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1 Introduction

We present two- and three-dimensional numerical results obtained using
BDDC deluxe preconditioners, cf. Dohrmann and Widlund [2013], for the
linear systems arising from finite element discretizations of

∫

Ω

α ∇× u · ∇ × v + β u · v dx. (1)

This bilinear form originates from implicit time-stepping schemes of the
quasi-static approximation of the Maxwell’s equations in the time domain, cf.
Rieben and White [2006]. The coefficient α is the reciprocal of the magnetic
permeability, whereas β is proportional to the ratio between the conductivity
of the medium and the time step. Anisotropic, tensor-valued, conductivities
can be handled as well. We only present results for essential boundary condi-
tions, but the generalization of the algorithms to natural boundary conditions
is straightforward.

The operator∇× is the curl operator, defined, e.g., in Boffi et al. [2013]; the
vector fields belong to the space H0(curl), which is the subspace of H(curl)
of functions with vanishing tangential traces over ∂Ω. The space H(curl) is
often discretized using Nédélec elements; those of lowest order use polynomi-
als with continuous tangential components along the edges of the elements.
While most existing finite element codes for electromagnetics use lowest or-
der elements, those of higher order have shown to require fewer degrees of
freedom (dofs) for a fixed accuracy; see, e.g., Schwarzbach et al. [2011] and
Grayver and Kolev [2015]. We note that higher order elements have been
neglected in the domain decomposition (DD) literature with the exception
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of spectral elements. Sec. 3 contains novel results for two-dimensional dis-
cretizations of (1) using arbitrary order Nédélec elements of first and second
kind on triangles.

The design of solvers for edge-element approximations of (1) poses signifi-
cant difficulties, since the kernel of the curl operator is non-trivial. Moreover,
finding logarithmically stable decompositions for edge-element approxima-
tions in three dimensions is challenging, due to the strong coupling that
exists between dofs located on the subdomain edges and on the subdomain
faces. Among non-overlapping DD solvers, it is worth citing the wirebasket
algorithms developed by Dohrmann and Widlund [2012] and by Hu et al.
[2013]. To save space, we omit citing some of the related DD literature; ref-
erences can be found in Dohrmann and Widlund [2012], and Dohrmann and
Widlund [2016].

The edge-element approximations of (1) have also received a lot of atten-
tion from the multigrid community; for Algebraic Multigrid (AMG) methods
see Hu et al. [2006] and the references therein. Robust and efficient multigrid
solvers can be obtained combining AMG and auxiliary space techniques, that
require some extra information on the mesh connectivity and on the dofs, cf.
Hiptmair and Xu [2007], Kolev and Vassilevski [2009]. This approach has
recently proven to be quite successful in 3D even with higher order elements,
cf. Grayver and Kolev [2015].

An analysis for 3D FETI-DP algorithms with the lowest order Nédélec
elements of the first kind was given in Toselli [2006], a paper which also
highlighted the importance of changing the basis on the subdomain edges.
Recently, Toselli’s results have been significantly improved by Dohrmann and
Widlund [2016], who were able to obtain sharp and quasi-optimal condition
number bounds, with a mild dependence on the material parameters through
the factor 1 + βH2/α. Deluxe scaling proved to be critical to obtain bounds
independent on the jumps of the material coefficients in 3D.

While BDDC algorithms are often robust with respect to jumps in the ma-
terial parameters, their convergence rates drastically deteriorate when these
jumps are not aligned with the interface of the subdomains. After the pio-
neering study of Mandel and Soused́ık [2007], primal space enrichment tech-
niques have been the focus of much recent work on BDDC and FETI-DP
algorithms; cf. Mandel et al. [2012], Pechstein and Dohrmann [2013], Kim
et al. [2015], Klawonn et al. [2015], Calvo and Widlund [2016] and the refer-
ences therein. Sec. 3 contains numerical results using heterogeneous material
coefficient distributions, for triangular elements of both kinds, and for the
lowest order tetrahedral elements of the first kind. All the results of this pa-
per have been obtained using the BDDC implementation developed by the
author, and which is available in the current version of the PETSc library
(Balay et al. [2015]). For details on the implementation, see Zampini [2016].
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2 Adaptive BDDC Deluxe Methods

Non-overlapping DD algorithms are often designed using the stiffness matrix
A(i) assembled on each subdomain Ωi. We note that for the problem of in-
terest, these matrices are always symmetric and positive definite. The recipe
for the construction of a BDDC preconditioner consists in the design of a

partially continuous space W̃, the direct sum of a continuous primal space
WΠ and a discontinuous dual space W∆, and in the choice of an averaging
operator ED for the partially continuous dofs, cf. Mandel et al. [2005]. A
remarkably simple formula, related to the stability of the average operator
with respect to the energy norm, provides an upper bound for the condition
number (κ) of the BDDC preconditioned operator

κ ≤ max
w∈W̃

wTET
DSEDw

wTSw
,

where S is the direct sum of the subdomain Schur complements S(i), obtained
by condensing out from A(i) the dofs in the interior of the subdomains. We
can then control the convergence rate of the methods by enriching the primal
space WΠ , and this can be accomplished by solving a few local generalized
eigenvalue problems, associated to the equivalence classes of the interface.

