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1 Introduction and Model Problem

Domain decomposition methods for elliptic problems need a coarse space
component in order to be scalable, and there are many now classical results
in the literature on such two level Schwarz, balancing Neumann-Neumann
and FETI methods, see [20] and references therein. Coarse spaces can how-
ever do much more for a subdomain iteration than just make it scalable.
For each domain decomposition method, there exists an optimal coarse space
which will make it converge in only one iteration, i.e. makes the method into
a direct solver. A first such coarse space component was discovered within
transmission conditions in [12]. A separate optimal coarse space was devel-
oped in [9], and also introduced in [11], with easy to use approximations to
get practical coarse spaces, see also [10] where the case of discontinuous sub-
domain iterates was treated. The full potential of these new coarse spaces for
additive Schwarz methods (AS) applied to multiscale problems was realized
in [13], where also a convergence analysis can be found.

We explain here what this optimal coarse space is for Restricted Additive
Schwarz (RAS). RAS was discovered in [2], and it represents a consistent
discretization of the parallel Schwarz method that was introduced by Lions
in the first DD conference [16], see [5] and [8] for more explanations. There is
no general convergence theory for RAS, but the results of Lions apply in the
discrete setting. The optimal coarse space and its approximation also differ
from the case of AS, since RAS iterates are in general discontinuous.

Our approximations of the optimal coarse space are related to more recent
developments of robust coarse spaces for high contrast problems, see [1] and
the analysis in [14], where multiscale finite elements were proposed for the
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coarse space. The idea to enrich the coarse space goes back to [6] and [7],
where subdomain eigenfunctions are combined with partition of unity func-
tions, see also [4]. A different approach is using eigenfunctions of the Dirichlet
to Neumann map of each subdomain, see [3], the improved variant based on
a generalized eigenvalue problem in the overlaps in [19], and also the recent
adaptive coarse spaces for BDD(C) and FETI(-DP) methods [17, 15]. A good
overview of the most recent approaches can be found in [18]. The main differ-
ence in our approach is that we start with an optimal coarse space depending
on the method for which we want to construct the coarse space, and that we
do not need volume eigenproblems in our construction.

Our model problem is the elliptic boundary value problem

−∇ · (α(x)∇u) = f in Ω, u = 0 on ∂Ω, (1)

where Ω is a bounded convex domain in R2, f ∈ L2(Ω) and α ∈ L∞(Ω) such
that α ≥ α0 for some positive constant α0. Discretizing this problem using a
P1 finite element method leads to the linear system

Au = f . (2)

Based on a decomposition of the domain Ω into J non-overlapping subdo-
mains Ω̃j , which are enlarged to create overlapping subdomains Ωj , one can

construct non-overlapping restriction matrices R̃j , associated overlapping re-
striction matrices Rj , and local subdomain matrices Aj := RjART

j to define
RAS,

un+1 = un +
J∑

j=1

R̃T
j A

−1
j Rj(f −Aun), (3)

see [2], and [5, 8] for more details.

2 Optimal Coarse Space

To discover the optimal coarse space for RAS, we define the error en := u−un

and look at properties of the error after one iteration. First note that the
solution satisfies (3) at the fixed point, i.e.

u = u+
J∑

j=1

R̃T
j A

−1
j Rj(f −Au). (4)

Taking the difference between (4) and (3), and using that for any vector e0

we have e0 =
∑J

j=1 R̃jRje
0 by the definition of Rj and R̃j , we obtain
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Fig. 1 Error (left) and residual (right) of the 1-level method with minimal overlap h after
one iteration for the Poisson problem in the top row, and for the high contrast problem

from Figure 2 on the left in the bottom row.

e1 = e0 −
J∑

j=1

R̃T
j A

−1
j RjAe0 =

J∑

j=1

R̃T
j A

−1
j AjRje

0 −
J∑

j=1

R̃T
j A

−1
j RjAe0

=
J∑

j=1

R̃T
j A

−1
j (AjRj −RjA)e0 =

J∑

j=1

R̃T
j A

−1
j (RjART

j Rj −RjA)e0

=
J∑

j=1

R̃T
j A

−1
j RjA(R

T
j Rj − I)e0.

