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1 Introduction

The high morbidity and mortality of stroke has caused a social and economic
burden in contemporary society. The underlying mechanisms of stroke are
not fully understood. Changes of cerebral hemodynamics might be one of the
critical factors that cause stroke. There are several techniques to detect the
hemodynamic alterations, one of which is through computer simulation by
solving partial differential equations that describe the physics of the blood
flow. For example, there are some numerical studies of blood flow through a
total cavopulmonary connection (Bazilevs et al. [2009]), the coronary (Taylor
et al. [2013]), cerebral aneurysms (Boussel et al. [2009], Cebral et al. [2005],
Takizawa et al. [2011]), and cerebrovascular arteries, which is the focus of
this paper (Moore et al. [2005]). In general, solving a fluid flow problem
with complex geometry in 3D is difficult. In this work, we employ a Newton-
Krylov-Schwarz (NKS) algorithm for solving large nonlinear systems arising
from a fully implicit discretization of the incompressible Navier-Stokes equa-
tions using the Galerkin/least squares (GLS) finite element method. NKS has
been applied for simple blood flow model problems previously (Hwang et al.
[2010]). In this work, we apply the algorithm to a patient-specific cerebrovas-
cular problem that is more complicated, since the cerebrovascular artery has
ischaemic stenosis, and the vessel wall is atherosclerotic. The rest of the pa-
per is organized as follows. In the next section, we provide a description of
the governing equations of blood flow in cerebral arteries, the finite element
discretization, and the parallel NKS based solution algorithm. In Section 3,
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numerical results and parallel performance study are presented. Some con-
cluding remarks are given in Section 4.

2 Blood flow model, discretization, and solution
algorithm

We assume that the blood flow is isothermal, incompressible, Newtonian and
laminar, and modeled by the unsteady Navier-Stokes equations,
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ρ

(
∂u

∂t
+ u · ∇u

)
−∇ · σ = 0 in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),
u = 0 on Γwall × (0, T ),
u = g on Γin × (0, T ),
σ · n = 0 on Γout × (0, T ),
u = u0 in Ω at t = 0,

(1)

where u=(u1, u2, u3)
T is the velocity field, ρ is the fluid density, and σ is the

Cauchy stress tensor defined as σ = −pI + 2µD, where p is the pressure,
I is the identity tensor, µ is dynamic viscosity, and the deformation rate
tensor D = 1

2 [∇u + (∇u)T ]. Ω ∈ R3 is the computational domain, with
three boundaries Γin, Γout and Γwall; Γin is the surface of the inlet, Γout

contains the surfaces of all outlets, and Γwall is the vessel wall. To close
the flow system, some proper boundary conditions need to be imposed. We
impose a uniform velocity, g, for the velocity on Γin; a stress-free boundary
condition on Γout, and a no-slip boundary condition on Γwall.

To discretize (1), we employ a P1 − P1 GLS finite element method for
the spatial domain, and an implicit first-order backward Euler scheme for
the temporal domain (Wu and Cai [2014]). The GLS finite element takes the

following form (Franca and Frey [1992]): Find u
(n+1)
h ∈ V g

h and p
(n+1)
h ∈ Ph,

such that
B(u

(n+1)
h , p

(n+1)
h ; v , q) = 0, ∀(v , q) ∈ V 0

h × Ph

with

B(u , p; v , q) =

(
u − u (n)

∆t
+ (∇u)u , v

)
+ (ν∇u ,∇v)− (∇ · v , p)

+
∑

K∈T h

(
u − u (n)

∆t
+ (∇u)u +∇p, τGLS((∇v)u −∇q)

)

K

−(∇ · u , q) + (∇ · u , δGLS∇ · v),

where V 0
h and V g

h are the weighting and trial velocity function spaces respec-
tively. Ph is a linear finite element space for the pressure and used for both
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the weighting and trial pressure function spaces. u (n) is the velocity vector
at the current time step, and u and p (we drop the superscript (n+ 1) here
for simplicity) are unknown velocity and pressure at the next time step. ν
is the kinematic viscosity. ∆t is the time step size. Note that T h = {K}
is a tetrahedral mesh. We use the stabilization parameters τGLS and δGLS

suggested in Franca and Frey [1992]. The GLS formulation can be written as
a nonlinear algebraic system

