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1 Introduction

The spread of electrical excitation in the cardiac muscle and the subsequent
contraction-relaxation process is quantitatively described by the cardiac elec-
tromechanical coupling model. The electrical model consists of the Bidomain
system, which is a degenerate parabolic system of two nonlinear partial dif-
ferential equations (PDEs) of reaction-diffusion type, describing the evolu-
tion in space and time of the intra- and extracellular electric potentials. The
PDEs are coupled through the reaction term with a stiff system of ordi-
nary differential equations (ODEs), the membrane model, which describes
the flow of the ionic currents through the cellular membrane and the dynam-
ics of the associated gating variables. The mechanical model consists of the
quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-
incompressible transversely isotropic hyperelastic material, and coupled with
a system of ODEs accounting for the development of biochemically generated
active force.

The numerical approximation of the cardiac electromechanical coupling
is a challenging multiphysics problem, because the space and time scales
associated with the electrical and mechanical models are very different, see
e.g. Chapelle et al. [2012], Sundnes et al. [2014]. Moreover, the discretization
of the model leads to the solution of a large nonlinear system at each time
step, which is often decoupled by an operator splitting techniques into the
solution of a large linear system for the electrical part and a nonlinear system
for the mechanical part.
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While several studies in the last decade have been devoted to the devel-
opment of efficient solvers and preconditioners for the Bidomain model, see
e.g. Plank et al. [2007], Pavarino and Scacchi [2008], Zampini [2014] and the
recent monograph by Colli Franzone et al. [2014], a few studies have focused
on the development of efficient solvers for the quasi-static cardiac mechani-
cal model, see Vetter and McCulloch [2000], Rossi et al. [2012], Gurev et al.
[2011].

In this paper, we present new numerical results for a Balancing Domain
Decomposition by Constraints (BDDC) preconditioner, first introduced in
Dohrmann [2003], here embedded in a Newton-Krylov (NKBDDC) method,
introduced in Pavarino et al. [2015] for the nonlinear system arising from the
discretization of the finite elasticity equations. The Jacobian system arising
at each Newton step is solved iteratively by a BDDC preconditioned GMRES
method. We report here the results of three-dimensional numerical tests on
a BlueGene/Q machine, showing the scalability of the NKBDDC mechanical
solver.

2 Cardiac Electromechanical Models

a) Mechanical model of cardiac tissue.We denote byX = (X1, X2, X3)
T

the material coordinates of the undeformed cardiac domain Ω̂, by x =
(x1, x2, x3)

T the spatial coordinates of the deformed cardiac domain Ω(t)
at time t, and by F(X, t) = ∂x

∂X the deformation gradient. The cardiac tissue
is modeled as a nonlinear hyperelastic material satisfying the steady-state
force equilibrium equation

Div(FS) = 0, X ∈ Ω̂. (1)

The second Piola-Kirchoff stress tensor S = Spas + Svol + Sact is the sum of
passive, volumetric and active components. The passive and volumetric com-

ponents are defined as Spas,vol
ij = 1

2

(
∂Wpas,vol

∂Eij
+ ∂Wpas,vol

∂Eji

)
i, j = 1, 2, 3,

where E = 1
2 (C − I) and C = FTF are the Green-Lagrange and Cauchy

strain tensors, W pas is an exponential strain energy function (derived from
Eriksson et al. [2013]) modeling the myocardium as a transversely isotropic

hyperelastic material, and W vol = K (J − 1)
2
is a volume change penaliza-

tion term accounting for the almost incompressibility of the myocardium,
with K a positive bulk modulus and J = det(F).

