
On the Time-domain Decomposition of
Parabolic Optimal Control Problems

Felix Kwok1

1 Introduction

The efficient solution of optimal control problems under partial differential
equation (PDE) constraints has become an active area of research in the
past decade. In this paper, we consider an optimal control problem where the
constraint is a large system of linear ordinary differential equations (ODEs)
arising from the semi-discretization of a linear PDE in space:

∂ty +Ay(t) = Bu(t) + f(t), t ∈ (0, T ), (1a)

y(0) = y0. (1b)

The goal is to find a control u that minimizes the objective functional

F (u) =
1

2

∫ T

0

‖u(t)‖2 dt+ α1

2

∫ T

0

‖Cy − ŷ‖2 dt+ α2

2
‖Dy(T )− ŷT ‖2. (2)

In the above, ŷ = ŷ(t) and ŷT are the target trajectory and target state,
and the functions u and y = y(t,u) are called the control and the state,
respectively. (For the purpose of analysis, we will use an appropriate change
of variables to subsume any mass matrices that appear into the matrices A,
B, C and D.) We will focus on the case where there are no control or state
constraints, and where the governing equation is parabolic, i.e., when A is
positive semi-definite, but not necessarily symmetric.

A formulation similar to the above has been used for a variety of prob-
lems where the goal is to drive a mechanical system to a desired state while
minimizing the cost: it has been used for the control of fluid flow modelled
by the Navier-Stokes equations [4, 23], boundary control problems for the
wave equation [14] and quantum control (see [18] and references therein).
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Recently, medical applications have also been proposed, more specifically in
the optimized administration of radiotherapy to control tumour growth [5].

For problems with no control or state constraints, a Lagrange-multiplier
argument shows that the optimal control satisfies, in addition to the forward
differential equation (1), the adjoint final value problem

∂tλ−A⊤λ = α1C
⊤(Cy − ŷ), (3a)

λ(T ) + α2D
⊤Dy(T ) = α2D

⊤ŷT , (3b)

where λ, the adjoint state, satisfies u = B⊤λ. Together with (1), this leads to
a coupled forward-backward ODE system that must be further discretized in
time and solved. Alternatively, one can discretize (1) and (2) in time and solve
the resulting discrete saddle-point system. Note that the two approaches do
not always “commute”, even if one chooses compatible time discretizations
for (1a) and (3), see [6, 11]. Regardless of the approach taken, the exceedingly
large size of the resulting linear system strongly motivates the use of parallel
solution strategies. In this paper, we only consider the semi-discrete ODE
system; the effect of discretization in time will be studied in a future paper.

There has been much progress in recent years in the development of
effective preconditioners for saddle-point systems that arise from PDE-
constrained optimal control problems; we only mention two classes of such
methods. The first, known as the all-at-once approach, uses block precondi-
tioners that are known to be effective for saddle-point systems. Because of its
large size, the saddle-point matrix is not formed explicitly; instead, one per-
forms the matrix-vector multiplication and preconditioning steps by solving
forward and backward problems similar to (1) and (3). The latter steps can be
parallelized in time using e.g. parareal [15] or parabolic multigrid [13, 10], or
in space by domain decomposition or multigrid methods. We refer the reader
to [21, 20], as well as to [22] for an approach in the infinite-dimensional setting
which also works for problems with control constraints.

A different idea is to apply parallel methods directly to the optimal con-
trol problem itself. One such approach, known as the collective smoothing
multigrid (CSMG) scheme, applies multigrid smoothing and coarsening to
the coupled system and is analyzed in [3]. One can also adapt parareal to
solve optimal control problems directly, see [18, 19, 17, 9]. Another approach,
which arises from the multiple shooting philosophy, is to create smaller prob-
lems by subdividing the time horizon. The problem then consists of finding
the intermediate state and adjoint variables that achieve both local optimality
on each sub-interval and consistency across neighbouring sub-intervals. The
smaller local problems can then be solved independently, and in parallel. This
idea has been used in [12] to derive a block preconditioner for parabolic con-
trol problems, and in [14] to obtain a method with Robin-type consistency
conditions in the context of wave equations. In [1], the authors consider an
additive Schwarz preconditioner that uses Dirichlet interface conditions in
the state and adjoint variables across overlapping sub-intervals.
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2 Optimized Schwarz Methods in Time for Control