F (x) = 0, (2)

where x is the vector of nodal values of the velocity and the pressure.
We apply NKS to solve (2). NKS is an inexact Newton method in which the

Jacobian systems are solved by an one-level Schwarz preconditioned Krylov
subspace method, briefly described as follows: Let x(k) be the current approx-
imation of x, and x(k+1) the new approximation computed by the substeps:

Step 1: Solve the following preconditioned Jacobian system approximately
by GMRES to find a Newton direction s(k),

JkM
−1
k y = −F (x(k)), with s(k) = M−1

k y, (3)

where Jk is the Jacobian of F evaluated at Newton step k, and M−1
k is a

right preconditioner.
Step 2: Obtain the new approximation with a linesearch method,

x(k+1) = x(k) + λ(k)s(k), (4)

where λ(k) is a step length parameter.

We define the additive Schwarz preconditioner in the matrix form as

M−1
k =

N∑

i=1

(Rh
i )

TJ−1
i Rh

i ,

where J−1
i is the inverse of the subspace Jacobian Ji = Rh

i J(R
h
i )

T . We denote
Rh

i as the global-to-local restriction operator and (Rh
i )

T as the local-to-global
prolongation operator. The multiplication of J−1

i with a vector is solved by
a direct solver such as sparse LU decomposition or an inexact solver such as
ILU with some level of fill-ins.

3 A case study and discussions

We consider a pair of patient-specific cerebrovascular geometries provided
by the Beijing Tiantan Hospital, as shown in Figure 1. The pair of cerebral
arteries belongs to the same patient before and after the cerebral revascular-
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ization surgery respectively. In Figure 1, the left artery has a stenosis in the
middle, the right figure shows the same artery after the stenosis is surgically
removed. Our numerical simulations provide a valuable tool to understand
the change of the dynamics of the blood flow in the patient and the impact
of the surgery. For convenience, let us denote the artery with a stenosis as
“pre” and the repaired artery as “post”. Table 1 lists the number of vertices,
elements and unknowns of the finite element meshes that we generate for
solving the flow problems.

The blood flow is characterized with density ρ = 1.06 g/cm3, and viscosity
µ = 0.035 g/(cm · s). The inflow velocity profile is shown in Figure 2. The
time step size is ∆t = 10−2 s. For the algorithm parameters, the overlap-
ping size for the Schwarz preconditioner is set to be δ = 1, and subdomain
linear system is solved by ILU(1). The Jacobian system is solved inexactly
by using an additive Schwarz preconditioned GMRES with relative stopping
condition 10−4. We define Newton convergence with a relative tolerance of
10−6 or an absolute tolerance of 10−10. To observe the behavior of the blood
flow in systolic and diastolic phases, we respectively plot the numerical so-
lutions at t = 2.54 s and t = 3.2 s. Figure 3 shows the relative pressure
distributions, and Figure 4 shows the streamlines whose color indicates the
velocity magnitude. We focus on the comparison between the “pre” and

Fig. 1 3D tetrahedral meshes before and after the surgery. The narrowing cerebral artery
with a local refinement at the stenosed segment (left) and the repaired cerebral artery
(right).

Table 1 Mesh information for two cerebrovascular geometries.

Mesh # of vertices # of elements # of unknowns

pre 441,475 2,208,337 1,765,900

post 287,936 1,360,588 1,151,744

“post” cases. Figure 3 shows that the range of the relative pressure value of
the “pre” case is more than double that of the “post” case at the systolic and
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diastolic phases. Moreover, as shown in the same figure, the relative pressure
ratio between the anterior and posterior parts of the stenosed portion in the
“pre” case is large, and the relative pressure value of the “post” case at the
repaired portion has a smaller variation. From the streamline plots, the blood
flow is more disordered in the “pre” case than in the “post” case during both
the diastolic period and the systolic period. In addition, the maximum of the
velocity occurs at the stenosed portion in the “pre” case, and the variation
of the velocity distributions in the repaired portion is quite small. Similar to
the pressure distribution, the range of velocity magnitude of the “pre” case
is wider than the “post” case.

