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1 Introduction

The Balancing Domain Decomposition based on Constraints (BDDC) was intro-
duced by Dohrmann [2003] as an efficient method to solve large systems of linear
equations arising from the finite element method on parallel computers. Dohrmann
[2003] applied BDDC to elliptic problems, namely Poisson equation and linear elas-
ticity. Li and Widlund [2006] extended the method to the Stokes equations. How-
ever, the approach requires a discontinuous approximation of the pressure. An at-
tempt to apply the BDDC method in connection to a continuous approximation of
the pressure was presented by Šı́stek et al. [2011] employing Taylor-Hood finite el-
ements. Another construction of the BDDC preconditioner for the Stokes problem
with a continuous approximation of the pressure was proposed by Li and Tu [2013].

Hanek et al. [2015] combined the approach to building the interface problem by
Šı́stek et al. [2011] with the extension of BDDC to nonsymmetric problems from
Yano [2009]. The algorithm has been applied to linear systems obtained by Picard
linearisation of the Navier-Stokes equations. One step of BDDC is applied as a
preconditioner for the BiCGstab method. These generalizations have been imple-
mented to our open-source parallel multilevel BDDC solver BDDCML described
by Sousedı́k et al. [2013].

The main focus of this study is an investigation of the robustness of the algorithm
of Hanek et al. [2015] with respect to interface irregularities and element aspect
ratios. The motivation comes from simulations of hydrostatic bearings, where very
bad element aspect ratios appear. A benchmark problem of a narrowing channel is
proposed in two dimensions (2D) and three dimensions (3D), and numerical results
for this problem are presented.
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2 BDDC for Navier-Stokes equations

In this section, we briefly recall our approach to using BDDC for steady Navier-
Stokes problems. Details of the method can be found in Hanek et al. [2015].

A steady flow of an incompressible fluid in a two-dimensional (2-D) or three-
dimensional (3-D) domain Ω is governed by the Navier-Stokes equations without
body forces

(u ·∇)u−ν∆u+∇p = 0 in Ω , (1)
∇ ·u = 0 in Ω , (2)

where u is an unknown velocity vector, p is an unknown pressure normalised
by (constant) density, and ν is a given kinematic viscosity. In addition, the usual
‘no-slip’ boundary conditions u = g on ΓD and ‘do-nothing’ boundary conditions
−ν(∇u)n+ pn = 0 on ΓN are considered.

Applying the finite element method leads to a nonlinear system of algebraic equa-
tions (see e.g. Elman et al. [2005]). For its linearisation, we use the Picard iteration
and get the system [

νA+N(uk) BT

B 0

][
uk+1

pk+1

]
=

[
f
g

]
, (3)

where uk+1 is the vector of unknown coefficients of velocity in the (k+ 1)-th iter-
ation, pk+1 is the vector of unknown coefficients of the pressure, A is the matrix of
diffusion, N(uk) is the matrix of the advection where we substitute velocity from the
previous step, B is the matrix from the continuity equation, and f and g are discrete
right-hand side vectors arising from the Dirichlet boundary conditions. This already
linear nonsymmetric system is solved by means of iterative substructuring.

To this end, we decompose Ω into NS nonoverlapping subdomains. Degrees of
freedom shared by several subdomains form the interface, whereas the rest are in
the interior of subdomains. Importantly, for the Taylor–Hood elements employed in
this work, parts of both velocity and pressure unknowns form the interface, denoted
uΓ and pΓ , respectively (superscript k+1 will be omitted).

