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1 Introduction

Newton-Krylov domain decomposition methods are approaches for solving
nonlinear problems arising from the discretization of nonlinear partial dif-
ferential equations. These methods are based on an iterative solution of lin-
earized systems using a domain decomposition preconditioner. In this paper,
we use FETI-DP as an iterative method and compute an adaptive coarse
space, first introduced in [11], to improve the condition number and thus the
convergence of the iterative method. A theory has been developed in [6] for
this coarse space in two dimensions and later, in [4], for three dimensions.
In this paper, several heuristic strategies are introduced to reduce the com-
putational effort for nonlinear problems, where a sequence of related linear
problems have to be solved. These approaches show the potential of reducing
the number of eigenvalue problems necessary for the construction of adaptive
coarse spaces. A different but related approach was presented in [2].

2 Newton-Krylov-FETI-DP

In order to solve a discrete nonlinear equation

K̂(û)− f̂ = 0, (1)
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associated with a computational domain Ω, we perform a Newton lineariza-
tion of (1) and compute an update δû by solving the linearized system

DK̂(û) δû = K̂(û)− f̂ . (2)

We always consider an iterative Krylov method such as CG to solve (2) using
a domain decomposition preconditioner. In this paper, we always consider a
FETI-DP (Finite Element Tearing and Interconnecting - Dual-Primal) pre-
conditioner although a BDDC method could also be used. Therefore, we
decompose Ω into nonoverlapping subdomains Ωi, i = 1, . . . , N , and assume
the subdomains to be unions of finite elements. We denote the finite element
space associated with Ω by Ŵ and the local finite element spaces associ-
ated with the subdomains by Wi, i = 1, . . . , N . Let us define local nonlinear
problems in Wi, i = 1, . . . , N , by

K(i)(ui) = fi. (3)

These local problems arise from a finite element discretization on subdo-
mains Ωi, i = 1, . . . , N . The corresponding tangential matrices are defined
as DK(i)(ui). We introduce the block vectors

K(u) :=




K(1)(u1)
...

K(N)(uN )


 , u :=




u1

...
uN


 , f :=




f1
...
fN


 , (4)

and the block tangential matrix

DK(u) =



DK(1)(u1)

. . .

DK(N)(uN )


 . (5)

In FETI-DP type methods, we divide all degrees of freedom into variables
inside subdomains (I), dual interface variables (∆), and primal variables
(Π). Using the partial assembly operator RT , well-known from the standard
(linear) FETI-DP literature [1, 8, 10, 7], we can define the partially assembled

operator K̃(ũ) := RTK(Rũ). Here, we perform a global assembly in all primal
variables Π, but not in the remaining part of the interface. Equivalently, we
partially assemble the right hand side f̃ := RT f and the tangential matrix
DK̃(ũ) := RTDK(ũ)R. We define the space of partially assembled functions

by W̃ ⊂ W := W1 × · · · × WN . Introducing the standard FETI-DP jump
operator B and Lagrange multipliers to enforce the constraint B ũ = 0, the
FETI-DP master system reads

(
DK̃(ũ) BT

B 0

)(
δũ
λ

)
=

(
K̃(ũ)− f̃
0

)
. (6)
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ADAPTIVE-NEWTON-KRYLOV-FETI-DP

Init: ũ(0) ∈ W, continuous

for k = 0, ..., convergence

build: K̃(ũ(k)) and DK̃(ũ(k))
if cond func(k, r(0),...,r(k), its(0),..., its(k − 1))

compute adaptive coarse space using tangent DK̃(ũ(k))
else

recycle adaptive coarse space from step k − 1
end if
solve with preconditioned CG:
M−1

BP B (DK̃(ũ(k)))−1 BT λ = M−1
BP B (DK̃(ũ(k)))−1 (K̃(ũ(k))− f̃)

compute:
δũ(k) = DK̃(ũ(k))−1 (K̃(ũ(k))− f̃ −BTλ) // Compute δũ from λ.
compute: steplength α(k)

update: ũ(k+1) := ũ(k) − α(k) δũ(k)

end

Fig. 1 Algorithmic description of Adaptive-Newton-Krylov-FETI-DP.

At convergence, the solution δũ of (6) is continuous on the interface and
thus can be assembled to the solution δû in (2). We finally obtain a solution
of system (6) by eliminating all variables of δũ and using a preconditioned
Krylov subspace method and solve

M−1
BPF λ := M−1

BP B (DK̃(ũ))−1 BT λ = M−1
BP B (DK̃(ũ))−1 (K̃(ũ)− f̃). (7)

In this paper, we use the balancing preconditioner M−1
BP , see, e.g., [9], for

the Lagrange multipliers, implementing a second, adaptive coarse space com-
puted from eigenvalue problems based on localized tangential matrices; see
Section 3. The preconditioner M−1

BP is defined by M−1
BP = (I − P )M−1(I −

P )+U(UTFU)−1UT , where P = U(UTFU)−1UTF is an F -orthogonal pro-
jection onto rangeU . The columns of U represent additional constraints of
the form UTB ũ = 0. For more details on the balancing preconditioner ap-
plied to FETI-DP methods, we refer to [9]. We denote the resulting algorithm
by Adaptive-Newton-Krylov-FETI-DP; see Fig. 1 for the algorithm.