Fig. 2 Inflow velocity profile for 5 cardiac cycles discretized with 500 time steps.

We use the “post” case to test the parallel performance, and the simulation
is carried out for 10 time steps. Numerical results are summarized in Table 2.
“np” is the number of processor cores. “NI” denotes the number of Newton
iterations per time step, “LI” denotes the average number of GMRES itera-
tions per Newton step, “T” represents the total compute time in seconds and
“EFF” is the parallel efficiency. It is clear that for the iteration counts, the
algorithm is not sensitive to the overlapping size δ. For fixed np, the number
of average GMRES iterations decreases as the levels of fill-ins increases. The
number of Newton iterations is almost independent of the overlapping size
for the Schwarz preconditioner and levels of fill-ins of subdomain solvers, and
the average number of GMRES iterations increases slightly as the number of
processor cores grows. Hence, we claim that NKS is quite robust for the test
cases presented in this paper. For the best algorithmic parameter selection
of ILU fill level 2, and small overlap of 0 or 1, about 70% relative efficiency
is achieved in strong scaling between 32 and 128 processor cores.
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Fig. 3 Relative pressure distributions at t = 2.54 s (top) and t = 3.2 s (bottom) for pre
(left) and post (right).

Fig. 4 Streamlines at t = 2.54 s (top) and t = 3.2 s (bottom) for pre (left) and post
(right).

368 Wen-Shin Shiu, Zhengzheng Yan, Jia Liu, Rongliang Chen, Feng-Nan Hwang, Xiao-Chuan Cai



Table 2 Parallel performance of NKS with up to 128 processor cores.

np subsolver δ NI LI T EFF

32

ILU(0)

0 3 820.5 2860 100 %
1 3 814.1 2650 100 %

2 3 832.3 2805 100 %
3 3 838.2 2761 100 %

ILU(1)

0 2.9 351.8 1698 100 %
1 2.9 351.9 1717 100 %

2 2.9 360.7 1741 100 %
3 2.9 366.5 1805 100 %

ILU(2)

0 2.8 248.2 1563 100 %
1 2.8 248.1 1666 100 %

2 2.8 247.1 1600 100 %
3 2.8 251.2 1663 100 %

64

ILU(0)

0 2.9 828.1 1438 99 %
1 2.9 828.1 1413 94 %

2 3 839.3 1495 94 %
3 3 845.1 1527 90 %

ILU(1)

0 2.9 384.2 966 88 %
1 2.9 384.4 973 88 %

2 2.9 372.0 970 90 %
3 2.9 388.2 1042 87 %

ILU(2)

0 2.8 289.5 931 84 %
1 2.8 290.1 920 91 %

2 2.8 266.3 906 88 %
3 2.8 266.3 941 88 %

128

ILU(0)

0 3 842.9 845 85 %
1 3 843.0 836 79 %

2 3.6 876.5 1089 64 %
3 3.9 914.0 1584 44 %

ILU(1)

0 2.9 428.7 610 70 %
1 2.9 428.2 617 70 %

2 2.9 437.1 719 60 %
3 2.9 443.1 932 48 %

ILU(2)

0 2.8 324.8 570 69 %
1 2.8 324.8 572 73 %

2 2.8 300.9 583 69 %
3 2.8 286.2 596 70 %

4 Concluding remarks

We simulated blood flows in a pair of patient-specific cerebral arteries during
5 cardiac cycles by a fully implicit finite element discretization method and a
Newton-Krylov-Schwarz algebraic solver. The simulations show clearly that
the physics of the blood flow is more complicated before the surgery than
after the surgery, and the stenosis causes a large variation of the pressure and
velocity field. As to the NKS algorithm itself, we showed that the algorithm
is robust with respect to the overlapping size for the Schwarz preconditioner

Simulation of Blood Flow in Patient-specific Cerebral Arteries with a Domain Decomposi� . . . 369



and levels of fill-ins of subdomain solvers. A reasonably good scalability is
observed with up to 128 processor cores.
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