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1 Introduction

The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algo-
rithm, as a complement to additive Schwarz preconditioned inexact Newton
(ASPIN), provides a Gauss-Seidel-like way to improve the global convergence
of systems with unbalanced nonlinearities. To demonstrate, a natural convec-
tion cavity flow PDE system is solved using nonlinear multiplicative Schwarz
preconditioners resulting from different groupings and orderings of the PDEs
and their associated fields, and convergence results are reported over a range
of Rayleigh number, a dimensionless parameter representing the ratio of con-
vection to diffusion, and in this case, of the magnitude of nonlinear to the
linear terms in the transport PDEs. The robustness of nonlinear convergence
with respect to Rayleigh number is sensitive to the grouping strategy.

Globally nonlinearly implicit methods, such as Newton-Krylov-Schwarz,
work well for many problems, but they may be frustrated by “nonlinear stiff-
ness,” which results in stagnation of residual norms or even failure of global
Newton iterations. Nonlinear preconditioning may improve global conver-
gence of nonlinearly stiff problems by changing coordinates and solving a
different system possessing the same root by an outer Jacobian-free [8] New-
ton method.

Though algebraically related, ASPIN and MSPIN arise from different mo-
tivations. Additive Schwarz preconditioned inexact Newton [1], was based
on domain decomposition when proposed in 2002. It is shown in, e.g.,
[1, 2, 3, 7, 11] that ASPIN is effective in reducing the number of globally
synchronizing outer Newton iterations, at the price of solving in parallel
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many smaller subdomain-scale nonlinear systems. Motivated instead by split-
ting physical fields, multiplicative Schwarz preconditioned inexact Newton
algorithm [9] was introduced in 2015. MSPIN solves physical submodels se-
quentially, and different groupings and different orderings result in different
preconditioned functions. These two types of preconditioning can be nested.

2 MSPIN

Given the discrete nonlinear function F : Rn → Rn, we want to find x∗ ∈ Rn

such that
F (x∗) = 0, (1)

where F (x) = [F1(x), F2(x), . . . , Fn(x)]
T and x = [x1, x2, . . . , xn]

T . We as-
sume that F (x) in (1) is continuously differentiable. The function F (x) is split
into 2 6 N 6 n nonoverlapping components representing distinct physical
features as

F (x) = F (u1, . . . , uN ) =



F̂1(u1, . . . , uN )

...

F̂N (u1, . . . , uN )


 = 0, (2)

where x = [x1, . . . , xn]
T = [u1, . . . , uN ]T ∈ Rn. ui and F̂i denote conformal

subpartitions of x and F , respectively, i = 1, . . . , N .
The inexact Newton method with backtracking (INB) [5, 6, 10] serves as

the basic component of MSPIN, so we first review the framework of INB.

Algorithm 1 (INB).

An initial guess x(0) is given. For k = 0, 1, 2, . . . until convergence:

1. Choose ηk and find an approximate Newton step d(k) such that

‖F (x(k))− F ′(x(k))d(k)‖ ≤ ηk‖F (x(k))‖. (3)

2. Determine λ(k) using a backtracking linesearch technique [5].

3. Update x(k+1) = x(k) − λ(k)d(k).

ηk ∈ [0, 1) is a “forcing term,” and determines how accurately we solve
F ′(x(k))d(k) = F (x(k)). As ηk approaches 0, INB becomes ordinary Newton
with backtracking (NB).

In the MSPIN algorithm, the submodels are solved sequentially for the
physical variable corrections, and the preconditioned system consists of the
sum of these corrections. The multiplicative Schwarz preconditioned function
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F(x) =



T1(u1, . . . , uN )

...
TN (u1, . . . , uN )


 (4)

is obtained by solving the following equations:

F̂1(u1 − T1(x), u2, u3, . . . , uN ) = 0,

F̂2(u1 − T1(x), u2 − T2(x), u3, . . . , uN ) = 0,
...

F̂N (u1 − T1(x), u2 − T2(x), u3 − T3(x), . . . , uN − TN (x)) = 0.

(5)

As with ASPIN, MSPIN solves the global preconditioned problem in (4) using
INB in Algorithm 1, which requires only Jacobian-vector multiplication.

In general, the Jacobian F ′(x) = J (x) is dense. Fortunately, as shown in
[9], the Jacobian of preconditioned function F(x) can be written as follows:

J (x) =




∂F̂1

∂δ1

∂F̂2

∂δ1
∂F̂2

∂δ2

...
...

. . .

∂F̂N

∂δ1
∂F̂N

∂δ2
· · · ∂F̂N

∂δN




−1 


∂F̂1

∂δ1
∂F̂1

∂u2

∂F̂1

∂u3
· · · ∂F̂1

∂uN

∂F̂2

∂δ1
∂F̂2

∂δ2
∂F̂2

∂u3
· · · ∂F̂2

∂uN

...
...

