, must satisfy the system of equations

2 &l our results remain valid also fay = 0 by taking limits
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1 1 1,
(4+?)91+(4+?)92:2 and (4+S—2) 6]_62:0{, (5)
(@+3)? o ‘
wherea := — == > 1. Now (5) has no real solution, since the associ
(H+35)-(gx)

characteristic equatioh? — 2A + a = 0 does not admit one. It is thus not poss
in general to obtain a nilpotent iteration for the Neumann-Neumann algorithr
three subdomains.

We will see in the numerical section that also for more than three subdomait
not possible in general to make the Neumann-Neumann algorithm nilpotent, .
will even get divergent iterations.

3 TheDirichlet-Neumann algorithm

The Dirichlet-Neumann algorithm applied to (1) for two subdomains is

{ nul” — au™ = £ in Q4 { N — Bl = fin Qy,
u” () = h", o5 (xa) = AUl (xq), (6)
h+) = (1 8)h™ + Ul (),

with h(© an initial guess8 a relaxation parameter, au@") (0)= u(zn)(l) =0. Asfor
the Neumann-Neumann algorithm, we study the homogeneous part of eq. |
obtain after a short calculation using the explicitly available subdomain soluti

h Y = (1 -8+ ymHh™, ()= % t=0. O

Proposition 3. The Dirichlet-Neumann algorithr{®) is convergent for two subd
mains iff0 < 8 < 67, 6; 1= W"’m) Moreover, convergence is reached after

iterations for@ := 97”, which in the symmetric case (i.e. ¥ %) becomed = %
i.e. the algorithm is then nilpotent.

Proof. The proof is similar to the proof of Proposition 1.

Proposition 4. For three subdomains, the Dirichlet-Neumann algorithm conve
in three iterations if either

(6f7 95) _ <1l\/]1._a’ 11+\/1a> or (ef’ 92*) _ <1l+\/1_a’ 11\/1(:{) , (8)
+5¢6 +5503 56 teges

1 $53
(1+5162)(1+0203)

1 1 "
ot g te

where s$:= sinh(,/n¢), ¢ :=cosh(\/N¢;),i=1,...,3,anda :=
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Proof. With the analogously to (6) defined Dirichlet-Neumann algorithm for 1
subdomains, and solving the subdomain problems explicitly, we obtain after.

calculation
™Y\ [1- 61+ 22) 4 h"
1) | = as'?’ 1o %% ORE )
h2 _62310203 - 62( + @) h2

and the matrix is nilpotent iff its spectral radius vanishes, i.e.

C1S $S3 C1S $S3
61(1+ —)+6:(1+—) =2, 1+ —)(1+—)618=0. 10
l( 51C2) ( C2C3) ( 81C2)( C2C3) 1 ( )

This system admits the real solutions given in (8), sineed < 1.

Proposition 5. For four subdomains, convergence of the Dirichlet-Neumann
rithm in a finite number of iterations can not always be achieved.

Proof. We focus for simplicity on the casg = 0 and obtain for the analogously
(6) defined Dirichlet-Neumann algorithm for four subdomains after a short ce
tion

¢
h(1n+1) 1- (ﬁ + 1) 6, 6 0 h(ln)
1
U=l % e 6 | (R (11)
hg Y 83t hgY

For nilpotence, the spectral radius of (11) must vanish, which means that th
acteristic polynomial must be a monomial of degree 3. The fact that the othe
ficients must vanish implies after a short calculation that9, and 65 must satisf
the system of equatior{d + %)91 +6,+6;=3, (1+ %)9192 +(1+ %)6193 +
6,65 =3, (1+ W)elezeg = 1. Substituting the first equation into the sec
onewe obtaiﬁ%@leﬁ 63(3—63) =3 = %Gleﬁ 63(3—63) =3, anc
replacing6s 6, by g yields 1 (4+ 62(3— 03) =303 — (63— 1)°= (4 —>
0; = 1— /l4. We therefore get

2 ¢

2)61+6,=3-65, (1+-2 23071
51 El

(1+ )9192:(1+Z)9§. (12)

The system (12) has real solutions if and only if the discriminant is non nega
-1
A= <f3£4 Y 3@3/3) (S/Ef 1) >0, (13)

which is equivalent to-304 — 4(3 + 3&21/3 < 0, and hence if this condition is r
satisfied, the algorithm can not be made nilpotent.

