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1 Introduction

There has recently been a considerable activity in developing adaptive meth-
ods for the selection of primal constraints for BDDC algorithms and, in par-
ticular, for BDDC deluxe variants. The primal constraints of a BDDC or
FETI–DP algorithm provide the global, coarse part of such a preconditioner
and are of crucial importance for obtaining rapid convergence of these pre-
conditioned conjugate gradient methods for the case of many subdomains.
When the primal constraints are chosen adaptively, we aim at selecting a
primal space, which for a certain dimension of the coarse space, provides the
fastest rate of the convergence for the iterative method. In the alternative, we
can try to develop criteria which will guarantee that the condition number
of the iteration stays below a given tolerance.

A particular inspiration for our own work has been a talk, see Dohrmann
and Pechstein [2012], by Clark Dohrmann at DD21, held in Rennes, France,
in June 2012. Dohrmann had then started joint work with Clemens Pechstein,
see also Pechstein and Dohrmann [2016].

Much of this work for BDDC and FETI-DP iterative substructuring algo-
rithms, which has been supported by theory, has been confined to developing
primal constraints for equivalence classes with two elements such as those
related to subdomain edges for problems defined on domains in the plane;
see a recent survey paper, Klawonn et al. [2016b]. In our context, the equiva-
lence classes are sets of finite element nodes which belong to the boundaries
of more than one subdomain with the equivalence relation defined by the sets
of subdomain boundaries to which the nodes belong. While it is important
to further study the best way of handling all cases, the basic issues appear
to be well settled when the equivalence classes all have just two elements.
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We note that this work is relevant for problems posed in H(div) even in
three dimensions (3D) since the degrees of freedom on the interface between
subdomains for Raviart-Thomas and Brezzi-Douglas-Marini elements are as-
sociated only with faces of the elements, see Oh et al. [2015], Zampini [2016].
(These papers also concern BDDC three–level algorithms choosing two levels
of primal constraints adaptively.) But for other elliptic problems in 3D, there
is a need to develop algorithms and results for equivalence classes with three
or more elements.

There is early work by Mandel, Š́ıstek, and Soused́ık, who developed condi-
tion number indicators, cf. Mandel and Soused́ık [2007], Mandel et al. [2012].
Talks by Clark Dohrmann and Axel Klawonn at DD23, held on Jeju Island,
the Republic of Korea in July 2015, see Klawonn et al. [2016a], reported
on recent progress to give similar algorithms a firm theoretical basis. A talk
by Hyea Hyun Kim in the same mini-symposium also reported considerable
progress for a different kind of algorithm. Her main new algorithm for prob-
lems in three dimensions is similar but not the same as ours; see further Kim
et al. [2015]. Our main result, developed independently, was reported on by
the first author in the same mini-symposium; see further Calvo and Widlund
[2016] and, for applications to isogeometric analysis, Beirão da Veiga et al.
[2015].

This paper will focus on using parallel sums for general equivalence classes.
Such an approach for equivalence classes with two elements has proven very
successful in simplifying the formulas and arguments; see in particular Pech-
stein and Dohrmann and section 2. Parallel sums for equivalence classes with
more than two elements have also been quite successfully in numerical ex-
periments by Simone Scacchi and Stefano Zampini, reported in Beirão da
Veiga et al. [2015], for problems arising in isogeometric analysis and also by
Zampini in a study of 3D problems formulated in H(curl), based in part on
Dohrmann and Widlund [2016], and reported on in this mini-symposium.

In this paper, we will focus on low order, nodal finite element approxima-
tions for scalar elliptic problems in three dimensions,

−∇ · (ρ(x)∇u) = f(x), x ∈ Ω, ρ(x) > 0, (1)

resulting in a linear system of equations to be solved using BDDC domain
decomposition algorithms, especially its deluxe variant. We will always as-
sume that the choice of boundary conditions results in a positive definite,
symmetric stiffness matrix.