...
...

∂F̂N

∂δ1
∂F̂N

∂δ2
∂F̂N

∂δ3
· · · ∂F̂N

∂δN



, (6)

where δi = ui−Ti(x). Due to the continuity of F (x), we know that Ti(x) → 0
and δi → x when x approaches the exact solution x∗. In practical implemen-
tations, it is more convenient to use the following approximate Jacobian

Ĵ (x) = L(x)−1J(x)|x=[δ1,...,δN ]T , (7)

where J(x) = F ′(x) =
(

F̂i

uj

)
N×N

and L(x) is the lower triangular part of

J(x). Functions from the original code may be used to compute Ĵ (y)z for any
given vectors y, z, matrix-free, rather than forming Jacobian J (x) explicitly.

3 Natural Convection Cavity Flow Problem

We consider a benchmark problem [4] that describes the two-dimensional
natural convection cavity flow of a Boussinesq fluid with Prandtl number
0.71 in an upright square cavity Ω = (0, 1)× (0, 1). Following [12], the nondi-
mensional steady-state Navier-Stokes equations in vorticity-velocity form and
energy equation are formulated as:
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−∆u− ∂ω
∂y = 0,

−∆v + ∂ω
∂x = 0,

−(Pr
Ra )

0.5∆ω + u∂ω
∂x + v ∂ω

∂y − ∂T
∂x = 0,

−( 1
PrRa )

0.5∆T + u∂T
∂x + v ∂T

∂y = 0,

(8)

where Pr and Ra denote the Prandtl number and the Rayleigh number,
respectively. There are four unknowns: the velocities u, v, the vorticity ω,
and the temperature T .

The upright square cavity is filled with air (Pr = 0.71). Boundary condi-
tions are described as follows. On the solid walls, both velocity components
u, v are zero, and the vorticity is determined from its definition:

ω(x, y) = −∂u

∂y
+

∂v

∂x
. (9)

The horizontal (top and bottom) walls are insulated, ∂T
∂y = 0, and the ver-

tical walls are maintained at temperatures T = 0.5 (left) and T = −0.5
(right). The temperature difference drives circulation in the cavity through
the Boussinesq buoyancy term in the vorticity equation. In Figure 1, we com-
pare contours of temperature T at different Rayleigh numbers, where higher
Ra boosts the buoyant convection relative to diffusion.

Considering the partition with respect to velocity unknowns, the vorticity
unknown, and the temperature unknown, we split the system (8) into three
submodels:

FT : −(
1

PrRa
)0.5∆T + u

∂T

∂x
+ v

∂T

∂y
= 0, (10)

Fω : −(
Pr

Ra
)0.5∆ω + u

∂ω

∂x
+ v

∂ω

∂y
− ∂T

∂x
= 0, (11)

Fu,v :





−∆u− ∂ω
∂y = 0,

−∆v + ∂ω
∂x = 0.

(12)

A finite difference scheme with the 5-point stencil is used to discretize the
PDEs, and the first order upwinding is used in both the vorticity equation
and the temperature equation.

3.1 Effect of Ordering

In the framework of MSPIN, even when the partition of unknowns and equa-
tions is determined, different orderings for solving subproblems result in dif-
ferent nonlinear preconditioners.
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Fig. 1 Contours of temperature T at Rayleigh numbers over 2 orders of magnitude.

We consider two different orderings in the MSPIN algorithm for the natural
convection cavity flow problem:

• Ordering A:

F̂1(x) =

[
FT

Fω

]
, F̂2(x) = Fu,v. (13)

• Ordering B:

F̂1(x) = Fu,v, F̂2(x) =

[
FT

Fω

]
. (14)

Independent of ordering, F̂1(x) and F̂2(x) are both linear among their
own unknowns, and are thus solved by GMRES alone with the tolerance
ǫsub−lin−rtol (≡ ǫsub−nonlin−rtol) = 10−5. The nonlinear system (8) is dis-
cretized on 100×100 mesh. We set the tolerances for outer Newton iterations
as ǫglobal−lin−rtol = 10−6 and ǫglobal−nonlin−rtol = 10−10. The initial guess is
zero for u, v, and ω, and linear interpolation in x for T . Figure 2 compares the
convergence history of nonlinear preconditioners corresponding to Ordering
A and Ordering B at different Rayleigh numbers. Using Ordering A MSPIN
converges for all tests, while using Ordering B it fails at Ra = 8000 due to
failure of backtracking. However, performance is inconsistent; compared with
B, A requires fewer global Newton iterations at Ra = 30000, but more iter-
ations at Ra = 50000. As shown in Table 1, for this high a Rayleigh number
on this fine a grid, with a “cold” initial iterate as above, unpreconditioned
globalized Newton stagnates outside of the zone of quadratic convergence.

