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1 Introduction

The weak Galerkin (WG) methods are a class of nonconforming finite ele-
ment methods, which were first introduced for a second order elliptic problem
in Wang and Ye [2014]. The idea of the WG is to introduce weak functions
and their weak derivatives as distributions, which can be approximated by
polynomials of different degrees. For second elliptic problems, weak func-
tions have the form of v = {v0, vb}, where v0 is defined inside each element
and vb is defined on the boundary of the element. v0 and vb can both be
approximated by polynomials. The gradient operator is approximated by a
weak gradient operator, which is further approximated by polynomials. These
weakly defined functions and derivatives make the WG methods highly flexi-
ble and these WG methods have been extended to different applications such
as Darcy in Lin et al. [2014], Stokes in Wang and Ye [2016], bi-harmonic in
Mu et al. [2014], Maxwell in Mu et al. [2015c], Helmholtz in Mu et al. [2015b],
and Brinkman equations in Mu et al. [2014]. In Mu et al. [2015a], the optimal
order of polynomial spaces is studied to minimize the number of degrees of
freedom in the computation.

The WG methods are closely related to the hybridizable discontinuous
Galerkin (HDG) methods, which were introduced by Cockburn and his col-
laborators in Cockburn et al. [2009]. As most DG methods, the WG methods
result in a large number of degrees of freedom and therefore require solving
large linear systems with condition number deteriorating with the refinement
of the mesh. Efficient fast solvers for the resulting linear system are neces-
sary. However, so far there are relatively few fast solvers for the WG methods.
Some multigrid methods, based on conforming finite element discretization,
are studied in Chen et al. [2015].
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The BDDC algorithms, introduced by Dohrmann for second order elliptic
problem in Dohrmann [2003], see also Mandel and Dohrmann [2003], Man-
del et al. [2005], are non-overlapping domain decomposition methods, which
are similar to the balancing Neumann-Neumann (BNN) algorithms. In the
BDDC algorithm, the coarse problems are given in terms of a set of primal
constraints. An important advantage with such a coarse problem is that the
Schur complements that arise in the computation will all be invertible. The
BDDC algorithms have been extended to the second order elliptic problem
with mixed and hybrid formulations in Tu [2005, 2007] and the Stokes prob-
lem in Li and Widlund [2006b].

In this paper, we apply the BDDC preconditioner directly to the system
arising from the WG discretization and estimate the condition number of the
resulting preconditioned operator using its spectral equivalence with that of
a hybridized RT method, which have been studied in Tu [2007].

The rest of the paper is organized as follows. An elliptic problem and
its WG discretization are described in Section 2. We introduce the BDDC
algorithms in Section 3 and analyze the condition number of the resulting
preconditioned operator in Section 4. Finally, some computational results are
given in Section 5.

2 An elliptic problem and its WG discretization

We consider the following elliptic problem on a bounded polygonal domain
Ω, in two dimensions, with a Dirichlet boundary condition:

{
−∇ · (ρ∇u) = f in Ω,
u = g on ∂Ω,

(1)

where ρ is a positive definite matrix function with entries in L∞(Ω) satisfying

ξT ρ(x)ξ ≥ α ‖ξ‖2 , for a.e. x ∈ Ω,

for some positive constant α, f ∈ L2(Ω), and g ∈ H1/2(∂Ω). Without loss
of generality, we assume that g = 0. If Ω is convex or has a C2 boundary,
the equation (1), with sufficiently smooth coefficient ρ, has a unique solution
u ∈ H2(Ω).

We will approximate u by introducing discontinuous finite element spaces.
Let Th be a shape-regular and quasi-uniform triangulation of Ω and denote
an the element in Th by κ. Let hκ be the diameter of κ and the mesh size
be h = maxκ∈Th

hT . Define E to be the union of edges of elements κ. Ei and
E∂ are the sets of the edges which are in interior of the domain and on its
boundary, respectively.