For the BDDC deluxe algorithms, a local generalized eigenvalue problem
for each equivalence class C, shared by two subdomains, is given by

(S̃
(i)−1
CC + S̃

(j)−1
CC )Φ = λ(S

(i)−1
CC + S

(j)−1
CC )Φ, (2)

with S
(i)
CC a principal minor of S(i) relative to C. The S̃

(i)
CC matrices are ob-

tained by energy-minimization as S̃
(i)
CC = S

(i)
CC−S

(i)T
C′CS

(i)−1
C′C′ S

(i)
C′C , with C ′ the

set of complementary interface dofs of C, cf. Pechstein and Dohrmann [2013].
Elements in the dual space are then made orthogonal, in the inner product

(S
(i)−1
CC + S

(j)−1
CC )−1, to a few selected eigenvectors of (2), with eigenvalues

greater than a given tolerance µ.
More complicated generalized eigenvalue problems arise when controlling

the energies contributed by interface classes shared by 3 or more subdomains;
even if they lead to fully controllable condition number bounds, they could
potentially generate unnecessary primal constraints, cf. Kim et al. [2015],
Calvo and Widlund [2016]. In our algorithm, we instead consider the eigen-
vectors associated to the largest eigenvalues of

(S̃
(i)−1
CC + S̃

(j)−1
CC + S̃

(k)−1
CC )Φ = λ(S

(i)−1
CC + S

(j)−1
CC + S

(k)−1
CC )Φ, (3)

that is a generalization of (2), so far without a theoretical validation. With
tetrahedral meshes, classes shared by more than three subdomains are rarely
encountered. Therefore, we impose full continuity on the partially assembled
space for the few dofs that belong to these classes.

Adaptive BDDC Deluxe Methods for H(curl) 259



We also provide results for adaptive algorithms working with the economic
variant of the deluxe approach (e-deluxe), where the S(i) are obtained by
eliminating the interior dofs in 2 layers of elements next to the subdomain
part of the interface.

3 Numerical Experiments

The triangulation ofΩ and the assembly of the subdomain matrices have been
performed with the DOLFIN library, cf. Logg and Wells [2010]. ParMETIS
(Karypis [2011]) is used to decompose the meshes, and each subdomain is
assigned to a different MPI process. MUMPS (Amestoy et al. [2001]) is used
for the subdomain interior solvers and for the explicit computation of the
S(i). A relative residual reduction of 10−8 is used as the stopping criterion of
the conjugate gradients; random right-hand sides are always considered.

Results will be given sometimes as a function of the ratio H/h, where
H = maxi{maxP1,P2∈∂Ωi,h

d(P1, P2)}, with P1 and P2 two vertices of the
boundary mesh ∂Ωi,h of Ωi, and d(P1, P2) their Euclidean distance. N1

p and
N2

p denote Nédélec first and second kind elements on simplices, respectively,
with p the polynomial order.

For the numerical results, we always consider decompositions of the unit
domain into 40 irregular subdomains; large scale numerical results for adap-
tive BDDC algorithms with N1

1 tetrahedral elements can be found in Zampini
and Keyes [2016].

2D Results

We first report on the quasi-optimality and on the dependence of p. The
material coefficients are subdomain-wise constant, but they have jumps be-
tween subdomains, which are subdivided in even and odd groups according
to their MPI rank. α = β = 100 for odd subdomains, α = β = 0.01 for even
subdomains. The primal space is characterized in terms of the continuity
of the tangential traces along the subdomain edges, cf. Toselli and Vasseur
[2005]. The quadrature weights for such constraints can easily be obtained
by exploiting the Stokes theorem, i.e.,

∫

Ωi

∇× u dx =

∫

∂Ωi

u · t ds.

Fig. 1 shows the quasi-optimality of the deluxe methods with N1
p (left) and

N2
p (center) elements. The results in the right panel, obtained with a fixed

mesh and by increasing p, seem to indicate a polylogarithmic bound.
We then analyze adaptive BDDC deluxe algorithms with the heteroge-

neous coefficients distribution given in Fig. 2. The mesh is fixed (H/h=140.7),
as well as the number of dofs, which varies from 800K for N1

1 to 11M for N2
4 .