Now since (RT
j Rj − I)e0 contains only non-zero elements outside subdomain

Ωj , A(RT
j Rj−I)e0 represents precisely boundary conditions for Ωj , and thus

R̃je
1 = R̃jR̃

T
j A

−1
j RjA(RT

j Rj − I)e0

is a discrete harmonic function on each Ω̃j . This is illustrated in Figure 1 for
the case of the Poisson equation in the top row, where we see that the error
is harmonic in the Ω̃j on the left and on the right we show the associated

residual, which is zero in each Ω̃j , since the error is harmonic there. In the
bottom row we show the corresponding results for the high contrast problem
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Fig. 2 Left: channel distributions of α for a geometry with h = 1
64

, H = 16h. Right:

irregular distribution of α for a geometry with h = 1
128

, H = 16h.

from Figure 2 on the left, and we see that even though the error looks very
different, it is still the solution of the homogeneous equation, i.e. “harmonic”,
in each non-overlapping subdomain, the residual is zero there.

If the coarse space should remove all of e1 for RAS, it needs to contain all
discrete harmonic functions on each non-overlapping subdomain Ω̃j . Putting
these functions into the columns of the coarse restriction matrix R0, the
coarse correction step with A0 := R0ART

0 leads to the exact solution,

u = u1 +RT
0 A

−1
0 R0(f −Au1).

A simple basis for the optimal coarse space is to choose the functions whose
value equals 1 at one node of the interface of the non-overlapping subdomains,
zero at all the others, and then to harmonically extend this data inside the
non-overlapping subdomain. The dimension of this optimal coarse space is
thus twice the number of interface nodes of the non-overlapping decomposi-
tion, and would be infinite dimensional at the continuous level.

3 Approximation of the Optimal Coarse Space

Since the full discrete harmonic space is very large, we propose to approxi-
mate it, and it is best to explain this using as example the decomposition of
the square into four sub-squares which represent the non-overlapping subdo-
mains Ω̃j . The first four basis functions which we put into the coarse space
are shown in Figure 3 on the left. In the constant coefficient case, i.e. the
Poisson equation, this would just correspond to Q1 finite elements in these
square subdomains, as we see in the top row, but in the more general case
of a specific distribution α as shown in Figure 2, we solve a one dimensional
boundary value problem along the edges where the function is non-zero, see
[13]. To get a better coarse space, we enrich the former one by adding harmon-
ically extended eigenfunctions on each non-overlapping subdomain from an
interface eigenvalue problem along each edge of the non-overlapping decom-

284 Martin Gander, Atle Loneland



Fig. 3 Discontinuous multiscale finite element basis functions (left) and first spectral

enrichment functions (right) corresponding to the Poisson case for h = 1/32 and H = 16h
in the top row, and a multiscale problem with distribution α given in Figure 2 on the left

for h = 1/64 and H = 32h in the bottom row.

position [13], which leads to the Spectral Harmonically Enriched Multiscale
coarse space we call SHEMj , where j indicates how many functions were
added for the enrichment. An example of two such spectral coarse functions
based on the first eigenfunction is shown in Figure 3 on the right for the Pois-
son equation on top, and below for the multiscale problem with distribution
α given in Figure 2 on the left. If we add all spectral enrichment functions,
we obtain again the optimal coarse space OHEM (Optimal Harmonically
Enriched Multiscale coarse space).

4 Numerical Results

The first numerical experiment is for the distribution α shown in Figure 2 on
the left. The iteration counts and the size of the coarse space compared to
the optimal coarse space are shown in Table 1, where we run RAS or GMRES
preconditioned with RAS until the l2 norm of the initial residual is reduced by
a factor of 106. For the solution of the generalized 1D eigenvalue problems we
used eig in Matlab. We see that SHEM3 is a robust method, independently
of h, which is related to the fact that in the distribution α given in Figure
2 on the left, there are at most 3 channels crossing any one given interface.
This motivates to use an adaptive variant we call SHEMa, where we include
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SHEM3 SHEMa

α̂ iter. GMRES dim. rel. dim. iter. GMRES dim. rel. dim.

100 8 (8) 7 (7) 180 25% (6%) 15 (17) 10 (10) 84 12% (3%)
102 10 (11) 9 (9) 180 25% (6%) 15 (17) 11 (11) 132 18% (4%)

104 10 (11) 9 (10) 180 25% (6%) 15 (17) 12 (12) 132 18% (4%)

106 10 (11) 9 (10) 180 25% (6%) 15 (17) 12 (12) 132 18% (4%)

Table 1 Iteration count for RAS with the new coarse space SHEM3 and SHEMa for the
distribution in Figure 2 on the left, with h = 1

64
, H = 16h and overlap 2h (in parenteses

h = 1
256

, H = 64h and overlap 8h).

an adaptive number of enrichment functions on each interface, based on the
size of the eigenvalues. Table 1 shows that SHEMa is also robust when the
contrast increases, and uses fewer coarse functions, just a small percentage
of the optimal coarse space OHEM.