Let Pk(D) be the space of polynomials of order at most k on D and
Pk(D) = [Pk(D)]2. Define the weak Galerkin finite element spaces associated
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with Th as:

Vk = {v = {v0, vb} : v0|κ ∈ Pk(κ), vb|e ∈ Pk−1(e), ∀κ ∈ Th, e ∈ ∂κ}
= {v = {v0, vb} : v0 ∈ Wk, vb ∈ Mk−1},

where

Wk = {wh ∈ L2(Ω) : wh|κ ∈ Pk(κ), ∀κ ∈ Th},
Mk = {µh ∈ L2(E) : µh|e ∈ Pk(e), ∀e ∈ E}.

A function v ∈ Vk has a single value vb on each e ∈ E .
Let

V 0
k = {v ∈ Vk vb = 0 on ∂Ω}.

Denoted by ∇w,k−1, the discrete weak gradient operator on the finite el-
ement space Vk is defined as follows: for v = {v0, vb} ∈ Vk, on each element
κ ∈ Th, ∇w,k−1v|κ ∈ Pk−1(κ) is the unique solution of the following equation

(∇w,k−1v|κ,q)κ = −(v0,κ,∇ · q)+ < vb,κ,q · n >∂κ, ∀q ∈ Pk−1(κ),

where v0,κ and vb,κ are the restrictions of v0 and vb to κ, respectively,
(u,w)κ =

∫
κ
uwdx, and < u,w >∂κ=

∫
∂κ

uwds. To simplify the notation, we
will drop the subscript k − 1 in the discrete weak gradient operator ∇w,k−1.

The discrete problem resulting from the WG discretization of (1) can be
written as: find uh = {u0, ub} ∈ Vk such that

as(uh, vh) = a(uh, vh) + s(uh, vh) = (f, vh), ∀vh = {v0, vb} ∈ Vk, (2)

where

a(uh, vh) =
∑

κ∈Th

(ρ∇wuh,∇wvh)κ,

s(uh, vh) =
∑

κ∈Th

h−1
κ < Qbu0 − vb, Qbv0 − vb >∂κ,

and where Qb is the L2-projection from L2(e) to Pk−1(e), for e ∈ ∂κ. In Mu
et al. [2015a], (2) is proved to have a unique solution and the approximation
properties of the WG methods are also studied.

Given a uh ∈ Vk, let q|κ = ∇wuh|κ and write (2) as a system of q, u0, ub,
which is similar to the linear system resulting from the HDG discretization
with the local stabilization parameter h−1

κ . Given the value of ub on ∂κ, qκ

and u0 can be uniquely determined, see Cockburn et al. [2009]. Therefore,
by eliminating ∇wu|κ and u0 locally in each element, (2) can be reduced to
a system in ub only

Aub = b, (3)

A BDDC algorithm for the weak Galerkin discretizations 243



where b is the corresponding right-hand-side function.
In next section, we will develop a BDDC algorithm to solve the system in

(3) for the ub. To make the notation simple, we will denote ub by λ and the
finite element space for ub by Λ = {µ ∈ Mk−1 : µ|e = 0 ∀e ∈ ∂Ω}.

3 The BDDC algorithms and condition number bound

We decompose Ω into N non-overlapping subdomains Ωi with diameters Hi,
i = 1, · · · , N , and set H = maxi Hi. We assume that each subdomain is a
union of shape-regular coarse triangles and that the number of such trian-
gles forming an individual subdomain is uniformly bounded. We also assume
ρ(x), the coefficient of (1), is constant in each subdomain. We reduce the
global problem (3) to a subdomain interface problem. Let Γ be the inter-
face between subdomains. The set of the interface nodes Γh is defined as
Γh = (∪i6=j∂Ωi,h ∩ ∂Ωj,h) \ ∂Ωh, where ∂Ωi,h is the set of nodes on ∂Ωi and
∂Ωh is the set of nodes on ∂Ω.