3 Adaptive coarse space

In the following, we briefly describe an adaptive approach first introduced
in [11]. For other uses of this coarse space and modifications, see, e.g., [12,
13, 6]. A theory is provided in [4, 6]. Due to space limitations, for further
references on other adaptive coarse spaces, see, e.g., [15, 14, 3], and the ref-
erences therein. Let the Schur complements Sl be obtained by eliminating
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the interior degrees of freedom in DK(l)(ul), l = i, j. We define BD,ij as

the matrix with rows of [B
(i)
D B

(j)
D ] which correspond to Lagrange multipliers

connecting degrees of freedom on ∂Ωi ∩ ∂Ωj and by Bij the corresponding
rows in [B(i)B(j)]. We then build a local operator PD,ij = BT

D,ijBij . Let

W̃ij be the subspace of functions in Wi ×Wj which are continuous at those
primal vertices that the two substructures Ωi and Ωj have in common. Let

Πij be the l2-orthogonal projection from Wi × Wj onto W̃ij . Let σ > 0
and Πij be the l2-orthogonal projection that projects orthogonally the ele-
ments of ker(ΠijSijΠij + σ(I − Πij)) onto constants. In our computations
we use σ = max(diag (Sij)). To compute adaptive constraints, for each pair
of substructures (Ωi, Ωj) having an edge in common, we solve the eigenvalue
problem

ΠijΠijP
T
Dij

SijPDijΠijΠijwij,m

=µij,m(Πij(ΠijSijΠij + σ(I −Πij))Πij + σ(I −Πij))wij,m, (8)

for eigenpairs where µij,m≥TOL,m = k, . . . , n. We implement the constraints
wT

ij,mPT
Dij

SijPDijwij = 0 for wij ∈ Wi ×Wj and m = k, . . . , n. The adaptive
constraint vectors are then given by uij,m = BDijSijPDijwij,m. They are
extended by zero on the remaining interface and aggregated in the matrix U .

In our Adaptive-Newton-Krylov-FETI-DP method, we also use heuristic
strategies to decide if the adaptive coarse space can be recycled in a certain
Newton step. Only if some condition cond func(k, r(0), ..., r(k), its(0), ..., its(k−
1)) is fulfilled in the k-th Newton step, we do compute a new adaptive coarse
space. Otherwise, we recycle the coarse space already used in the previous
Newton step. We suppose, that conditions can be provided that depend on
the nonlinear residuals r(l) := K̃(u(l))− f̃ , l = 0, . . . , k, the current iteration
k, or the number of Krylov iterations its(l) in the previous Newton steps
l = 0, . . . k − 1. In the present paper, we propose three different strategies.
Strategy a): cond func := true, Strategy b): cond func := (k == 0), or
Strategy c): cond func := ((its(k−1)/its(c) < 0.75) ∨ (its(c)/its(k−1) <
0.75)). For Strategy a), we can prove a theoretical condition number bound
for each linearization; see [6]. Strategy b) is based on the assumption that
the optimal coarse space mainly depends on a coefficient function ρ. There-
fore, the coarse space computed in the first Newton iteration can be recycled,
since the coefficient function ρ does not change during the iteration. In Strat-
egy c) we compute an adaptive coarse space in the first Newton step. In the
following steps we consider the number of Krylov iterations in the previous
Newton step (its(k−1)) and the last Newton step in which an adaptive coarse
space has been computed (its(c)). We always compute a new coarse space if
its(k−1) and its(c) differ strongly. This strategy is based on the assumption
that the quality of the coarse space in the c-th Newton step is verified by the-
oretical results and thus we can recycle our current coarse space as long as we
have similar iteration counts as in step c. Let us remark that Strategy b) will
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Fig. 2 Decomposition of Ω = [0, 1] × [0, 1] into 3 × 3 subdomains. Each subdomain is
intersected by 3 channels (gray color). All channels are unions of finite elements and the

union of all channels is denoted by ΩC .

not succeed for elastoplasticity problems, see [5], for which we suggest the
use of Strategy a). Alternatively, the knowledge of the plastic zones could
be included into the heuristic function cond func. This is ongoing research
and will be published elsewhere.

4 Numerical Results

As a model problem, we consider the p-Laplace equation with p = 4

−div(ρ |∇u|2∇u) = 1 in Ω
u = 0 on ∂Ω,

(9)

where ρ : Ω → R is a coefficient function given by

ρ(x) =

{
1e6 if x ∈ ΩC

1 elsewhere;
(10)

see Fig. 2 for a definition of ΩC . Let us remark that, given a finite element
basis {ϕ1, . . . , ϕNi} on a subdomain Ωi, we have

K(i)(ui) :=

(∫

Ωi

ρ |∇ui|p−2 ∇uT
i ∇ϕ1dx , ... ,

∫

Ωi

ρ |∇ui|p−2∇uT
i ∇ϕNidx

)T

.