By eliminating interior unknown coefficients for velocity and pressure on each
subdomain, the local Schur complement Si can be formed. Finally, a global Schur
complement can be assembled as S = ∑NS

i=1 RΓ T
i SiRΓ

i , where RΓ
i is the 0–1 matrix

selecting the interface unknowns of the i-th subdomain from the global vector of
interface unknowns. We then solve the problem

S
[

uΓ
pΓ

]
= g, (4)

where g is the reduced right-hand side vector. In our implementation, Schur comple-
ments are not actually constructed. Instead, only their actions on vectors are evalu-
ated within each iteration of a Krylov method.
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Problem (4) is solved by the BiCGstab method and one step of BDDC is used
as a preconditioner. As usual, a coarse correction is combined with independent
subdomain corrections in each action of the preconditioner. The main difference of
the employed approach from the standard BDDC preconditioner as introduced by
Dohrmann [2003] is the need of the adjoint coarse basis functions for mapping fine
residuals to the coarse problem, following Yano [2009]. This involves solving two
saddle-point systems in the set-up phase of the preconditioner,

[
Si CT

i
Ci 0

][
Ψi
Λi

]
=

[
0
I

]
,

[
ST

i CT
i

Ci 0

][
Ψ ∗

i
Λ T

i

]
=

[
0
I

]
,

where Ci is the matrix defining the local coarse degrees of freedom, which has as
many rows as coarse degrees of freedom located in the subdomain. Finally, Ψi and
Ψ ∗

i are the matrices of standard and adjoint coarse basis functions.
As coarse degrees of freedom, we consider components of the velocity and the

pressure at several corners selected according to Šı́stek et al. [2012], and arithmetic
averages over edges and faces of subdomains. Constraints on their continuity in the
coarse space are enforced component-wise on the velocities as well as on the pres-
sure. The averaging at the interface unknowns applies diagonal matrix of weights to
satisfy the partition of unity. The weights correspond to the inverse of the number
of subdomains containing an interface unknown in this work.

3 Mesh partitioning

We compare two approaches to partitioning the computational domain and the mesh
into subdomains. A standard approach is based on a conversion of the computational
mesh into a graph. In the so-called dual graph, the finite elements represent vertices
of the graph and if two elements share an edge (in 2D) or a face (in 3D), the corre-
sponding graph vertices are connected by a graph edge. The task of partitioning a
mesh is translated into a problem of dividing a graph into subgraphs, with the goal
that the subgraphs contain approximately the same number of vertices and the num-
ber of edges connecting the subgraphs is minimized. We make use of the METIS
library (version 4.0) for this purpose.

Graph partitioning provides an automated way for dividing the computational
mesh into subdomains of well-balanced sizes even for complex geometries and
meshes. However, information about the geometry of the interface is lost during
the conversion into a graph, and the resulting interface can be very irregular. This is
a known issue studied mathematically for elliptic problems e.g. by Klawonn et al.
[2008].

Another, somewhat opposite, strategy is based on the geometry of the do-
main. The domain can be enclosed into its cuboidal bounding box [xmin,xmax]×
[ymin,ymax]× [zmin,zmax]. Two subdomains are created by bisecting the box into
halves, with the cutting plane perpendicular to the longest edge. In the recursive
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bisection (RCB) algorithm, the longest subdomain edge is found as the maximum
over subdomains, and one of the adjacent subdomains is bisected. This process is
repeated until the given number of subdomains is reached.

This algorithm does not work well for complex unstructured meshes, since the
strategy ignores numbers of elements in each block, and it can even create ‘empty
subdomains’ with no elements. Nevertheless, for simple cuboidal domains, it is
straightforward to produce a partition avoiding irregular interfaces. For a suitable
number of subdomains and regular meshes, subdomain sizes are well-balanced in
addition. In the rest of the paper, we refer to this strategy as the geometric partitioner.

Many geometries, including those of the hydrostatic bearings we aim at, are not
completely general and can be decomposed into several cuboidal blocks in the first
stage. In the second stage, each of these blocks can be partitioned as above.

4 Numerical results

Our computations aim at the influence of interface irregularities on the BDDC solver
for Navier-Stokes equations. In particular, we investigate the effect of the aspect
ratio of the finite elements at the interface on convergence. This is motivated by our
target application—simulations of oil flow in hydrostatic bearings with very narrow
throttling gaps. In order to study this phenomenon, a benchmark problem suitable
for such a study is proposed and the partitioning strategies described in Section 3
are compared.