In [8], we introduced a time-domain decomposition method inspired by the
Robin-type interface conditions used in optimized Schwarz methods (OSM)
for elliptic problems. In this paper, we consider the natural extension to
problems with non-trivial observation and control operators, namely

1. For k = 1, 2, . . . , solve in parallel for j = 1, 2

∂ty
k
j +Ayk

j = Buk
j + f(t), ∂tλ

k
j −A⊤λk

j = α1C
⊤(Cyk

j − ŷ) (4)

on I1 = (0, β) and I2 = (β, T ), subject to uk
j = B⊤λk

j and the initial and
final conditions

For I1: yk
1(0) = y0, λk

1(β) + pyk
1(β) = hk−1, (5)

For I2: yk
2(β)− qλk

2(β) = gk−1, λk
2(T ) + α2D

⊤Dyk
2(T ) = α2D

⊤ŷT .
(6)

2. Update traces:

gk = yk
1(β)− qλk

1(β), hk = λk
2(β) + pyk

2(β). (7)

The parameters p and q are chosen to optimize convergence. In [8], the method
is analyzed by assuming B = C = I, D = 0 and that A is symmetric. This
allows us to diagonalize A and obtain explicit formulas for the contraction
factors, but the analysis no longer works when A is non-symmetric. In this
paper, we show a different method, based on energy estimates, which allows
one to derive optimal parameters for non-symmetric operators A.

In terms of implementation, each iteration of the method (4)–(7) requires
the solution of subdomain problems with Robin interface conditions. This
may be done using any serial method, such as the all-at-once methods men-
tioned in Section 1. In the numerical experiments in Section 4, we use a
Krylov-accelerated iteration based on shooting methods, which are easy to
implement and naturally applicable to problems with optimized transmission
conditions in time. For example, to solve the local problem on I2, we con-
sider the mapping P2(yβ ,u) =

[
yβ − qλ(β)− gk−1, u−B⊤λ

]
, where the

inputs are the initial state yβ and the control function u = u(t), t ∈ I2,
and λ is calculated by integrating y forward in time, obtaining λ(T ) via
the final condition in (6), and integrating λ backward in time. Because the
differential equations are linear, there exists a linear operator K2 such that
P2(yβ ,u) = K2(yβ ,u) + r0 with r0 = P2(0, 0). To calculate the solution,
which satisfies P2(yβ ,u) = 0, it suffices to solve K2(yβ ,u) = −r0 using a
Krylov subspace method such as GMRES. The preconditioning of such sys-
tems is an important topic that will be addressed in a future paper. Nonethe-
less, we have observed in our experiments that the local solves converge within
about 20 GMRES iterations, even without preconditioning.
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2.1 Energy Estimates

To illustrate the technique for obtaining error estimates, we first consider the
simple case of distributed control and observation with no target state (i.e.,
B = C = I, α2 = 0). By linearity, it suffices to consider the problem with
zero data (i.e. f(t), y0, ŷ and ŷT are all taken to be zero) and study how the
approximate solution converges to zero. To derive an energy estimate for the
first subdomain Ω×I1, where I1 = (0, β), we introduce the auxiliary variables
zk1 := yk

1 + rλk
1 , µ

k
1 := λk

1 − syk
1 with r, s > 0. Note that the parameters r

and s are not the same as the optimization parameters p and q and do not
appear in the algorithm; they are introduced for analysis purposes only and
must be chosen based on a given (p, q) pair. We now let H and S be the
symmetric and skew-symmetric parts of A, such that A = H+S, and rewrite
the problem (4) for subdomain I1 in terms of zk1 and µk

1 to get





∂tz
k
1 +

1

1 + rs
[(1− rs)H + (1 + rs)S − (α1r + s)I] zk1

+
1

1 + rs

[
(α1r

2 − 1)I − 2rH
]
µk

1 = 0,

∂tµ
k
1 +

1

1 + rs

[
(s2 − α1)I − 2sH

]
zk1

+
1

1 + rs
[(α1r + s)I − (1− rs)H + (1 + rs)S]µk

1 = 0.

