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1 Introduction

Optimizing parameters involved in the transmission conditions of subdomain
iterations leads to the well-known optimized Schwarz methods, see [2, 3] and
references therein, where for analysis usually a model problem is considered
on R2, decomposed into two half planes with a straight interface. In applica-
tions the interface is however seldom straight, which creates a gap between
theory and applications. After early steps in [4], several research efforts have
been devoted to close this gap: for a general curved interface, transmission
conditions involving the local interface curvature using micro-local analysis
were derived in [1], but they are not optimal. When the curved interface is
simple, for example a circle, it was shown in [5] and [7] that the curvature
enters the transmission parameters and the corresponding estimates of the
convergence factors, and that optimized transmission parameters can be well
approximated using parameters from straight interface analysis, provided the
curvature is included through a proper scaling. For cylindrical interfaces, see
[8]. This analysis can however not show if any other geometric characteristics
enter the optimized transmission parameters for a general curved interface,
apart from the curvature. We examine here the situation of a parabolically
shaped interface, and show that in addition to the interface curvature, other
information of the interface will also enter the optimized transmission param-
eters. In applications with curved interfaces, optimized transmission param-
eters from the straight interface analysis are often used locally without any
theoretical explanation and lead to fairly good performance, see for example
[2]. We will also compare our new results with this approach.
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Fig. 1 Domain decomposition with parabolic interfaces.

2 Schwarz methods with parabolic interfaces

We consider the model problem

(∆− η)u = f, in Ω,
u = 0, on ∂Ω,

(1)

where η > 0 is a model parameter, Ω = {(x, y)|x = 1
2 (τ

2 − σ2), y = στ, σ ∈
(0, 1), τ ∈ (0, 1)}. Using the so-called parabolic coordinates

y = στ, x =
1

2
(τ2 − σ2), (2)

we have Ω = {(x(σ, τ), y(σ, τ))|0 < σ < 1, 0 < τ < 1}. We introduce the
decomposition Ω = Ω1∪Ω2 with Ω1 = {(x(σ, τ), y(σ, τ))|0 < σ < σ0+L, 0 <
τ < 1} and Ω2 = {(x(σ, τ), y(σ, τ))|σ0 < σ < 1, 0 < τ < 1} where σ0 is a
constant satisfying 0 < σ0 < 1 and L ≥ 0 is a constant that describes the
overlap. If L = 0, there is no overlap. The curves Γ1 = {(x(σ, τ), y(σ, τ))|σ =
σ0 + L, 0 < τ < 1} and Γ2 = {(x(σ, τ), y(σ, τ))|σ = σ0, 0 < τ < 1} are the
artificial interfaces, see Fig. 1.

A general parallel Schwarz algorithm is then given by

(∆− η)uni = f in Ωi,
uni = 0 on ∂Ωi\Γi,

Bi(u
n
i ) = Bi(u

n−1
j ) on Γi, 1 ≤ i 6= j ≤ 2,

(3)

where Bi, i = 1, 2, are transmission conditions to be chosen. It is well known
that for fast convergence, the transmission operators Bi, i = 1, 2 should be
chosen as ∂ni

+ Si, with Si local differential operators along the interfaces
approximating the Dirichlet to Neumann operators [2, 3].

The Schwarz method (3) is usually analyzed with Fourier techniques, but
in the case of parabolic interfaces this is not possible. Noting that the trans-

290 Martin Gander, Yingxiang Xu



form (2) is a conformal map with scale factor H =
√
σ2 + τ2, the model

problem (1) becomes

( 1
σ2+τ2∆στ − η)u(σ, τ) = f(σ, τ), in Ω,

u(σ, τ) = 0, on ∂Ω.
(4)

Choosing the transmission operators Bi, i = 1, 2 as Bi = ∂σ + Si, we then
obtain the Schwarz method (3) as

( 1
σ2+τ2∆στ − η)uni (σ, τ) = f(σ, τ) in Ωi,

uni (σ, τ) = 0 on ∂Ωi\Γi,
(∂σ + Si)(u

n
i ) = (∂σ + Si)(u

n−1
j ) on Γi, 1 ≤ i 6= j ≤ 2.

(5)

3 Optimized local transmission conditions

We now determine the optimized local operators Si, i = 1, 2. Since the Fourier
transform can not be used, we apply the technique of separation of variables,
which has been employed successfully in analyzing optimized Schwarz meth-
ods for model problems with variable reaction term in [6]. To this end, we
assume that the function u(σ, τ) is separable, u(σ, τ) = φ(σ)ψ(τ), or equiv-
alently, uni (σ, τ) = φni (σ)ψ(τ), i = 1, 2. Inserting this ansatz into the first
equation of (5) with homogeneous right hand side f = 0 gives

−(φni (σ))
′′
ψ(τ)− φni (σ)ψ

′′
(τ) + (σ2 + τ2)ηψn

i (σ)ψ(τ) = 0, i = 1, 2.