2 Equivalence classes and BDDC algorithms

BDDC algorithms, see, e.g., Li and Widlund [2006], are domain decomposi-
tion algorithms based on the decomposition of the domain Ω of an elliptic
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operator into non-overlapping subdomains Ωi, each often associated with tens
of thousands of degrees of freedom. The subdomain interface Γi of Ωi does
not cut through any elements and is defined by Γi := ∂Ωi \ ∂Ω. The equiva-
lence classes are associated with the subdomain faces, edges, and vertices of
Γ := ∪iΓi, the interface of the entire decomposition. Thus, for a problem in
three dimensions, a subdomain face is associated with the degrees of freedom
of the nodes belonging to the interior of the intersection of two boundaries
of two neighboring subdomains Ωi and Ωj . Those of a subdomain edge are
typically associated with a set of nodes common to three or more subdomain
boundaries, while the endpoints of the subdomain edges are the subdomain
vertices which are associated with even more subdomains.

Given the stiffness matrix A(i) of the subdomain Ωi, we obtain a subdo-
main Schur complement S(i) by eliminating the interior variables, i.e., all
those that do not belong to Γi. We will also work with principal minors of
these Schur complements associated with faces, F, and edges, E, denoting

them by S
(i)
FF and S

(i)
EE , respectively.

The interface space is divided into a primal subspace of functions which
are continuous across Γ and a complementary, dual subspace for which we
will allow multiple values across the interface during part of the iteration.
In our study, all the subdomain vertex variables will always belong to the
primal set. We have three product spaces of finite element functions/vectors
defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂ WΓ .

WΓ is a product space without any continuity constraints across the inter-
face. Elements of W̃Γ have common values of the primal variables but allow
multiple values of the dual variables while the elements of ŴΓ are continuous
at all nodes on Γ. We will change variables, explicitly introducing the primal
variables and a complementary sets of dual variables in order to simplify the
presentations. We note that the change of basis will not in any way change
the results of the computation. After eliminating the interior variables, we
can then write the subdomain Schur complements as

S(i) =

(
S
(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

We will partially subassemble the S(i), obtaining S̃, enforcing the continuity
of the primal variables only. Thus, we then work in W̃Γ . In each step of the
iteration, we solve a linear system with the coefficient matrix S̃. Solving these
linear systems will be considerably much faster than if we work with the fully
assembled system if the dimension of the primal space is modest. At the end
of each iteration, the approximate solution is made continuous at all nodal
points of the interface by applying a weighted averaging operator ED. We
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always accelerate the iteration with the preconditioned conjugate gradient
algorithm.

BDDC deluxe. When designing a BDDC algorithm, we have to choose
an effective set of primal constraints and also a good recipe for the averaging
across the interface. Our paper concerns the choice of the primal constraints
while we will always use the deluxe recipe in the construction of the averaging
operator ED.

We note that in work on three-dimensional problems formulated inH(curl),
it was found that traditional averaging recipes did not always work well; cf.
Dohrmann and Widlund [2016]. The same is true for problems in H(div); see
Oh et al. [2015]. This occasional failure has its roots in the fact that there are
two sets of material parameters in these applications. The deluxe scaling that
was then introduced has also proven quite successful for a variety of other
applications.

A face component of the average operator ED across a subdomain face
F ⊂ Γ , common to two subdomainsΩi andΩj , is defined in terms of principal

minors S
(k)
FF of the S(k), k = i, j :

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF )

−1(S
(i)
FFw

(i)
F + S

(j)
FFw

(j)
F ).

Here w
(i)
F is the restriction of w(i) to the face F, etc.

Deluxe averaging operators are also developed for subdomain edges and
the operator ED is assembled from all these components; see further section
3. Our bound for this operator will be obtained from bounds for certain
eigenvalues for the individual equivalence sets and will include factors that
depend quadratically on the number of equivalence classes associated with
the faces and edges of the individual subdomains. We have found that the
performance consistently is far better than these bounds.