Note that the matrix multiplying zk1 in the first equation is exactly the neg-
ative transpose of the matrix multiplying µk

1 in the second equation. This
means if we multiply the first and second equations by (µk

1)
⊤ and (zk1)

⊤ and
add the results, the mixed terms cancel. After integrating over (0, β), we
obtain the energy identity

0 = µk
1(β)

⊤zk1(β)− µk
1(0)

⊤zk1(0) +
1

1 + rs

∫ β

0

(µk
1)

⊤(α1r
2 − 2rH − 1)µk

1

+
1

1 + rs

∫ β

0

(zk1)
⊤(s2 − 2sH − α1)z

k
1

(8)
Similarly, for the second subdomain I2, we obtain

0 = µk
2(T )

⊤zk2(T )− µk
2(β)

⊤zk2(β) +
1

1 + r̂ŝ

∫ T

β

(µk
2)

⊤(α1r̂
2 − 2r̂H − 1)µk

2

+
1

1 + r̂ŝ

∫ T

β

(zk2)
⊤(ŝ2 − 2ŝH − α1)z

k
2 ,

(9)
where we used the auxiliary variables zk2 := yk

2 + r̂λk
2 and µk

2 := λk
2 − ŝyk

2 ,
with r̂, ŝ possibly different from r, s.
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To mimic the energy argument of [16], we need to ensure that the boundary
terms in (8), (9) correspond to differences of incoming and outgoing Robin
traces, and that the integral terms never change signs. This motivates the
following theorem.

Theorem 1. Consider the optimized Schwarz method (4)–(7) with B = C =
I and α2 = 0. Assume that

(i) The parameters r, s, r̂, ŝ are non-negative,
(ii) The matrices (1 − α1r

2)I + 2rH, (1 − α1r̂
2)I + 2r̂H, (α1 − s2)I + 2sH,

(α1 − ŝ2)I + 2ŝH are all positive definite,
(iii) There exist c1, c2 > 0 such that (µk

1)
⊤zk1 = c1‖λk

1+pyk
1‖2−c2‖yk

1 −qλk
1‖2,

(iv) There exist ĉ1, ĉ2 > 0 such that (µk
2)

⊤zk2 = ĉ1‖λk
2+pyk

2‖2− ĉ2‖yk
2 −qλk

2‖2.
Then the method satisfies the two-step error estimates

‖yk
1(β)− qλk

1(β)‖2 ≤ ρ2‖yk−2
1 (β)− qλk−2

1 (β)‖2, (10a)

‖λk
2(β) + pyk

2(β)‖2 ≤ ρ2‖λk−2
2 (β) + pyk−2

2 (β)‖2, (10b)

with ρ2 =
c1ĉ2
c2ĉ1

. In particular, the method converges if ρ2 < 1.

Proof. Consider the energies

Ek
1 =

1

1 + rs

∫ β

0

(µk
1)

⊤(1 + 2rH − α1r
2)µk

1 + (zk1)
⊤(α1 + 2sH − s2)zk1 ,

Ek
2 =

1

1 + r̂ŝ

∫ T

β

(µk
2)

⊤(1 + 2r̂H − α1r̂
2)µk

2 + (zk2)
⊤(α1 + 2ŝH − ŝ2)zk2 ,

which must be positive by Assumption (ii) unless µk
1 = zk1 = 0 or µk

2 = zk2 =
0. The energy equality (8) can then be written as

µk
1(β)

⊤zk1(β)− µk
1(0)

⊤zk1(0) = Ek
1 ≥ 0.

Using Assumption (iii) and the definition of µk
1 and zk1 , we get

c1‖λk
1(β)+pyk

1(β)‖2−c2‖yk
1(β)−qλk

1(β)‖2−(λk
1(0)−syk

1(0))
⊤(yk

1(0)+rλk
1(0)) = Ek

1 .