Separating terms, we see that there must exist a positive constant α such
that

− (φni (σ))
′′

φni (σ)
+ σ2η =

ψ
′′
(τ)

ψ(τ)
− τ2η = −α, i = 1, 2.

Together with the homogeneous boundary conditions, we obtain that α must
be an eigenvalue of the Sturm-Liouville eigenvalue problem

ψ
′′
(τ) + (α− τ2η)ψ(τ) = 0, ψ(0) = ψ(1) = 0. (6)

Assuming that we use a uniform grid with mesh size h = 1/N in the τ -

direction, we then have ψ(τ) =
∑N

j=1 ψj sin jπτ . Using this ansatz and testing
(6) with sin kπτ for k = 1, · · · , N , we obtain for each k

(α− k2π2)ψk − 2η
N∑

j=1

ψj

∫ 1

0

τ2 sin jπτ sin kπτdτ = 0.

Hence α represents eigenvalues of the matrix π2diag(12, 22, · · · , N2) + 2ηM,

where M is a matrix with entries Mjk =
∫ 1

0
τ2 sin jπτ sin kπτdτ . We then
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denote the k-th eigenvalue by αk, the smallest one by αmin and the largest
one by αmax.

For each eigenvalue αk, k = 1, · · · , N , we then need to consider

−(φn1 (σ))
′′
+ (αk + σ2η)φn1 (σ) = 0, φn1 (0) = 0,

−(φn2 (σ))
′′
+ (αk + σ2η)φn2 (σ) = 0, φn2 (1) = 0,

whose basic solutions are known in closed form,

φin(σ;α, η) =
M(− 1

4
α√
η , 14 ,

√
ησ2)

√
σ

,

φde(σ;α, η) =
W (− 1

4
α√
η , 14 ,

√
η)

M(− 1
4

α√
η , 14 ,

√
η)

M(− 1
4

α√
η , 14 ,

√
ησ2)

√
σ

+
W (− 1

4
α√
η , 14 ,

√
ησ2)

√
σ

,

where W and M are Whittaker functions. Note that φin(σ;α, η) increases
monotonically in σ with φin(0;α, η) = 0 and φde(σ;α, η) decreases monoton-
ically in σ with φde(1;α, η) = 0.

Using the separation assumption ui(σ, τ) = φi(σ)ψ(τ) also in the trans-
mission conditions in (5) gives

(∂σ + S1)φ
n
1 (σ0 + L)ψ(τ) = (∂σ + S1)φ

n−1
2 (σ0 + L)ψ(τ),

(∂σ + S2)φ
n
2 (σ0)ψ(τ) = (∂σ + S2)φ

n−1
1 (σ0)ψ(τ).

Inserting ψ(τ) =
∑N

j=1 ψj sin jπτ and testing these equations by sin kπτ we
obtain for each k = 1, 2, · · · , N

(∂σ + µ1(k))φ
n
1 (σ0 + L) = (∂σ + µ1(k))φ

n−1
2 (σ0 + L),

(∂σ + µ2(k))φ
n
2 (σ0) = (∂σ + µ2(k))φ

n−1
1 (σ0),

where µi(k), i = 1, 2 are the Fourier symbols of the operators Si.
Similar to the technique used in [6] (see also [2]), we then obtain the

convergence factor of algorithm (5),

ρ(L, µ1(k), µ2(k)) :=
(∂σ + µ1(k))φde(σ0 + L)

(∂σ + µ1(k))φin(σ0 + L)

(∂σ + µ2(k))φin(σ0)

(∂σ + µ2(k))φde(σ0)
. (7)

As local approximations of the Dirichlet to Neumann operators, we consider

µapp
1 (k) = p1 + q1αk, µapp

2 (k) = −p2 − q2αk,

which correspond to the local operators along the interfaces Γ1 and Γ2,

S1 = p1 − q1∂ττ + q1τ
2η, S2 = −p2 + q2∂ττ − q2τ

2η.