The core of any estimate for a BDDC algorithm is the norm of the av-
eraging operator ED. By an algebraic argument known, for FETI–DP since
2002, we know that the condition number of the iteration satisfies

κ(M−1
BDDC Ŝ) ≤ ‖ED‖S̃ ; (2)

see Klawonn et al. [2002]. Here M−1
BDDC denotes the BDDC preconditioner

and Ŝ the fully assembled Schur complement of the problem. Instead of de-
veloping an estimate for ED, we will work with PD := I − ED and estimate

(RT
F (w

(i)
F − w̄F ))

TS(i)RT
F (w

(i)
F − w̄F ). Here RF denotes the restriction to the

face F. We find, following Pechstein, that the sum of this quadratic form and
a similar contribution from the neighboring subdomain Ωj equals

(w
(i)
F − w

(j)
F )T (S

(i)
FF : S

(j)
FF )(w

(i)
F − w

(j)
F )

where
A : B := A(A+B)−1B
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is the parallel sum of A and B; cf. Anderson Jr. and Duffin [1969]. We note
that if A and B are positive definite, then A : B = (A−1 +B−1)−1. If A+B
is only positive semi-definite, we can replace (A + B)−1 by (A + B)†, any
generalized inverse. The quadratic form can be estimated from above by

2(w
(i)
F −wFΠ)T (S

(i)
FF : S

(j)
FF )(w

(i)
F −wFΠ)+2(w

(j)
F −wFΠ)T (S

(i)
FF : S

(j)
FF )(w

(j)
F −wFΠ)

where wFΠ is the restriction of an arbitrary element of the primal space to
the face. We note that each of these terms can be estimated by an expression
which is local to only one subdomain.

With w
(i)
F∆ := w

(i)
F − wFΠ , we now estimate w

(i)T
F∆ (S

(i)
FF : S

(j)
FF )w

(i)
F∆ by

the energy of w(i). We then need the minimum norm extension of any finite
element function defined on F, which will provide a uniform bound for any
extension of the values on F to the rest of Γi. We find that the relevant
matrix is

S̃
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F .

Here S
(i)
F ′F ′ is the principal minor of S(i) with respect to Γi \ F and S

(i)
F ′F an

off-diagonal block of S(i). By appropriate choices of the primal space and of
wFΠ , we are able to show that

w
(i)T
F∆ (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F∆ ≤ w(i)TS(i)w(i),

where w(i) is an arbitrary extension of the values of w
(i)
F .

For an adaptive algorithm, we can complete the estimate by using a gen-
eralized eigenvalue problem:

S̃
(i)
FF : S̃

(j)
FFφ = λS

(i)
FF : S

(j)
FFφ. (3)

Primal constraints are then generated by using the eigenvectors of a few of the

smallest eigenvalues of (3) and making (S̃
(i)
FF : S̃

(j)
FF )(w

(i)
F − w

(j)
F ) orthogonal

to these eigenvectors.
A bound can now be obtained in terms of the smallest eigenvalue associated

with the eigenvectors not used in deriving the primal constraints. Numerical

studies show a very rapid decay of the eigenvalues of S
(i)−1
FF (S

(i)
FF − S̃

(i)
FF ); this

property can also be proven assuming that Ωi is Lipschitz and the coefficient
ρ(x) a constant. Therefore only a few primal constraints will greatly improve
the bound on the norm of (EDw)F .

3 Equivalence classes with more than two elements

We begin this section by considering parallel sums of more than two oper-
ators. We will work with symmetric matrices which all are at least positive

Parallel Sums and Adaptive BDDC Deluxe 253



semi-definite. For three positive definite matrices, we can define their parallel
sum by

A : B : C := (A−1 +B−1 + C−1)−1,

with similar formulas for four or more matrices. A quite complicated formula
for A : B : C is given in Tian [2002] for the general case when some or all of
the matrices might be only positive semi-definite. It is also shown, in [Tian,
2002, Theorem 3], that A : B : C = (A† + B† + C†)† if and only if the
three operators A,B, and C have the same range. In our context, this is not

always the case since the matrix S̃
(i)
EE, defined below, will be singular if Ωi is

an interior subdomain while it will be non-singular if ∂Ωi intersects a part
of ∂Ω where a Dirichlet condition is imposed. This issue can be avoided by
making all operators non-singular by adding a small positive multiple of the
identity to the singular operators.