Since yk
1(0) = 0 by (5), we in fact have

c1‖λk
1(β) + pyk

1(β)‖2 − c2‖yk
1(β)− qλk

1(β)‖2 = Ek
1 + r‖λk

1(0)‖2 ≥ 0. (11)

But the transmission conditions (7) imply

c1‖λk−1
2 (β) + pyk−1

2 (β)‖2 ≥ c2‖yk
1(β)− qλk

1(β)‖2. (12)

A similar calculation on subdomain I2, using Assumptions (ii), (iv) and the
fact that λk

2(T ) = 0, yields
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ĉ2‖yk
2(β)− qλk

2(β)‖2 − ĉ1‖λk
2(β) + pyk

2(β)‖2 = Ek
2 + ŝ‖yk

2(T )‖2 ≥ 0. (13)

The transmission conditions (7) now imply that

ĉ2‖yk−1
1 (β)− qλk−1

1 (β)‖2 ≥ ĉ1‖λk
2(β) + pyk

2(β)‖2. (14)

Combining the inequalities (12) and (14) and shifting indices when necessary
leads to the two-step error estimates (10a)–(10b). If ρ2 < 1, then we have

‖yk
j (β)− qλk

j (β)‖ → 0 and ‖λk
j (β) + pyk

j (β)‖ → 0, j = 1, 2.

We thus conclude from (11) and (13) that Ek
j → 0 for j = 1, 2, which implies

that µk
j and zkj both go to zero. This in turn shows that the error in the

forward and adjoint states yk
j and λk

j converges to zero, as required. ⊓⊔

In order to prove convergence of the method for a given choice of optimized
parameters p and q, we need to show that there exists a choice of r, s, r̂, ŝ
such that the assumptions in Theorem 1 are satisfied. This is in fact possible
if we assume pq < 1, together with some mild assumptions on H. For a proof
of the following theorem, see [7].

Theorem 2. Let B = C = I and α2 = 0 (no target state). Assume that
H = 1

2 (A+ A⊤) is positive semi-definite. If p, q ≥ 0 satisfy pq < 1, then the
optimized Schwarz method (4)–(7) converges for any initial guess, provided
at least one of p and q is non-zero. Moreover, if H is positive definite, then
the method also converges for p = q = 0.

2.2 Choice of Parameters and Convergence Rates

We now show how to choose the parameters p, q in order to minimize the
contraction factor ρ in Theorem 1. First, if H is only assumed to be positive
semidefinite, then Assumption (ii) is satisfied provided

0 ≤ r, r̂ < 1/
√
α1, 0 ≤ s, ŝ <

√
α1. (15)

Now Assumption (iii) says

µ⊤
1 z1 = (λ1 − sy1)

⊤(y1 + rλ1) = c1‖λ1 + py1‖2 − c2‖y1 − qλ1‖2, (16)

while Assumption (iv) gives a similar relation for r̂ and ŝ. Expanding and
equating coefficients for λ⊤

1 λ1 and y⊤
1 y1 in (16) leads to the formulas

c1 =
r + q2s

1− p2q2
, c2 =

s+ p2r

1− p2q2
, (17)
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where the denominators are non-zero because pq < 1, as stated in Theorem
2. Equating coefficients for λ⊤

1 y1 leads to a compatibility condition between
r and s:

s =
−2pr + (1− pq)

2q + r(1− pq)
⇐⇒ r =

−2qs+ (1− pq)

2p+ s(1− pq)
.

For a given pair of optimized parameters (p, q) such that pq < 1, there are
many ways of choosing r (or, equivalently, s); our task is to choose r to obtain
the best estimate for the convergence factor ρ. Using the above expressions
to eliminate either r or s from (17) gives

c1
c2

=
q2 + 2qr + r2

1− 2pr + p2r2
=

(
q + r

1− pr

)2

=

(
1− qs

p+ s

)2

. (18)

After deriving a similar expression for ĉ1/ĉ2, we conclude that the contraction
factor ρ is

ρ =
q + r

1− pr
· p+ ŝ

1− qŝ
. (19)

Theorem 3. Let B = C = I and α2 = 0 (no target state). If H = 1
2 (A+A⊤)

is positive semidefinite, then the contraction factor ρ in (19) is minimized for

p =

√
α1√

2 + 1
, q =

1
√
α1(

√
2 + 1)

. (20)

For these parameters, the two-subdomain OSM converges with the contraction
factor

ρ = 3− 2
√
2 ≈ 0.1716.