b) Mechanical model of active tension. The active component Sact

develops along the myofiber direction, Sact = Ta
âl âl

âT
l C âl

, where âl is the fiber

direction and Ta = Ta

(
Cai, λ,

dλ
dt

)
is the biochemically generated active ten-

sion, which depends on intracellular calcium concentrations, and the myofiber

stretch λ =
√
âTl Câl and stretch-rate dλ

dt (see Land et al. [2012]).
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c) Electrical model of cardiac tissue: the Bidomain model. We
will use the following parabolic-elliptic formulation of the modified Bidomain
model on the reference configuration Ω̂ × (0, T ),





cmJ
∂v̂

∂t
−Div(J F−1DiF

−T Grad(v̂ + ûe)) + J iion(v̂, ŵ, ĉ) = 0

−Div(J F−1DiF
−T Grad v̂)−Div(J F−1(Di +De)F

−T Grad ûe) = J îeapp
∂ŵ

∂t
−Rw(v̂, ŵ) = 0,

∂ĉ

∂t
−Rc(v̂, ŵ, ĉ) = 0.

(2)
for the transmembrane potential v̂, the extracellular potential ûe, and the
gating and ionic concentrations variables (ŵ, ĉ). This system is completed
by prescribing initial conditions, insulating boundary conditions, and the ap-
plied current îeapp; see Colli Franzone et al. [2016] for further details. The

axisymmetric conductivity tensors are given by Di,e(x) = σi,e
l al(x)a

T
l (x) +

σi,e
t at(x)a

T
t (x), where σ

i,e
l , σi,e

t are the conductivity coefficients in the intra-
and extracellular media measured along and across the fiber direction al, at.

d) Ionic membrane model and stretch-activated channel cur-
rent. The functions Iion(v,w, c) (iion = χIion), Rw(v,w) and Rc(v,w, c)
in the Bidomain model (2) are given by the ionic membrane model intro-
duced by ten Tusscher et al. [2004], available from the cellML depository
(models.cellml.org/cellml). χ denotes the cellular surface to volume ratio.

3 Methods

Space and time discretization We discretize the cardiac domain with a
hexahedral structured grid Thm for the mechanical model (1) and The for
the electrical Bidomain model (2), where The is a refinement of Thm . We
then discretize all scalar and vector fields of both mechanical and electrical
models by isoparametric Q1 finite elements in space. The time discretization
is performed by a semi-implicit splitting method; see Colli Franzone et al.
[2016] for further details.

Computational kernels. Due to the discretization strategies described
above, the main computational kernels of our solver at each time step are the
following:

1- solve the nonlinear system deriving from the discretization of the mechan-
ical problem (1) using an inexact Newton method. At each Newton step, a
nonsymmetric Jacobian systemKx = f is solved inexactly by the GMRES
iterative method preconditioned by a BDDC preconditioner, described in
the next section.

2- solve the symmetric positive semidefinite linear system deriving from the
discretization of the Bidomain model by using the Conjugate Gradient

Scalable BDDC Algorithms for the Cardiac Electromechanical Coupling 235



method preconditioned by the Multilevel Additive Schwarz preconditioner
developed in Pavarino and Scacchi [2008].

3.1 Iterative Substructuring, Schur Complement
System and BDDC Preconditioner

To keep the notation simple, in the remainder of this section and the next,
we denote the reference domain by Ω instead of Ω̂. Let us consider a decom-
position of Ω into N nonoverlapping subdomains Ωi of diameter Hi (see e.g.

[Toselli and Widlund, 2004, Ch. 4]) Ω =
⋃N

i=1 Ωi, and set H = maxHi. As
in classical iterative substructuring, we reduce the problem to the interface

Γ :=
(⋃N

i=1 ∂Ωi

)
\∂Ω by eliminating the interior degrees of freedom associ-

ated to basis functions with support in the interior of each subdomain, hence
obtaining the Schur complement system

SΓxΓ = gΓ , (3)

where SΓ = KΓΓ − KΓIK
−1
II KIΓ and g = fΓ − KΓIK

−1
II fI are obtained

from the original discrete problem Kx = f by reordering the finite element
basis functions in interior (subscript I) and interface (subscript Γ ) basis func-
tions. The Schur complement system (3) is solved iteratively by the GMRES
method using a BDDC preconditioner M−1

BDDC

M−1
BDDC

SΓxΓ = M−1
BDDC

fΓ . (4)

Once the interface solution xΓ is computed, the internal values xI can be
recovered by solving local problems on each subdomain Ωi.

