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1 Introduction

Image denoising problem is one of classical problems in imaging science. In
1992, Rudin et al. [9] proposed the following denoising model,

min
u∈BV (Ω)

{
λ

2

∫

Ω

(u− f)2 dx+

∫

Ω

|∇u| dx
}
, (1)

where Ω is the domain of image and f is an observed image corrupted by
noise. Here, the space of functions of bounded variation is defined as

BV (Ω) =

{
u ∈ L1(Ω) : sup

φ∈C1
c (Ω,R2),‖φ‖∞≤1

∫

Ω

u(x) divφ(x) dx < ∞
}
.

This model has an anisotropic diffusion property so that the edge of the image
is preserved.

Recently, as the number of CPUs and cores in a computer are increased,
there have been attempts to solve this problem parallely using the domain
decomposition technique. For example, see [3, 4, 5, 6, 7, 8, 11]. Since the
problem is nonsmooth and not separable, it is not easy to show the conver-
gence of the domain decomposition algorithm. Tseng [10] showed that if the
function is separable, block Gauss-Seidel algorithm converges to the mini-
mizer, but (1) is not of this case. Fornasier et al.[6] and Xu et al.[11] used
overlapping domain decomposition methods to overcome this difficulty. Also,
Fornasier and Schönlieb [5] proved the convergence of nonoverlaping domain
decomposition method under certain assumptions.
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The main point of the domain decomposition approach is that instead
of solving one large problem, several small problems are solved in parallel to
reduce the computing time. In [4], Fornasier pointed out that the subproblems
should reproduce the original problem at smaller dimensions, but it is difficult
to satisfy this requirement since the boundary conditions of local subdomain
problems should be considered.

In this paper, we propose new domain decomposition techniques consider-
ing this requirement. First we decompose the domain of the dual form of (1),
discovered by Chambolle [1], into nonoverlapping rectangular subdomains.
Then we change the local dual problems into the equivalent primal forms so
that our methods use same algorithms to solve the original problem and local
problems which can be solved in parallel.

2 Preliminaries

We assume that the image domain Ω consists of N ×N discrete points, i.e.,

Ω = [1, 2, ..., N ]× [1, 2, ..., N ].

We define the function space V as a set of functions from Ω into R and V ∗

as a set of functions from Ω into R2 with the usual Euclidean inner product.
The operator ∇: V → V ∗ is defined by

(∇u)1ij =

{
ui+1,j − uij for i = 1, ..., N − 1,

0 for i = N,

(∇u)2ij =

{
ui,j+1 − uij for j = 1, ..., N − 1,

0 for j = N.

We define an operator div: V ∗ → V by −∇∗ (the adjoint of ∇).
For simplicity, we decompose the image domain Ω into two subsets Ω1

and Ω2 such that

Ω1 = [1, ..., N ]× [1, ..., N1],

Ω2 = [1, ..., N ]× [N1, ..., N ].

Then the interface Γ is

Γ = [1, ..., N ]× [N1].

For each subdomain, we define the local function spaces
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V1 = {u ∈ V | supp(u) ⊂ Ω1},
V2 = {u ∈ V | supp(u) ⊂ Ω2},
V ∗
1 = {p ∈ V ∗ | supp(p) ⊂ Ω1\Γ},

V ∗
2 = {p ∈ V ∗ | supp(p) ⊂ Ω2}.

Note that V = V1 + V2, and V ∗ = V ∗
1 ⊕ V ∗

2 .
We also define the local operators as the restriction of global operators

∇ and div to these spaces. More precisely, the operator ∇Ω1
: V1 → V ∗

1 is
defined as

(∇Ω1
u)1ij =

{
ui+1,j − uij for i = 1, ..., N − 1,

0 for i = N,

(∇Ω1
u)2ij =

{
ui,j+1 − uij for j = 1, ..., N1 − 1,

0 for j = N1, ..., N.

We define ∇Ω2
: V2 → V ∗

2 with similar manner. We define divΩ1
: V ∗

1 → V1 by
−∇∗

Ω1
and divΩ2

: V ∗
2 → V2 by −∇∗

Ω2
.

3 Proposed Algorithms

We consider the following discrete version of (1),

min
u∈V

{
λ

2
‖u− f‖2V +

∑

Ω

|∇u|
}

for f ∈ V. (2)

Our result is based on the following two propositions which are summarized
in Section 2 of [1].

Proposition 1. The following two statements are equivalent.

(i) ū = argmin
u∈V

{
λ

2
‖u− f‖2V +

∑

Ω

|∇u|
}

(ii) There exists p ∈ V ∗ such that





f − 1
λdivp = ū

p = arg min
|p|≤1

∥∥∥∥
1

λ
divp− f

∥∥∥∥
2

V

Proposition 2 (Optimality Condition). The following two statements
are equivalent.
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(i) p = arg min
|p|≤1

∥∥∥∥
1

λ
divp− f

∥∥∥∥
2

V

(ii)

{
−∇( 1λdivp− f) + |∇( 1λdivp− f)|p = 0 in Ω
|p| ≤ 1

Now, we propose the block Gauss-Seidel algorithm for the primal problem (2).