We next consider the distribution of α given in Figure 2 on the right for
α̂ = 104. We show in Table 2 the iteration counts for an increasing number of
coarse basis functions on each edge. For this example we consider both small
overlap δ = 2h and large overlap δ = H. These results show that SHEM
for RAS performs very well for the fairly hard distribution of α in Figure 2
on the right. We see also that by systematically increasing the number of
spectral enrichment functions on each edge we eventually reach a maximal
degree where OHEM turns RAS into a direct solver, as predicted. We also
note that RAS without Krylov acceleration performs about as well as RAS
with GMRES when SHEMj is used with j ≥ 6, which shows that the iterative
solver is now so good that Krylov acceleration is not needed any more, a bit
like multigrid for the Poisson equation.

In Table 3 we give the iteration count for the same distribution of α in
Figure 2 on the right, except that we now consider an adaptive variant of
the coarse space. For both small overlap δ = 2h and large overlap δ = H we
consider three experiments: For the first experiment we choose the threshold
for including eigenfunctions into the coarse space such that we are guaran-
teed that at least one spectral function is included on each subdomain edge
segment. For the second experiment, the threshold is chosen such that we
are guaranteed at least two spectral functions on each of the subdomain

SHEMj δ = 2h SHEMj δ = H

j iter. GMRES iter. GMRES dim. rel. dim.

3 34 13 7 6 868 26%

6 9 8 5 4 1540 46%
9 7 7 4 4 2212 66%
12 6 6 4 4 2884 86%

15 1 1 1 1 3360 100%

Table 2 Iteration count for RAS with the new coarse space SHEMj for the distribution

in Figure 2 on the right with h = 1
128

, H = 16h.
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SHEMa δ = 2h (4h) SHEMa δ = H

min. iter. GMRES iter. GMRES dim. rel. dim.

1 39 (43) 20 (20) 10 (12) 7 (8) 532 (551) 16% (8%)
2 17 (21) 12 (13) 7 (7) 6 (6) 747 (782) 22% (11%)

3 13 (14) 10 (11) 6 (6) 5 (5) 980 (988) 29% (14%)

Table 3 Iteration count for RAS with SHEMa for the distribution in Figure 2 on the right

with h = 1
128

, H = 16h and overlap 2h (in parenteses h = 1
256

, H = 32h and overlap 4h).

SHEM0 SHEMa

α iter. dim. iter. dim. rel. dim.

100 14 49 14 49 6%

102 38 49 18 114 14%

104 92 49 12 117 15%
106 116 49 12 117 15%

Fig. 4 Left: Irregular decomposition of Ω into 16 subdomains with h = 1/64. Right:

Iteration count for RAS with SHEM0 and SHEMa for the distribution in Figure 2 on the
left with h = 1

64
and Ω subdivided as on the left, with overlap 3h.

edge segments and for the last experiment, the threshold is chosen so that
at least three spectral functions are guaranteed. The numerical results in Ta-
ble 3 show that a comparable performance as the one given in Table 2 can
be achieved with a considerably smaller coarse space as long as all the bad
eigenmodes that are due to the discontinuities in the coefficients are included
in the coarse space, and the results are similar when the mesh is refined.

We finally show a numerical experiment where we use an irregular decom-
position of the domain into subdomains, as shown in Figure 4 on the left. As
in the case of a regular decomposition in Figure 3, we can compute the corre-
sponding multiscale coarse basis functions and spectral enrichment functions
for each subdomain, and obtain the iteration counts in Figure 4 on the right.
We clearly see that SHEM also works very well for an irregular domain de-
composition, and just enriching the coarse space with the adaptively chosen
number of spectral enrichment functions leads to a robust solver.

5 Conclusions

We presented an optimal coarse space for RAS called OHEM, which leads to
convergence of RAS in one iteration, both when used as an iterative solver and
as a preconditioner for GMRES. We then proposed an approximation called
SHEM based on multiscale finite elements in each subdomain, enriched with
spectral harmonic functions. We showed numerically that SHEM is robust
for problems with high contrast, and also derived an adaptive variant.
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