We will see in Section 5 that for subdomains of equal size, Dirichlet-Neumar
be made nilpotent also for a larger number of subdomains.
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4 The Optimal Schwarz algorithm

A non-overlapping Schwarz algorithm for (1) with two subdomains is

{ U™ — g™ = fin Qi { Uy — g™ = £ in @y,

B+ PPU ™ () = O+ pDU (xa), L (0x— P )ug™ (xa) = (0, ’(”(1”;<x1>,
14

with p;,p, >0 andu(lm(O) = u(zn)(l) = 0. A direct computations shows that an

optimal Schwarz method converging in two iterations is obtained for an arbitrar

initial guess ifp] = /N coth(y/N¢2) andp, = /N coth(,/N¢1), and we even have
Proposition 6. For J subdomains, Ieztj+ =X—Xj,j=1...,0— 1and£j’ =Xj_1—

X0, ] = 2,...,J. Then setting p:= /ncoth(y/n¢;) and g := /M coth(/N¢})
in an analogously tq14) defined algorithm with 3> 2 subdomains, an optimal
Schwarz method converging in J iterations is obtained.

Proof. By linearity, we again study convergence to the zero solutionuifébe the
approximate solution in eadf3; at iterationn. First we prove that if

c?xuﬁn> + pfu}") =0atx=x; = dxugn) + pjtluﬁn> =0atx=Xj_1,

(")
j

(15)
dxuﬁn) — pj’ugn) =00onxX=Xj_1 = dxuﬁn) — Py U =0onx=Xx;.

To see this, suppose thd;u%") + pfu%") = 0 onx =X, and letv be defined by

v(X) = uﬁm (xj,l)%m. Thendyv+ p; v =0 atx = X;, and by construction
il
" (x;_1). Hencev satisfies

V(Xj-1) = ;

(N — 3™ —v) = 0in (x;_1,X)),

(+ p,-*)(uw —v)=0atx=Xj, uﬁm —v=0atx=Xj_1.

(16)

Therefore, by uniqueness of the solution we must I'U%Q/)e: v on (Xj_1,Xj) and
thusdyu]” + pjtlugn) atx = x;j_1, as it holds fow. The proof for the second line in
(15) is similar.

Now sinceﬁxu(l1> —p, u(ll) =0, we have from the transmission condit'n'mm(z2> -
pgu(zz) = dxu(ll) - pgu(ll) =0, which givesdxu(zz) - pgu(zz) =0, and using the trans-
mission condition again we gé&u(;) - pgu(33) = dxu(zz) - pgu(zz) =0, and so on,
until dxugj) - pjuSJ) = 0 and a similar argument holds fpf". Hence, afted itera-

tions the interior iterateBEJ) satisfy

J .
(N = Be)(u”) = 01 (xj-1. %)), an
J) =0atx=x;j, (dxfpj*)uﬁj) =0atx=xj_1,

(B+ P} )l
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and on the domains on the left and right, we get

(N Be)(U”) = 0in (x0.x1), (N — (U5 = 01in (xy_1.%)),
(Ox+ p:JLr)u(lJ) =0atx=x, (Ox — pj)USJ> —0atx=Xj_1. (18)

) )

u(lJ =0 atx = Xo. USJ =0atx=xy,

Hence,uEJ) =0, forall j=1,...,J, which concludes the proof.