For the tangential matrices DK(i)(ui), we obtain

(DK(i)(ui))j,k :=

∫

Ωi

ρ |∇ui|p−2∇ϕT
j ∇ϕkdx

+ (p− 2)

∫

Ωi

ρ |∇ui|p−4 (∇uT
i ∇ϕj) (∇uT

i ∇ϕk)dx.

This tangential matrix is symmetric positive definite for all nonconstant
functions u. We present numerical results for model problem (9) in Table 1
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TOL=1000
Newton Max. Min. Total Max. Min. Interface Avg. EP

N Strategy It. Krylov It. Krylov It. Krylov It. cond. cond. d.o.f. size U Solves

4

— 20 7 5 132 1.2 1.0 113 — 0
a) 20 7 5 132 1.2 1.0 113 0 20
b) 20 7 5 132 1.2 1.0 113 0 1
c) 20 7 5 132 1.2 1.0 113 0 2

16

— 22 129 25 890 363 714.3 653.7 675 — 0
a) 22 77 8 557 216.6 1.3 675 10.4 22
b) 22 108 6 335 569.0 1.1 675 36.0 1
c) 22 108 8 541 569.0 1.3 675 13.4 4

64

— 24 1 148 111 5 908 674 804.3 2 000.9 3 143 — 0
a) 24 109 8 1 465 243.1 1.3 3 143 65.9 24
b) 24 163 6 777 2 740.5 1.1 3 143 168.0 1
c) 24 113 8 1 483 433.0 1.3 3 143 68.7 5

256

— 26 3 417 352 18 764 696 950.1 5 083.7 13 455 — 0
a) 26 136 8 2 406 247.8 1.3 13 455 325.9 26
b) 26 141 7 1 086 5 413.9 1.3 13 455 720.0 1
c) 26 206 8 2 397 5 413.9 1.3 13 455 389.0 4

Table 1 Numerical results for model problem (9); each subdomain is a union of 2× 28×
28 linear triangular finite elements; tolerance TOL= 1000 for adaptive coarse space; N:
number of subdomains; Strategy: strategy chosen for cond func,“—” denotes the case

without an adaptive coarse space; Max. / Min. Krylov It.: maximal / minimal number
of Krylov subspace iterations during the Newton iteration; Total Krylov It.: total number
of Krylov subspace iterations during the Newton iteration; Max. / Min. cond.: maximal
/ minimal condition number during the Newton iteration; Interface d.o.f.: degrees of

freedom on the interface; Avg. size U: average size of the adaptive coarse spaces during
Newton iteration; EP Solves: Number of Newton steps in which a new adaptive coarse
space is computed.

comparing Newton-Krylov-FETI-DP with Adaptive-Newton-Krylov-FETI-
DP. We always make all subdomain vertex values primal initially. In all
computations we use a moderate tolerance TOL= 1000 to keep our adap-
tive coarse spaces small. All three adaptive strategies reduce the number of
CG iterations drastically in comparison to classical Newton-Krylov-FETI-
DP. Using Strategy a) and computing a new coarse space in each Newton
step, the condition number stays below the theoretical bound C · TOL. The
coarse spaces generated are sufficiently small with a size of less than 5% of
the size of the interface. Using Strategy b), the number of CG iterations is
even lower. This is caused by a comparably large coarse space computed in
the first Newton step. In this approach, the adaptive coarse space has only to
be computed once, which results in a large reduction of local computational
work compared to Strategy a). Unfortunately, the number of CG iterations
in the different Newton steps and the average size of the coarse space strongly
differs from the theoretically verified Strategy a) and thus a control using
tolerance TOL is no longer possible. In contrast, Strategy c) can nearly re-
produce the average size of the coarse space and the number of CG iterations
of Strategy a). Additionally, the number of adaptive coarse space compu-
tations and thus the number of local eigenvalue problems is reduced by a
factor of 5.0 to 6.0. For a graphical comparison of all methods see also Fig. 3.
Especially the similar behavior of Strategies a) and c) can be observed.
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Fig. 3 Results for 64 subdomains from Table 1 showing the number of Krylov subspace

iterations in each Newton step;NK (blue curve) denotes Newton-Krylov-FETI-DP without
adaptive coarse spaces; NKA Strategy a) / b) / c) (green / yellow / red curve) denotes
Strategy a) / b) / c); the five black circles mark the Newton steps in which Strategy c)
decided to compute a new coarse space and the numbers give the sizes of the coarse spaces.

5 Conclusion

An adaptive Newton-Krylov-FETI-DP approach has been presented, where
the condition numbers of all preconditioned tangential matrices are bounded
by a constant. Additionally, heuristic strategies have been introduced saving
local work by reducing the number of eigenvalue problems. Results for a
p-Laplace model problem with highly heterogeneous coefficient have been
presented, showing the ability of adaptive coarse spaces to save CG iterations.
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[11] Jan Mandel and Bedřich Soused́ık. Adaptive selection of face coarse de-
grees of freedom in the BDDC and the FETI-DP iterative substructuring
methods. Comput. Methods Appl. Mech. Engrg., 196(8):1389–1399, 2007.
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