BDDC preconditioners represent an evolution of balancing Neumann-
Neumann methods where all local and coarse problems are treated additively
due to a choice of so-called primal continuity constraints across the interface
of the subdomains. These primal constraints can be point constraints and/or
averages or moments over edges or faces of the subdomains. BDDC precon-
ditioners were introduced in Dohrmann [2003] and first analyzed in Mandel
and Dohrmann [2003]. For the construction of BDDC preconditioners applied
to the nonlinear elasticity system constituting the cardiac electromechanical
coupling problem, we refer to Pavarino et al. [2015].

4 Numerical Results

We present here the results of parallel numerical experiments run on the IBM-
BlueGene/Q machine of Cineca (www.cineca.it). Our FORTRAN90 code is
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based on the open source PETSc library, see Balay et al. [2016]. At each
Newton iteration of the mechanical solver, the Jacobian system is solved
by GMRES preconditioned by the BDDC preconditioner, using as stopping
criterion a 10−8 reduction of the relative residual l2-norm. The BDDCmethod
is available as a preconditioner in PETSc and it has been contributed to the
library by Zampini [2016. To appear.].

The values of the Bidomain electrical conductivity coefficients used in all
the numerical tests are σi

l = 3.0, σe
l = 2.0, σi

t = 0.315, σe
t = 1.35, all in

mΩ−1cm−1. The parameter values in the transversely isotropic strain energy
function are chosen as in the original work Eriksson et al. [2013]. The domains
used in the simulations model are wedges of the ventricular wall. They are
either slabs or truncated ellipsoidal domains; for details on the dimensions,
see Pavarino et al. [2015]. The myocardial fibers are modeled to rotate intra-
murally linearly with the depth of the ventricular wall for a total amount of
120o.

V VE VEF VEm VEmF
procs. dof lit time lit time lit time lit time lit time

slab domains
256 105903 94 1.0 42 0.9 38 1.1 32 1.2 26 1.2
512 209223 90 1.1 40 1.1 37 1.3 32 1.5 26 1.5

1042 413343 86 1.4 38 1.6 36 1.9 30 2.1 24 2.2
2048 807003 85 2.2 38 2.9 36 3.5 30 3.9 24 4.1
4096 1604043 84 5.2 39 6.6 - - - - - -
8192 3188283 88 16.7 - - - - - - - -

ellipsoidal domains
256 105903 475 3.3 180 2.3 168 2.6 119 2.5 106 2.4
512 209223 533 4.2 191 2.8 174 3.3 126 3.0 109 3.0

1042 413343 558 5.8 173 4.0 158 4.6 125 4.7 106 4.9
2048 807003 674 9.4 179 6.3 169 7.5 130 7.2 107 7.5
4096 1604043 686 15.9 176 12.3 - - - - - -

Table 1 Weak scaling test on slab and ellipsoidal domains. Mechanical solver with
GMRES-BDDC and different choices of primal constraints: vertices (V), vertices + edges
(VE), vertices + edges + faces (VEF), vertices + edges + edge moments (VEm), vertices
+ edges + edge moments + faces (VEmF). Fixed local mechanical mesh: 5×5×5 elements.
Local mechanical problem size = 648. The table reports the number of processors (procs.,
that equals the number of subdomains), the total number of degrees of freedom (dof), the
average GMRES-BDDC iterations per Newton iteration (lit) and the average CPU time
in seconds per Newton iteration (time). The missing results (denoted by -) correspond to
out-of-memory runs.