One can show that this result still holds in higher dimensions for a decomp
into strips, provided one uses the then non-local Dirichlet to Neumann opere
the transmission conditions, see [14]. One can however also obtain a nilpotet
tion with less restrictions, which also holds for higher dimensions just by repl
the transmission parameters below by the Dirichlet to Neumann operators ay

Proposition 7. For J subdomains and < d < J,2 choosing pforj=2...d
and q* for j=d,...J—1as in Proposition 6, optimal Schwarz will converge
2J* — literations where J:= max(d,J —d + 1), independently of the choice of-
remaining g, p; -

Proof. Following the proof of Proposition 6, aftgf := max(d,J—d+1) iterations
theugJ ) satisfy

. (I’] - dxx)(u((jj*)) =0in (Xd,]_,Xdz, (19)
(B pg)ui ) =0atx=x4_1, (d+pj)uy’ =0atx=x.

(i)

Henceuy ’ vanishes in(xq_1,X4) and it follows thaty!/ +1-9

. i
1,...J, and ug‘j” =0 for j =1,...d — 1. Thus optimal Schwarz will conver
after j* + maxd — 1,J —d) = 2 maxd,J — d+ 1) — 1 iterations, which conclud
the proof.

=0forj=d+

5 Numerical experiments

We discretize our model problem (1) using finite differences with a meskisize
10-5 and chose the right hand side such that the exact solution (imgifior the
parameten = 1. We decompose the domainirte- 2,3,...,10 equal subdomair
and start the iterations with a random initial guess. For each algorithm, we t
best possible relaxation parameters, i.e. the ones that minimize the spectral r
the iteration operator, and we plot the error versus iteration on a semi-log sc
Figure 1 we see on the left that Neumann-Neumann is nilpotent for 2 subdo

3 Even the casel = 1 andd = J can be handled by changing one of the Robin conditions i
Dirichlet one
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10 20 30 0 20 3C 0 10 20 30
iteration iteration iteration

Fig. 1 Error versus number of iterations for Neumann-Neumann (left), Dirichlet-Neumann (mid-
dle), and optimal Schwarz (right) for different numbers of subdomaias2,3,...,10 using the
best possible relaxation parameters at the interfaces.

as shown in Proposition 1. For 3, 4 and 5 subdomains, Neumann-Neumann st
converges, but is not nilpotent, see Proposition 2, and for more than 5 subdomair
the iterations even diverge. One can show that the convergence factor of Neuman
Neumann for this model problem with optimized relaxation parameters behaves lik
ﬁ(éiz) wherel is the subdomain size, so divergence will always set in at some point
For Dirichlet-Neumann in the middle of Figure 1, we see nilpotence far ialthis
special case of equal sized subdomains, but this would not be the case for gene
decompositions, see Proposition 5. The optimal Schwarz method on the right ¢
Figure 1 always converges dhterations, as expected from Proposition 6.

6 Conclusion

We showed for a one dimensional model problem that the Neumann-Neuman
method can only be nilpotent for a decomposition into two general subdomains
the Dirichlet-Neumann method can be nilpotent also for a decomposition into :
general subdomains, but not any more for a decomposition into four general sut
domains. We expect that for subdomains of equal size, Dirichlet-Neumann ca
be made nilpotent for an arbitrary number of subdomains. The optimal Schwar
method is nilpotent for a decomposition into an arbitrary number of subdomains
also of unequal size and in higher spatial dimensions, and this even if one doe
not use systematically the Dirichlet to Neumann operators, see our new result i
Proposition 7. Our negative results for Neumann-Neumann and Dirichlet-Neuman
methods in one spatial dimension imply that these algorithms can not be nilpotent i
higher spatial dimensions either. For the Dirichlet-Neumann method and equal sul
domains, our result indicates that nilpotence is also possible in higher dimensior
for a strip decomposition, provided that the relaxation parameters become non-loc
operators. Optimal Schwarz methods are nilpotent in higher dimensions withot
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any restrictions. Such nilpotent iterations have led to some of the best solv
Helmholtz problems recently, see [11, 12, 4, 5, 1, 2, 15], and have been im|
in the development of optimized Schwarz methods [13, 3, 6, 7]. Well chosen
corrections can make a domain decomposition method also nilpotent, see t
recent discoveriesin [8, 9, 10].
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