Inserting µapp
i (k), i = 1, 2 into (7) leads to the convergence factor

ρopt(αk, L, p1, p2, q1, q2) :=
(∂σ+p1+q1αk)φde(σ0+L)
(∂σ+p1+q1αk))φin(σ0+L)

(∂σ−p2−q2αk)φin(σ0)
(∂σ−p2−q2αk)φde(σ0)

. (8)
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The best choice for the free parameters pi, qi, i = 1, 2, minimizes the conver-
gence factor, i.e. it is solution of the min-max problem

min
pi>0,qi≥0,i=1,2

max
α∈[αmin,αmax]

|ρopt(α,L, p1, p2, q1, q2)|. (9)

Using the theory of ordinary differential equations, one can prove

Lemma 1. a) For any fixed α, η > 0, φin(σ;α, η) is monotonically increas-

ing in σ for σ > 0. For any fixed σ, η > 0, ∂σφin(σ;α,η)
φin(σ;α,η)

is monotonically

increasing in α for α > 0.
b) For any fixed α, η > 0, φde(σ;α, η) is monotonically decreasing in σ for

σ ∈ (0, 1). For any fixed σ, η > 0, −∂σφde(σ;α,η)
φde(σ;α,η)

is monotonically increasing

in α for α > 0.

Let G(σ, α, η) := ∂σφin(σ;α,η)
φin(σ;α,η)

− ∂σφde(σ;α,η)
φde(σ;α,η)

and Gmin := G(σ0;αmin, η).

Theorem 1. For the OO0 (optimized of order 0) method, let p1 = p2 =
p > 0 and q1 = q2 = 0. Then for small overlap, L > 0, the parameter

p∗ = 2−1G
2
3

minL
− 1

3 solves asymptotically the min-max problem (9) and

max
α∈[αmin,αmax]

|ρopt(α,L, p∗, p∗, 0, 0)| = 1− 4G
1
3

minL
1
3 +O(L

2
3 ). (10)

Proof. Using Lemma 1, the results can be proved by the techniques used to
prove Theorem 3.8 and Theorem 3.9 in [5].

Similar results can also be proved for the OO2 (optimized of order 2) method
and the O2s (optimized two-sided Robin) method for overlapping, and non-
overlapping domain decompositions. The corresponding results are summa-
rized in Table 1.

Type Constraint Optimized parameters max |ρopt|

L > 0

OO2
p1 = p2 > 0

q1 = q2 > 0

p∗1 = p∗2 = 2−
7
5 G

4
5
minL

− 1
5

q∗1 = q∗2 = 2
1
5 G

− 2
5

minL
3
5

1− 2
12
5 G

1
5
minL

1
5 +O(L

2
5 )

O2s
p1 > 0, p2 > 0
q1 = q2 = 0

p∗1 = 2−
8
5 G

4
5
minL

− 1
5

p∗2 = 2−
4
5 G

2
5
minL

− 3
5

1− 2
8
5 G

1
5
minL

1
5 +O(L

2
5 )

L = 0

OO0
p1 = p2 > 0
q1 = q2 = 0

p∗1 = p∗2 = 2−
1
2 G

1
2
minα

1
4
max 1− 2

3
2 G

1
2
minα

− 1
4

max +O(α
− 1

2
max)

OO2
p1 = p2 > 0

q1 = q2 > 0

p∗1 = p∗2 = 2−
5
4 G

3
4
minα

1
8
max

q∗1 = q∗2 = 2−
1
4 G

− 1
4

minα
− 3

8
max

1− 2
9
4 G

1
4
minα

− 1
8

max +O(α
− 1

4
max)

O2s
p1 > 0, p2 > 0

q1 = q2 = 0

p∗1 = 2−
5
4 G

3
4
minα

1
8
max

p∗2 = 2
1
4 G

1
4
minα

3
8
max

1− 2
5
4 G

1
4
minα

− 1
8

max +O(α
− 1

4
max)

Table 1 Optimized transmission parameters and the corresponding convergence factor

estimate.
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4 Geometric characteristics entering the optimization

In Section 3 we obtained the optimized transmission conditions in the
parabolic coordinates (σ, τ), where the interface is a line. In a real appli-
cation, one would however compute in the standard Cartesian coordinates
where the interface is a parabola in our model problem, and we study now
how the optimized parameter of OO0 looks in the standard Cartesian co-
ordinates to see how geometric characteristics enter the optimization of the
transmission parameters. Without loss of generality, we consider only the
interface Γ1, where the optimized transmission condition is

(∂σ + p∗)un1 (σ0 + L, τ) = (∂σ + p∗)un−1
2 (σ0 + L, τ). (11)

A direct calculation gives ∂n1
= 1√

σ2+τ2
∂σ, and dividing both sides of (11)

by
√
σ2 + τ2 we get

(∂n1
+

1√
σ2 + τ2

p∗)un1 (x, y) = (∂n1
+

1√
σ2 + τ2

p∗)un−1
2 (x, y), on Γ1. (12)