3.2 Effect of Grouping

For the natural convection cavity flow problem, we can obtain different non-
linear preconditioners by grouping different PDEs and their corresponding
unknowns. We consider four grouping-ordering schemes:
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Fig. 2 Convergence history of nonlinear preconditioners using Ordering A (solid lines)

and Ordering B (dashed lines).

• Grouping A with two subsystems, F̂1 : FT | F̂2 : Fω, Fu,v

• Grouping B with two subsystems, F̂1 : FT , Fω | F̂2 : Fu,v

• Grouping C with two subsystems, F̂1 : FT , Fu,v | F̂2 : Fω

• Grouping D with three subsystems, F̂1 : FT | F̂2 : Fω | F̂3 : Fu,v

Table 1 Global nonlinear iterations for NB and MSPIN (plus global linear iterations
for MSPIN) at 3 mesh resolutions for each Rayleigh number corresponding to Fig. 1. The

initial guess is zero for u, v, and ω, and linear interpolation in x for T . ǫglobal−nonlin−rtol =

10−10, ǫglobal−lin−rtol = 10−6, ǫsub−nonlin−rtol = 10−4, and ǫsub−lin−rtol = 10−6. “*”
indicates that one or more subproblems fail to converge or outer backtracking fails. “-”

indicates that linear iterations fail to converge within allowed limits.

No MSPIN Grouping A Grouping B Grouping C Grouping D

Ra NB FT |Fω, Fu,v FT , Fω|Fu,v FT , Fu,v|Fω FT |Fω|Fu,v

Newton iter. Newton GMRES Newton GMRES Newton GMRES Newton GMRES

64 × 64 mesh, 4 subdomains

103 5 4 5 5 17 4 15 5 17

104 * * 7 27 8 23 6 27

105 * * 18 61 - 17 65

128 × 128 mesh, 16 subdomains

103 5 4 5 5 18 4 16 5 18

104 * * 7 28 10 30 7 28

105 * * 18 110 - 16 83

256 × 256 mesh, 64 subdomains

103 5 4 5 5 18 4 16 4 18

104 * * 7 31 9 32 7 31

105 * * - - 19 97
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The subproblems corresponding to Groupings B and D are linear, and are
solved here by GMRES with BoomerAMG preconditioning. With Groupings
A and C, one subproblem is linear and the other one is still nonlinear, which
is solved by an internal invocation of INB. The elements of the global MSPIN
Jacobians Ĵ are not explicitly available, so the global linear problems inherit
a conditioning from the subproblem solutions that is hard to improve further;
hence, we tabulate the total number of linear iterations required in all of the
Newton steps.

Table 1 compares a global Newton method with backtracking (NB), in
which the Newton correction is always solved for accurately, with MSPIN al-
gorithms corresponding to different grouping-ordering schemes. When MSPIN
algorithms with Groupings B and D converge on a given mesh at a given
Rayleigh number, they have similar numbers of Newton iterations and GM-
RES iterations. In Table 1, MSPIN algorithms with Grouping A, B or C
fail to converge in some cases. Sometimes, GMRES on Ĵ does not converge
within the allowed number of iterations. Sometimes, the outer INB still can-
not converge due to failure of the global line search, even though residuals
decrease in the early iterations. However, the most decomposed MSPIN al-
gorithm, Grouping D, works in all cases. Experimentally, the groupings play
an essential role in determining the quality of nonlinear preconditioning.

Checking corresponding entries for nonlinear iteration count across differ-
ent mesh densities at the same Rayleigh number in Table 1, we observe that
Newton is asymptotically insensitive to the mesh resolution, as expected by
theory.

As shown in [9] on a related forced convection problem, additive field-
split nonlinear preconditioning can be much less robust than multiplicative.
However, classical ASPIN based on domain decomposition can be effective for
such problems at high Reynolds or Raleigh numbers, when properly tuned.
ASPIN for system (8) with Ra = 105 on a 128×128 mesh with 16 subdomains
and overlap=3, with the same tolerance parameters used in Table 1, converges
in 8 Newton iterations. However, this case fails with smaller overlap.

4 Conclusions

MSPIN is used to solve a nonlinear flow problem, with backtracking line-
search as the only globalization technique, in the absence of any other physi-
cally based globalization strategy normally employed in Newton’s method on
such problems, such as mesh sequencing or parameter continuation. We ex-
periment with different groups and orderings, since there is not yet a theory
for their selection in nonlinear Schwarz preconditioning. Groupings are ex-
hibited that robustify Newton’s method even on a fine mesh at high Rayleigh
number from a “cold start” initial guess – a regime in which a traditional
global Newton method with backtracking alone is completely ineffective.
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