Fig. 3 shows the condition number, the iteration count, and the relative size,
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Fig. 1 2D results. κ as a function of H/h. Left: N1
p . Center: N2

p . Right: κ as a function

of p (H/h = 66).

in terms of the number interface dofs, of the adaptively generated coarse
spaces, all given as a function of the eigenvalue threshold. The latter appears
to be a very good indicator of κ; the iteration count constantly decrease as
the threshold approaches 1. The number of primal dofs is always smaller than
10% of the interface dofs, even with values of µ close to the limit; we note
that more favorable coarsenings are obtained with higher order elements.

Fig. 2 2D distributions of α (left) and β (center). Right: decomposition in 40 subdomains.

3D Results

As first highlighted by Toselli [2006], the existence of a stable decomposition
in 3D is precluded if a change of basis of the dofs of the subdomain edges
is not performed. This change of basis, which consists in the splitting of the
dofs of each subdomain edge E in a constant and a gradient component, is
not local to E, as it involves all the other interface dofs associated to those
elements which have a fine edge in common with E. In our 3D experiments, we
consider only N1

1 elements; constructing suitable changes of basis for higher
order elements could be the subject of future research.

As already noted by Dohrmann and Widlund [2016], some care must be
exercised when considering a decomposition obtained by mesh partitioners,
since the proper detection of subdomain edges is crucial for the success of the
algorithm. To this end, we first construct the connectivity graph of the mesh
vertices through mesh edges, and analyze its connected components. We then
mark the corners that have been found, i.e. the connected components made
up by just one element, and proceed by analyzing the connectivity graph of
the mesh edges through mesh vertices, excluding the connections through the
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Fig. 3 2D results. κ (left), iterations (center), and relative size of WΠ (right) as a function

of µ. Top: N1
p . Bottom: N2

p . α, β as in Fig. 2.

corners. The connected components of this graph are further refined in order
to avoid any possible subdomain edge which does not have endpoints. Once
that the subdomain edges have been properly identified, we then assign them
a unique orientation across the set of sharing subdomains, and construct
the change of basis as outlined in Toselli [2006], using the modification for
non-straight edges proposed by Dohrmann and Widlund [2016].

For the 3D results, we consider a mesh of 750K elements, with H/h=26.3;
the number of dofs is approximatively 1M. In Fig. 4 we report the results of
adaptive algorithms using an extrusion in the z-direction of the coefficients
distributions in Fig. 2, and compare the deluxe and e-deluxe generated pri-
mal spaces. Notably, e-deluxe gives very similar results to the deluxe case.
The eigenvalue threshold results in a very good indicator of κ even in 3D,
despite the lack of a theoretical validation for the eigenvalue problem (3).
The iterations constantly decrease as the threshold approaches one in both
cases. The relative size of the primal problem is larger than in the 2D case,
but it still shows interesting coarsening factors.
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Fig. 4 3D results. κ (left), iterations (center) and relative size of WΠ (right) as a function

of µ. (x, y) distributions of α and β as in Fig. 2 (extruded in the z- direction).

We close with a test case where α and β are exponentially and randomly
chosen in [10−qα , 10qα ] and [10−qβ , 10qβ ], and using µ = 10. The results,
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provided in Table 1 as a function of qα and qβ , provide a clear evidence that
the condition number is fully controllable.

Table 1 3D results. κ and iterations (in parentheses) for adaptive BDDC algorithms.
Randomly distributed α ∈ [10−qα , 10qα ], β ∈ [10−qβ , 10qβ ]; µ = 10.

Deluxe E-deluxe

qβ=0

qβ=1
qβ=2

qβ=3

qα = 0 qα = 1 qα = 2 qα = 3

3.82 (15) 4.17 (15) 4.26 (16) 7.61 (20)

9.34 (24) 9.34 (24) 9.33 (24) 8.66 (22)
8.08 (22) 8.09 (22) 8.14 (22) 7.82 (22)

8.19 (20) 8.21 (20) 8.28 (20) 8.39 (20)

qα = 0 qα = 1 qα = 2 qα = 3

4.62 (15) 4.14 (15) 4.48 (16) 7.43 (19)

9.15 (24) 9.15 (23) 8.98 (23) 8.29 (23)
8.22 (22) 8.22 (22) 8.25 (22) 7.88 (22)

8.06 (20) 8.07 (20) 8.16 (20) 8.30 (20)
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