We can decompose Λ into the subdomain interior and interface parts as

Λ =
N⊕

i=1

Λ
(i)
I

⊕
Λ̂Γ .

We denote the subdomain interface space of Ωi by Λ
(i)
Γ , and the associate

product space by ΛΓ =
∏N

i=1 Λ
(i)
Γ . R

(i)
Γ is the operator which maps functions

in the continuous interface numerical trace space Λ̂Γ to their subdomain

components in the space Λ
(i)
Γ . The direct sum of the R

(i)
Γ is denoted by RΓ .

We can eliminate the subdomain interior variables λ
(i)
I in each subdomain

independently and define the subdomain Schur complement S
(i)
Γ by: given

λ
(i)
Γ ∈ Λ

(i)
Γ , S

(i)
Γ λ

(i)
Γ is determined by such that

[
A

(i)
II A

(i)
IΓ

A
(i)T

IΓ A
(i)
ΓΓ

][
λ
(i)
I

λ
(i)
Γ

]
=

[
0

S
(i)
Γ λΓ

]
. (4)

The global interface problem is assembled from the subdomain interface
problems, and can be written as: find λΓ ∈ Λ̂Γ , such that

ŜΓλΓ = bΓ , (5)

where bΓ =
∑N

i=1 R
(i)T

Γ b
(i)
Γ , and ŜΓ =

∑N
i=1 R

(i)T

Γ S
(i)
Γ R

(i)
Γ . Thus, ŜΓ is a

symmetric, positive definite operator defined on the interface space Λ̂Γ . We
will propose a BDDC preconditioner for solving (5) with a preconditioned
conjugate gradient method.
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In order to introduce the BDDC precondition, we first introduce a partially
assembled interface space Λ̃Γ by

Λ̃Γ = Λ̂Π

⊕
Λ∆ = Λ̂Π

⊕(
N∏

i=1

Λ
(i)
∆

)
.

Here, Λ̂Π is the coarse level, primal interface space which is spanned by
subdomain interface edge basis functions with constant values at the nodes
of the edge for two dimensions. We change the variables so that the degree
of freedom of each primal constraint is explicit, see Li and Widlund [2006a]
and Klawonn and Widlund [2006]. The new variables are called the primal

unknowns. The space Λ∆ is the direct sum of the Λ
(i)
∆ , which are spanned

by the remaining interface degrees of freedom with a zero average over each
edge/face. In the space Λ̃Γ , we relax most continuity constraints across the
interface but retain the continuity at the primal unknowns, which makes all
the linear systems nonsingular.

We need to introduce several restriction, extension, and scaling operators

between different spaces. R
(i)

Γ restricts functions in the space Λ̃Γ to the com-

ponents Λ
(i)
Γ of the subdomain Ωi. R

(i)
∆ maps the functions from Λ̂Γ to Λ

(i)
∆ ,

its dual subdomain components. RΓΠ is a restriction operator from Λ̂Γ to its

subspace Λ̂Π . RΓ : Λ̃Γ → ΛΓ is the direct sum of the R
(i)

Γ and R̃Γ : Λ̂Γ → Λ̃Γ

is the direct sum of RΓΠ and the R
(i)
∆ . We define a positive scaling factor

δ†i (x) as follows: for γ ∈ [1/2,∞),

δ†i (x) =
ργi (x)∑

j∈Nx
ργj (x)

, x ∈ ∂Ωi,h ∩ Γh,

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj . We

note that δ†i (x) is constant on each edge/face, since we assume that the ρi(x)

is constant in each subdomain. Multiplying each row of R
(i)
∆ , with the scaling

factor δ†i (x), gives us R
(i)
D,∆. The scaled operators R̃D,Γ is the direct sum of

RΓΠ and the R
(i)
D,∆.