Proof. Since r is a decreasing function of s (and vice versa), the contraction
factor in (19) can be minimized by choosing the smallest possible r and ŝ for
which the corresponding s and r̂ satisfy the upper bounds in (15). Thus, the
best choices of r and ŝ are given by

r = max

{
0,

−2q
√
α1 + (1− pq)

2p+
√
α1(1− pq)

}
, ŝ = max

{
0,

−2p+
√
α1(1− pq)

2q
√
α1 + (1− pq)

}
.

This leads to the following formula for the contraction factor,

ρ = max

{
q,

1− q
√
α1

p+
√
α1

}
·max

{
p,

√
α1 − p

q
√
α1 + 1

}
,

which must be minimized within the region {(p, q) : p > 0, q > 0, pq < 1}. A
somewhat tedious analysis shows that the minimum occurs for the values of
p and q shown in (20), with the contraction factor ρ = 3− 2

√
2. ⊓⊔

Remark. Since the contraction estimate is independent of the mesh pa-
rameter h and valid for any positive semidefinite matrix H, the above result
is robust with respect to spatial and temporal grid refinement.
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3 More Convergence Results

We now present two convergence results that hold in more general settings.
For a proof of these results, we refer to [7].

Multiple Subdomains. It is straightforward to generalize (4)–(7) to the
case of many time intervals. Theorem 2 holds for the general case as well.
The technique of energy estimates allows us to prove the following result
regarding convergence in the multiple subdomain case:

Theorem 4. Suppose B = C = I, α2 = 0. If H = 1
2 (A + A⊤) is positive

semi-definite and hT is the length of the shortest time sub-interval, then the
optimized Schwarz method (4)–(7) converges whenever pq < 1 and p, q are
not both zero. Moreover, the optimal parameter is given asymptotically by

popt =
√
α1 − α

2/3
1 (4hT )

1/3 +O(h
2/3
T ), qopt = popt/α1,

for which we have the contraction factor

ρopt = 1− 2hT
√
α1 +O((hT

√
α1)

5/3).

Control and Observation Over a Subset. Consider a problem with non-
trivial control and observation matrices B and C, so that the forcing terms
in (4) are restricted to parts of the domain that are controllable or observable.
In this case, the quantities inside the integrals in (8) become

(µk
1)

⊤(α1r
2C⊤C−2rH−BB⊤)µk

1 and (zk1)
⊤(s2BB⊤−2sH−α1C

⊤C)zk1 ,

both of which must be zero or negative for all zk1 and µk
1 in order for the

energy estimates to hold. This restricts the range of allowable parameters r
that can be chosen to minimize the contraction factor in (19). Together with
a similar criterion on s, we obtain the following theorem.

Theorem 5. Let α2 = 0 (no target state). Suppose that

ker(H) ∩ ker(C) ∩ range(B) = ker(H) ∩ ker(B⊤) ∩ range(C⊤) = {0}.

Then the method (4)–(7) with two subdomains converges if the non-negative
parameters p and q are chosen such that pq < 1 and (1 − pq)(1 − r∗s∗) <
2(pr∗ + qs∗), where

r∗ = min
µ∈range(C⊤)

µ6=0

µ⊤Hµ

α1‖Cµ‖2 +

√(
µ⊤Hµ

α1‖Cµ‖2
)2

+
‖B⊤µ‖2
α1‖Cµ‖2 > 0,

s∗ = min
z∈range(B)

z6=0

z⊤Hz

‖B⊤z‖2 +

√(
z⊤Hz

‖B⊤z‖2
)2

+
α1‖Cz‖2
‖B⊤z‖2 > 0.
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Its Error Ratio Error Ratio