We will first focus on a case of an equivalence class common to three sub-
domains as arising for most subdomain edges in a three-dimensional finite
element context if the subdomains are generated using a mesh partitioner.

We will use the notation S
(i)
EE , S

(j)
EE , and S

(k)
EE for the principal minors, of

the degrees of freedom of an edge E, of the subdomain Schur complements of
the three subdomains that have this subdomain edge in common. The Schur
complements of the Schur complements representing the minimal energy ex-
tensions to individual subdomains, of given values on the subdomain edge E,

will be denoted by S̃
(i)
EE , S̃

(j)
EE , etc., and are defined by

S̃
(i)
EE := S

(i)
EE − S

(i)T
E′ES

(i)−1
E′E′ S

(i)
E′E . (4)

Here S
(i)
E′E′ is the principal minor of S(i) of Γi \ E and S

(i)
E′E an off-diagonal

block.
We can now introduce the deluxe average over the edge E by

w̄E := (S
(i)
EE + S

(j)
EE + S

(k)
EE)

−1(S
(i)
EEw

(i)
E + S

(j)
EEw

(j)
E + S

(k)
EEw

(k)
E ).

By using elementary inequalities, we can now obtain a bound of the square
of the norm of an edge component of PDw by

3w
(i)T
E∆ S

(i)
EE : (S

(j)
EE + S

(k)
EE)w

(i)
E∆

and two similar terms obtained by changing the superscripts appropriately.
Returning to the search for adaptive primal spaces, we note that ideally,

we would now like to prove that the three operators T
(i)
E := S

(i)
EE : (S

(j)
EE +

S
(k)
EE), T

(j)
E := S

(j)
EE : (S

(i)
EE + S

(k)
EE), and T

(k)
E := S

(k)
EE : (S

(i)
EE + S

(j)
EE) all can

be bounded uniformly from above by

S
(i)
EE : S

(j)
EE : S

(k)
EE := (S

(i)−1
EE + S

(j)−1
EE + S

(k)−1
EE )−1. (5)
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If this were possible, we could use that same matrix for estimates for

w
(i)
E∆, w

(j)
E∆, and w

(k)
E∆; we could use arguments very similar to those of the

previous section. But we are not that lucky; good bounds are only possible

if S
(i)
EE , S

(j)
EE , and S

(k)
EE are spectrally equivalent with good bounds. However,

it is easy to find interesting examples where this does not hold. We therefore

have to find a different common upper bound for T
(i)
E , T

(j)
E , and T

(k)
E and

accomplish this by using the trivial inequality

T
(i)
E ≤ T

(i)
E + T

(j)
E + T

(k)
E ,

and define our generalized eigenvalue problem as

(S̃
(i)
EE : S̃

(j)
EE : S̃

(k)
EE)φ = λ(T

(i)
E + T

(j)
E + T

(k)
E )φ. (6)

We note that these arguments extend directly to equivalence classes with
more than three elements.

This is the recipe that we have used in most of our numerical experiments,
which have proven quite successful; cf. Calvo and Widlund [2016] for many
more details. However, it deserves to be noted that the distribution of the
eigenvalues associated with the subdomain edges, in our experience, is less
favorable than those of the subdomain faces but that we can benefit from
the fact that the number of degrees of freedom of an edge typically is much
smaller than that of a face.

Given the success, by others, with using parallel sums of each of the two
sets of three Schur complements, we have also carried out experiments with
that alternative generalized eigenvalue problem. The performance is very sim-
ilar to that of our algorithm.

In our experiments, we have compared the performance of our adaptive
algorithms with standard choices of the primal spaces. In choosing our primal
constraints, we have, in some of our experiments, used tolerances introduced
in Kim et al. [2015]. We have found that our adaptive algorithm also works
quite well for irregular subdomains generated by the METIS mesh partitioner.
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