A further direct calculation shows that σ2+ τ2 =
√
x2 + y2−x+ y2√

x2+y2−x
,

and hence in Cartesian coordinates the optimized transmission parameter

is given by (
√
x2 + y2 − x + y2√

x2+y2−x
)p∗, i.e. it varies along the interface,

instead of being a constant. To see how the interface curvature enters this
optimized transmission condition, we compute the curvature of the interface
Γ1 and obtain κ = σ

(σ2+τ2)
3
2

= σ
H3 with σ = σ0 + L. Hence the optimized

parameter in Cartesian coordinates is given by (σ0+L
κ )−

1
3 p∗. Note that the

constant σ0 + L describes the position of the parabolically shaped interface.
Therefore, in addition to the interface curvature, other geometric character-
istics (here the constant σ0+L) can enter as well the optimized transmission
parameters.

5 Numerical experiments

To show that our predicted transmission parameter from Theorem 1 is in-
deed asymptotically optimal, we first consider the model problem (1) in the
parabolic coordinates (σ, τ), i.e. the OO0 variant of the Schwarz algorithm
(5), with σ0 = 0.5 and Si = p∗, i = 1, 2. We discretize (5) using FreeFem++,
and start with a random initial guess on the interfaces, simulating directly
the error equations, i.e. f = 0. The number of iterations required to reach an
error reduction of 1e − 6 is shown in the first row of Table 2. A log-log plot
of these results on the left in Fig. 2 shows good agreement with the estimate
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Coordinates N 20 40 80 160 320

Parabolic #iter(OO0) 8 11 13 17 23

#iter(OO0) 8 12 14 19 24
Cartesian #iter(OO0-Scaled) 10 12 16 22 28

#iter(OO0-Straight) 10 13 16 22 28

Table 2 Iteration numbers of the OO0 Schwarz method with overlap 1/N discretized in

parabolic coordinates (first row), compared to discretization in Cartesian coordinates tak-
ing all geometric information into account (second row), and using the optimized parameter

from the straight interface analysis [2] either locally scaled by the interface curvature (third

row) or with kmin = π/c, where c is the interface length (last row).
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Fig. 2 Left: Log-log plot of the number of iterations from the first row in Table 2. Right:
Number of iterations required by the OO0 Schwarz method in parabolic coordinates com-

pared to other values of the Robin parameter p; the red star indicates our prediction p∗.

in Theorem 1. To show how our prediction p∗ approximates the numerically
optimal Robin parameter, we vary the Robin parameter p from 3 to 18 with
76 equidistant samples and record the corresponding number of iterations
required by the Schwarz method with N = 160. The results are shown on
the right in Fig. 2, and we see that our prediction p∗ is very close to the
numerically optimal Robin parameter.

We next solve the model problem (1) in Cartesian coordinates using
Freefem++ like one would in a real application. We choose again the in-
terface parameter σ0 = 0.5, and use the transmission condition (12) on Γ1

and a corresponding one on Γ2. In this situation the overlap is the local dis-
tance between the interfaces Γ1 and Γ2. In Table 2 in the second row we
show the number of iterations required by the optimized Schwarz method
to reach an error reduction of 1e − 6. Comparing with the first row, we see
that our prediction of the optimized Robin parameter taking into account
all geometric characteristics performs basically as when computing in the
parabolic coordinates. In the third and last row of Table 2, we show the re-
sults obtained with the strategy suggested in [7], i.e. to use the optimized
transmission parameter from the straight interface analysis [2], either scaled
locally by the interface curvature, or choosing kmin = π/c with c the length
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of the interface1. These last two approaches also reach the same asymptotic
convergence order and are comparable, but more iterations are needed than
for our new approach which takes more geometric features into account.

6 Conclusion

To get a better understanding on the influence of geometry on optimized
transmission conditions, we studied a model problem using a domain decom-
position with parabolically shaped interfaces. Using separation of variables,
we showed that the optimized parameter in Cartesian coordinates varies along
the interface, and not only the interface curvature comes in, but also further
geometric characteristics of the interface appear. We then showed numeri-
cally that indeed taking all these geometric characteristics into account the
new optimized parameter outperforms the strategy of using only the local
curvature or interface length to scale appropriately an optimized parameter
from a straight interface analysis.
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1 The length of the interface σ = σ0 is easy to calculate to be
σ2
0
2
arcsinh( 1

σ0
)+ 1

2

√
σ2
0 + 1.
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