1 9.9908e-001 9.9977e-001
2 1.3762e-001 0.1378 1.3810e-001 0.1381
3 2.0115e-002 0.1462 2.0266e-002 0.1468

4 3.0901e-003 0.1536 3.1234e-003 0.1541
5 4.9302e-004 0.1595 4.9936e-004 0.1599
6 8.0785e-005 0.1639 8.1899e-005 0.1640
7 1.3474e-005 0.1668 1.3659e-005 0.1668

8 2.2729e-006 0.1687 2.3023e-006 0.1686

Fig. 1 Left: velocity field used in the distributed control problem. Right: convergence of

OSM for two time sub-intervals.

4 Numerical Experiments

Distributed Control. To illustrate Theorem 3, we consider the optimal control
problem where the governing PDE is the two-dimensional advection-diffusion
equation

yt −∇ · (∇y + by) = u on Ω = (0, 1)× (0, 1)

with b = sinπx1 sinπx2

[
x2 − 0.5, 0.5− x1

]⊤
and no-flow conditions on ∂Ω.

The governing PDE is discretized using backward Euler in time and an up-
wind finite-difference discretization in space, with mesh parameters h = 1

16
and h = 1

32 respectively. The adjoint PDE is discretized using “forward” Eu-
ler, which is implicit because the adjoint runs backward in time. We solve
the optimal control problem (2) over the time horizon (0, T ) with T = 3,
α1 = 1 and α2 = 0, i.e., we do not have a target state. The time window
is subdivided into two intervals at β = 1. At the interface, we use Robin
interface conditions with the optimized parameters suggested by Theorem 3,
i.e., p = q =

√
2−1. The convergence history in Figure 1 shows that the error

ratios approach the convergence factor of 0.1716, as predicted by Theorem 3.

Control and Observation Over Subsets. For a more realistic example, we
consider the problem of pollution tracking, where the goal is to estimate the
rate at which a certain pollutant is released based on concentration readings
elsewhere in the domain. The governing equation is the 2D advection-diffusion
equation, where the domain is as shown in Figure 2. The flow field is computed
by solving the Stokes equation, where the curved part of the domain is a no-
flow boundary representing a shoreline, and the straight boundary contains
in-flow and out-flow boundary conditions. The source of the pollution is a
region near the centre of the domain, and we seek the rate of release that
minimizes the discrepancy between the predicted and observed concentration
at the point indicated by the red triangle on the curved boundary.
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Fig. 2 Top left: velocity field for the pollution tracking problem. Top right: concentrations
observed at one point on the boundary. Bottom left: concentration at t = 11 that best

matches the observations at the boundary point indicated by the red triangle. Bottom

right: release rate that yields the concentration to the left.

The advection-diffusion equation that models the concentration of pollu-
tants is discretized using backward Euler in time and a finite volume method
in space for unstructured grids, as presented in [2]. The resulting problem has
736 degrees of freedom in space, and the time interval of (0, T ) with T = 20
is split into 2, 4, 8 and 16 equal sub-intervals to test the optimized Schwarz
method. Applying the minimization procedure in Theorem 3 to the bounds
on r and s in Theorem 5, we determine the best parameters p and q to be
0.8563. We show in Figure 2 a snapshot of the concentration and source term
that best match the observed concentration shown in the bottom right panel.

In Figure 3, we show the convergence of the OSM as a stand-alone solver
and as a preconditioner used within GMRES. We see that the convergence
of the stationary method depends only very weakly on the number of subdo-
mains, even though Theorem 4 suggests that the number of iterations should
scale like O(1/N), where N is the number of subdomains. Nonetheless, when
Krylov acceleration is used, we still see a moderate increase in the number of
iterations as N increases. Thus, a coarse grid correction is most likely needed
to ensure the scalability of the method. The design of a two-level method
that incorporates coarse grid correction will be the subject of a future paper.
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Fig. 3 Convergence of the optimized Schwarz method applied to the pollution tracking

problem.
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