Algorithm: Block Gauss-Seidel

Initialize u
(0)
2 := 0, f

(0)
2 := 0

For n = 0, 1, ...

(f
(n+1)
1 )ij = (u

(n)
2 − f

(n)
2 + f)ij for (i, j) ∈ Ω1

u
(n+1)
1 = arg min

u1∈V1





λ

2
‖u1 − f

(n+1)
1 ‖2V1

+
∑

Ω1\Γ
|∇Ω1

u1|





(f
(n+1)
2 )ij = (u

(n+1)
1 − f

(n+1)
1 + f)ij for (i, j) ∈ Ω2

u
(n+1)
2 = arg min

u2∈V2





λ

2
‖u2 − f

(n+1)
2 ‖2V2

+
∑

Ω2

|∇Ω2
u2|





u(n+1) = f − f
(n+1)
1 − f

(n+1)
2 + u

(n+1)
1 + u

(n+1)
2

end

Theorem 1. The sequence u(n) of the block Gauss-Seidel algorithm converges
to the minimizer of the problem (2).

Proof. By the proposition 1, u
(n)
1 , u

(n)
2 , f

(n)
1 , f

(n)
2 , and u(n) are bounded

sequences. Suppose that u(∞) is the limit point of the sequence u(n). Then
there exists a subsequence u(nk) which converges to u(∞). Now we claim that
u(∞) is the solution of (2).

By the propositions 1 and 2, there exists p
(n)
1 ∈ V ∗

1 , p
(n)
2 ∈ V ∗

2 for all
n ≥ 1 such that in Ω1\Γ ,





f
(n)
1 − 1

λdivΩ1
p
(n)
1 = u

(n)
1 ,

−∇Ω1
( 1λdivΩ1

p
(n)
1 − f

(n)
1 ) + |∇Ω1

( 1λdivΩ1
p
(n)
1 − f

(n)
1 )|p(n)

1 = 0 ,

|p(n)
1 | ≤ 1,

and in Ω2,





f
(n)
2 − 1

λdivΩ2
p
(n)
2 = u

(n)
2 ,

−∇Ω2
( 1λdivΩ2

p
(n)
2 − f

(n)
2 ) + |∇Ω2

( 1λdivΩ2
p
(n)
2 − f

(n)
2 )|p(n)

2 = 0 ,

|p(n)
2 | ≤ 1.
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By refining the subsequences, we can assume that f
(nkj

)

1 → f
(∞)
1 , f

(nkj
)

2 →
f
(∞)
2 , p

(nkj
)

1 → p
(∞)
1 , p

(nkj
)

2 → p
(∞)
2 , p

(nkj
−1)

2 → p̃
(∞)
2 , u

(nkj
)

1 → u
(∞)
1 , and

u
(nkj

)

2 → u
(∞)
2 . By the proposition 2, the following monotone property holds

for all n ≥ 1;

∥∥∥∥
1

λ
div(p

(n)
1 + p

(n)
2 )− f

∥∥∥∥ ≥
∥∥∥∥
1

λ
div(p

(n+1)
1 + p

(n)
2 )− f

∥∥∥∥

≥
∥∥∥∥
1

λ
div(p

(n+1)
1 + p

(n+1)
2 )− f

∥∥∥∥

so that div(p
(∞)
1 + p

(∞)
2 ) = div(p

(∞)
1 + p̃

(∞)
2 ). As j → ∞, in Ω1\Γ ,





f∞
1 − 1

λdivΩ1
p
(∞)
1 = u

(∞)
1 ,

−∇Ω1
( 1λdivΩ1

p
(∞)
1 − f

(∞
1 )) + |∇Ω1

( 1λdivΩ1
p
(∞)
1 − f

(∞)
1 )|p(∞)

1 = 0 ,

|p(∞)
1 | ≤ 1,

(3a)
and in Ω2,





f
(∞)
2 − 1

λdivΩ2
p
(∞)
2 = u

(∞)
2 ,

−∇Ω2
( 1λdivΩ2

p
(∞)
2 − f

(∞)
2 ) + |∇Ω2

( 1λdivΩ2
p
(∞)
2 − f

(∞)
2 )|p(∞)

2 = 0 ,

|p(∞)
2 | ≤ 1.

(3b)

Let p(∞) = p
(∞)
1 + p

(∞)
2 . We claim that

(i) f − 1

λ
divp(∞) = f − f

(∞)
1 − f

(∞)
2 + u

(∞)
1 + u

(∞)
2 .

(ii) −∇
( 1

λ
divp(∞) − f

)
+

∣∣∣∇
( 1

λ
divp(∞) − f

)∣∣∣p(∞) = 0.

(iii) |p(∞)| ≤ 1.