The partially assembled interface Schur complement is defined by S̃Γ =

R
T

Γdiag(S
(i)
Γ )RΓ and the preconditioned BDDC operator is then of the form:

find λΓ ∈ Λ̂Γ , such that

R̃T
D,Γ S̃

−1
Γ R̃D,Γ ŜΓλΓ = R̃T

D,Γ S̃
−1
Γ R̃D,Γ bΓ . (6)

This preconditioned problem is the product of two symmetric, positive defi-
nite operators and we can use the preconditioned conjugate gradient method
to solve it.
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4 Condition number bound

We first introduce one useful norm, which is defined in Gopalakrishnan [2003]
and Cockburn et al. [2014]. For any domain D, we denote the L2 norm by
‖ · ‖D. For any λ ∈ Λ(D), define

|||λ|||2D =


 1

h

∑

κ∈Th,κ⊆D̄

‖λ−mκ(λ)‖2L2(∂κ)




1/2

, (7)

where mκ = 1
|∂κ|

∫
∂κ

λds, and |∂κ| is the length of the boundary of κ.

We define the interface averaging operator ED, by

ED = R̃Γ R̃
T
D,Γ , (8)

which computes a weighted average across the subdomain interface Γ and
then distributes the averages to the degrees of freedom on the boundary of
the subdomains.

Similarly to the proof of [Tu and Wang, 2016, Lemma 5], using the spectral
equivalence of A, defined in (3), the linear system from the hybridized RT
method, and the norm defined in (7), we obtain that the interface averaging
operator ED satisfies the following bound:

Lemma 1. For any λΓ ∈ Λ̃Γ ,

|EDλΓ |2S̃Γ
≤ C

(
1 + log

H

h

)2

|λΓ |2S̃Γ
,

where C is a positive constant independent of H, h, and the coefficient of
(1).

As in the proof of [Li and Widlund, 2006b, Theorem 1] and [Tu and Wang,
2016, Theorem 1], using Lemma 1, we can obtain

Theorem 1. The condition number of the preconditioned operator M−1ŜΓ

is bounded by C(1 + log H
h )

2, where C is a constant which is independent of
h, H, and the coefficients ρ of (1).

5 Numerical Experiments

We have applied our BDDC algorithms to the model problem (1), where Ω =
[0, 1]2. We decompose the unit square into N ×N subdomains with the side-
length H = 1/N . Equation (1) is discretized, in each subdomain, by the kth-
order WG method with a element diameter h. The preconditioned conjugate
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Table 1 Performance with H/h = 8/# sub=64

ρ = 1 ρ checkboard pattern
k = 1 k = 1 k = 1 k = 2

H/h #sub Cond. Iter. Cond. Iter. Cond. Iter. Cond. Iter.

8 4× 4 2.22 6 3.50 7 1.80 5 2.37 5

8× 8 2.45 13 3.85 16 2.08 9 2.76 10

16× 16 2.45 14 3.86 17 2.16 14 2.87 15

24× 24 2.46 14 3.87 17 2.17 15 2.89 15

32× 32 2.46 14 3.87 17 2.18 15 2.90 16

#sub H/h Cond. Iter. Cond. Iter. Cond. Iter. Cond. Iter.

8× 8 4 1.78 11 2.90 14 1.67 9 2.33 10

8 2.45 13 3.86 16 2.08 9 2.76 10

16 3.29 15 4.95 18 2.49 10 3.18 10

24 3.85 17 5.67 18 2.74 10 3.43 11

32 4.28 17 6.21 19 2.91 10 3.60 11

gradient iteration is stopped when the relative l2-norm of the residual has
been reduced by a factor of 106.

We have carried out two different sets of experiments to obtain iteration
counts and condition number estimates. In the first set of experiments, we
take the coefficient ρ ≡ 1. In the second set of experiments, we take the
coefficient ρ = 1 in half the subdomains and ρ = 1000 in the neighboring
subdomains, in a checkerboard pattern. All the experimental results are fully
consistent with our theory.
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