The computations are performed by a parallel finite element package written in
C++ and described by Šı́stek and Cirak [2015], with the BDDCML library being
used for solving the arising systems of linear equations. The Picard iteration is ter-
minated based on the change of subsequent solutions when

∥∥uk −uk−1
∥∥

2 ≤ 10−5

or after performing 100 iterations. The BiCGstab method is stopped based on the
relative residual if

∥∥rk
∥∥

2 /‖g‖2 ≤ 10−6, with the limit of 1000 iterations.
As a measure of convergence, we monitor the number of BiCGstab iterations

needed in one Picard iteration. Two matrix-vector multiplications are needed in each
iteration of BiCGstab, and after each of them, the terminal condition is evaluated.
Correspondingly, inspired by the Matlab bicgstab function, termination after the
first matrix-vector multiplication is reported by a half iteration in the BiCGstab iter-
ation counts. Numbers of iterations are presented as minimum, maximum, and mean
over all nonlinear iterations for a given case.

The benchmark problem consists of a sequence of simple channels in 2D (Fig. 1)
and 3D (Fig. 2). The dimension of the channels along one or two (in 3D) coordinates
is gradually decreased, with the initial dimensions 10×1×1 along the x, y, and z
axes.

The computational mesh is based on rectangular (in 2D) or cuboidal (in 3D)
finite elements uniformly distributed along each direction. The number of elements
is 100×10×10 along the x, y and z coordinates. In total, the 3-D problem contains
10 000 elements, 88 641 nodes, and 278 144 unknowns.
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Fig. 1 The narrowing channel 2-D benchmark; original channel (left) and narrowing along the
y-axis (right).

Fig. 2 The narrowing channel 3-D benchmark; original channel (left), narrowing along the y-axis
(centre), and narrowing along both y and z-axes (right).

Fig. 3 Detail of the interface between two subdomains in 2D for graph (left) and geometric (right)
partitioner.

The aspect ratio of elementsA= hmax/hmin is defined as the ratio of the longest
edge of the element hmax to its shortest counterpart hmin. TheA = 1 corresponds
to square (or cubic) elements. We test the sequence of narrowing channels forA ∈
{1,2,4,10,20,40,100}.

The velocity at the inlet starts from g = (1,0,0)T for x = 0, the velocity at the
walls is fixed to g = 0, and the face of the channel for x = 10 corresponds to ΓN .
We have considered two scenarios for the inflow velocity during the narrowing. The
first is simply keeping the magnitude of the velocity fixed throughout the sequence.
In the second scenario, the magnitude of the velocity is increased proportionally to
the decrease of the height, so that the Reynolds number, defined as Re = |u|D

ν , is
kept constant for the decreasing channel height D. However, results for both sce-
narios of the inlet boundary condition have been almost identical, and we present
only the results for fixed Reynolds number for brevity. We use ν = 1 for our com-
putations. The channel is divided into 4 subdomains by the graph and the geometric
partitioners described in Section 3.

First we look at the two-dimensional problem. For the graph partitioner, the inter-
face contains both long and short edges of elements. On the other hand, the interface
is composed solely from short edges for the geometric partitioner (see Fig. 3). Cor-
responding results are in Table 1.

For the 3-D case, we consider two kinds of problems. First we decrease only
the y-dimension of the channel, while in the second case, we shrink both y and z
dimensions of the cross-section (see Fig. 2). The graph partitioner produces rough
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Fig. 4 Detail of the interface between two subdomains for narrowing along the y-coordinate in 3D
for graph (left) and geometric (right) partitioner.