Test 1: weak scaling. We first consider a weak scaling test on slab and
truncated ellipsoidal domains of increasing size. The number of subdomains
(processors) is increased from 256 to 8192, with the largest domain being a
slab or a truncated half ellipsoid. The physical dimensions of the domains are
chosen so that the electrical mesh size h is kept fixed to the value of about
h = 0.01 cm and so that the local mesh on each subdomain is fixed (20·20·20).
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The mechanical mesh size is four times smaller than the electrical one in
each direction, thus on each subdomain the local mechanical mesh is 5 · 5 · 5.
The discrete nonlinear elasticity system increases from about 100 thousand
degrees of freedom for the the case with 256 subdomains to 3 million degrees
of freedom for the the case with 8192 subdomains. Motivated by the results
of our previous study (Pavarino et al. [2010]) of BDDC methods for almost
incompressible linear elasticity, we have considered several choices of primal
constraints in our BDDC preconditioner: subdomain vertices (V), vertices
+ edges (VE), vertices + edges + faces (VEF), vertices + edges + edge
moments (VEm), vertices + edges + edge moments + faces (VEmF). The
simulation is run for 10 electrical time steps of size τe = 0.05 ms during the
excitation phase and for 2 mechanical time steps of size τm = 0.25 ms.

The results regarding the mechanical solver reported in Table 1 show that
the linear GMRES iteration (lit) are completely scalable due to the use of
the BDDC preconditioner, as well as the nonlinear Newton iterations (not
shown), while the cpu times increase with the number of processors. This
is due to the superlinear cost of the coarse problem and will require further
research with a three-level BDDC preconditioner. For slab domains, even if
the number of GMRES iterations is the largest, the best choice of primal
space in terms of CPU times is the minimal one (V), using only the vertices.
For truncated ellipsoidal domains, instead, the GMRES iterations with only
vertices as primal space grow considerably, and the best primal choice in
terms of timings is vertices + edges (VE).

Test 2: whole heartbeat simulation. We then present the results of a
whole heart beat simulation (500 ms, 10000 time steps) on 256 processors.
The domain is a truncated ellipsoid discretized with a 96×32×8 mechanical
mesh (86427 dof) nested in a 768× 256× 64 electrical mesh (25692290 dof).
Fig. 1, top panels, reports the transmembrane potential distributions on the
deforming epicardial surface and selected transmural sections of the cardiac
domain at six selected time instants during the heartbeat.

We compare our BDDC solver (with only subdomain vertices primal con-
straints) vs. the widely used parallel AMG preconditioner BoomerAMG pro-
vided within the Hypre library (Henson and Yang [2002]); we used the default
BoomerAMG parameters without any specific tuning. The Table in Fig. 1,
bottom, shows the average GMRES iterations per time step are 821 and 138
for the AMG and the BDDC solver, respectively. The average CPU times
per time step are 32 and 3 seconds for the AMG and the BDDC solver, re-
spectively. Thus the BDDC solver yields a reduction of computational costs
and cpu times of about a factor 10 with respect to the default AMG precon-
ditioner considered (this gain would probably be reduced by a proper AMG
parameter tuning).
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prec Tnit nit Tlit lit Ttime (s) time (s)

AMG 6790 3 1642220 232 64578 32.29
BDDC 6790 3 276932 40 6083 3.04

Fig. 1 Whole heartbeat simulation. Top: mechanical deformation of the cardiac domain at
six time instants, from 50 to 300 msec. At each instant, the plot shows the transmembrane
potential v at each point, ranging from resting (blue, −85 mV) to excited (red, 45 mV)
values, on the epicardial surface and on selected transmural sections. The values on the axis
are expressed in centimeters. Bottom: table reporting the comparison between the AMG
and BDDC preconditioners: total Newton iterations (Tnit), average Newton iterations per
time step (nit), total GMRES iterations (Tlit), average GMRES iterations per Newton
iteration (lit), total CPU time (Ttime) in seconds, average CPU time per time step (time)
in seconds.
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