The statement (i) is established by adding (3a) and (3b) and the state-
ment (iii) is trivial. We have

∇Ω1

( 1

λ
divΩ1

p
(∞)
1 − f

(∞)
1

)
= ∇

( 1

λ
divΩ1

p
(∞)
1 +

1

λ
divΩ2

p̃
(∞)
2 − f

)

= ∇
( 1

λ
divp(∞) − f

)
in Ω1\Γ ,

∇Ω2

( 1

λ
divΩ2

p
(∞)
2 − f

(∞)
2

)
= ∇

( 1

λ
divΩ1

p
(∞)
1 +

1

λ
divΩ2

p
(∞)
2 − f

)

= ∇
( 1

λ
divp(∞) − f

)
in Ω2,

which proves the statement (ii) and u(∞) is the solution of (2). Since the
solution of (2) is unique, the result follows. ⊓⊔
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Next, we propose the relaxed block Jacobi algorithm as a parallel algorithm.

Algorithm: Relaxed Block Jacobi

Initialize v
(0)
1 := 0, v

(0)
2 := 0.

For n = 0, 1, ...

(f
(n+1)
1 )ij = (−v

(n)
2 + f)ij for (i, j) ∈ Ω1

(f
(n+1)
2 )ij = (−v

(n)
1 + f)ij for (i, j) ∈ Ω2

ũ
(n+1)
1 = arg min

u1∈V1





λ

2
‖u1 − f

(n+1)
1 ‖2 +

∑

Ω1\Γ
|∇Ω1

u1|





ũ
(n+1)
2 = arg min

u2∈V2





λ

2
‖u2 − f

(n+1)
2 ‖2 +

∑

Ω2

|∇Ω2
u2|





v
(n+1)
1 =

v
(n)
1 + f

(n+1)
1 − ũ

(n+1)
1

2

v
(n+1)
2 =

v
(n)
2 + f

(n+1)
2 − ũ

(n+1)
2

2

u(n+1) = f − v
(n+1)
1 − v

(n+1)
2

end

Lemma 1. In the relaxed block Jacobi algorithm, we have ‖v(n+1)
1 −v

(n)
1 ‖V1

→
0 and ‖v(n+1)

2 − v
(n)
2 ‖V2

→ 0 as n → ∞.

Sketch of Proof. By the proposition 1, there exist p̃
(n+1)
1 ∈ V ∗

1 and p̃
(n+1)
2 ∈

V ∗
2 such that

p̃
(n+1)
1 = arg min

p1∈V ∗
1

∥∥∥∥
1

λ
divΩ1

p1 + v
(n)
2 − f

∥∥∥∥
V1

,

p̃
(n+1)
2 = arg min

p2∈V ∗
2

∥∥∥∥
1

λ
divΩ2

p2 + v
(n)
1 − f

∥∥∥∥
V2

.

By the triangle inequality and minimization property, the result follows. ⊓⊔
With this lemma, one can easily prove the following theorem.

Theorem 2. The sequence u(n) of the relaxed block Jacobi algorithm con-
verges to the minimizer of the problem (2).

4 Numerical Results

In this section, we compare our domain decomposition algorithms with the
first order primal dual algorithm in [2]. We used the following stop criterion
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to the relaxed block Jacobi algorithm and Algorithm 2 in [2] solving the full
dimension problem (2):

‖u(n+1) − u(n)‖V
‖u(n+1)‖V

< 10−5

with the parameters τ = 1/
√
8, σ = 1/

√
8, γ = 0.7λ, which are used to run

Algorithm 2 in [2]. We choose the weight parameter λ in (1) as 7 empirically.
For the local problems, we also used Algorithm 2 in [2] with the following
stop criterion

‖u(n+1)
i − u

(n)
i ‖V

‖u(n+1)
i ‖V

< 10−6.

We tested two images of size 512 × 512 and 2048 × 3072, corrupted by
additive zero mean Gaussian noise with variance 0.03. Table 1 shows the
performance of the algorithm with the varying number of subdomains.

Peppers 512× 512 Boat 2048× 3072

domain iter
virtual wall-clock

PSNR iter
virtual wall-clock

PSNR
time (sec) time (sec)

1x1 1 3.59 27.39 1 115.48 28.79

2x2 54 6.69 27.39 39 324.12 28.79

4x4 66 2.26 27.39 52 153.13 28.79

8x8 81 1.44 27.39 63 24.83 28.79

16x16 96 1.12 27.39 75 10.28 28.79

Table 1 Results of the proposed algorithm. The results for 1× 1 domain are from Algo-

rithm 2 in [2].

(a) (b) (c)

Fig. 1 (a) Original clean image of size 512 × 512, (b) Noisy image with Gaussian noise

with zero mean and 0.03 variance (PSNR=15.66), (c) Denoised image with weight λ = 7

in (2).
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(a) (b) (c)

Fig. 2 (a) Original clean image of size 2048× 3072, (b) Noisy image with Gaussian noise

with zero mean and 0.03 variance (PSNR=15.66), (c) Denoised image with weight λ = 7

in (2).
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