Fig. 5 Solution in the initial 3-D channel geometry; magnitude of velocity (left) and pressure in
the plane of symmetry (right).

partitioner graph geometric

A 1 2 4 10 20 40 100 1 2 4 10 20 40 100

Picard its. 4 4 5 5 7 6 40 3 4 5 5 6 6 5

BiCGstab its.
min 9 10.5 13.5 13.5 15 16.5 17.5 4.5 4.5 4.5 4 3 3 3
max 9.5 10.5 13.5 15 16 17.5 19.5 4.5 4.5 4.5 4 3 3 3
mean 9.4 10.5 13.5 14.2 15.2 16.7 18.1 4.5 4.5 4.5 4 3 3 3

Table 1 Numbers of iterations for graph and geometric partitioners for 2-D narrowing channel.

interface in both cases, while the geometric partitioner leads to rectangular faces
at the interface in the first case (see Fig. 4) and square faces in the second case.
Resulting numbers of iterations are presented in Tables 2 and 3. Numbers in italic
are runs that did not converge due to reaching the maximal number of iterations
or time restrictions. A solution of the problem for the initial channel geometry is
presented in Fig. 5.

From Tables 1, 2, and 3 we can conclude thatA of faces at the interface has a re-
markable influence on the number of BiCGstab iterations in each Picard iteration.

Using the graph partitioner results in a rough interface combining long and short
edges. This has a large impact on the efficiency of the BDDC preconditioner and
the number of linear iterations increases significantly.

Employing the geometric partitioner leads to straight cuts between subdomains
aligned with layers of elements. In 2D, this is sufficient to achieve convergence of
the linear solver independent ofA. In 3D, the situation is more subtle. For the case
of narrowing the channel only along the y-axis, the aspect ratio of the rectangular
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partitioner graph geometric

A 1 2 4 10 20 40 100 1 2 4 10 20 40 100

Picard its. 4 5 5 42 5 100 100 4 5 5 5 5 5 99

BiCGstab its.
min 17.5 20 25.5 44.5 84.5 145 400 5.5 6.5 7.5 11.5 16 19.5 19.5
max 18.5 20.5 25.5 51 113.5 858 1000 5.5 6.5 7.5 12 17.5 19.5 21
mean 18.3 20.4 25.5 46.2 93.9 209 761 5.5 6.5 7.5 11.9 17.2 19.5 19.5

Table 2 Numbers of iterations for graph and geometric partitioners for 3-D channel narrowed
along the y-coordinate.

partitioner graph geometric

A 1 2 4 10 20 40 100 1 2 4 10 20 40 100

Picard its. 4 4 4 5 8 19 28 4 4 4 5 5 5 4

BiCGstab its.
min 17.5 19.5 27.5 36 51 80 197 5.5 5.5 6 5 4.5 4.5 4.5
max 18.5 20.5 28 41.5 53 92.5 1000 5.5 6 6 5.5 5 5 4.5
mean 18.3 19.8 27.9 39.5 51.8 87.7 590 5.5 5.9 6 5.1 4.9 4.6 4.5

Table 3 Numbers of iterations for graph and geometric partitioners for 3-D channel narrowed
along both y and z-coordinates.

element faces at the interface also worsens during contracting the channel. This is
translated into a slight growth of the number of BiCGstab iterations in Table 2 even
in this case, although the convergence is much more favourable than for the graph
partitioner. If we narrow the channel along both y and z coordinates, the shape of
the element faces at the interface does not deteriorate from squares, and we observe
fast convergence independent ofA in Table 3.

5 Conclusion

We have investigated the influence of an irregular interface on the performance of
the BDDC method for Navier-Stokes equations. A benchmark problem of a nar-
rowing channel in 2D and 3D has been proposed to evaluate the impact of aspect
ratios of finite elements on the convergence of iterative solvers for the arising sys-
tem of equations. A simple partitioning strategy based on an application of a regular
geometric division of simple sub-blocks of the computational mesh has been pre-
sented. This approach was applied to the benchmark channel problems. The number
of BiCGstab iterations required when using the geometric partitioner has been com-
pared to the number of iterations required when using a graph partitioner. This rather
simple idea has dramatically improved convergence of our BDDCML solver. Our
next aim is to apply the idea to real geometries of hydrostatic bearings with block
structured meshes. The preliminary results in this direction are very promising.
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parallel BDDC preconditioner to the Stokes flow. Comput. & Fluids, 46:429–
435, 2011.
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