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1 Introduction.

In the standard domain decomposition theory the resulting subdomains are often
assumed to have a certain regularity, as in [Toselli and Widlund, 2005, Assumption
4.3], where each subdomain is a finite union of coarse scale elements and the number
of coarse elements forming the subdomain are uniformly bounded. This assumption
does not always hold. Subdomains might be generated from a mesh partitioner, or
be the result of a decomposition scheme with slight or systematic alterations of the
subdomain following refinement, e.g. see the type 3 domain in [Dohrmann et al.,
2008a, figure 5.1] and the snowflake domain in figure 1. In this paper we will assume
that each subdomain is a connected union of fine scale elements.

Several papers, Dohrmann et al. [2008b,a], Klawonn et al. [2008], Widlund
[2009], have developed theory for such less regular or irregular subdomains. In these
studies the subdomains are assumed to be uniform or John domains; see Dohrmann
et al. [2008a], Klawonn et al. [2008] for definitions of these families of domains.
While these domains are not necessarily Lipschitz, a number of the tools impor-
tant to the development of theory of domain decomposition algorithms have been
developed for such domains in the plane. We note that the Poincaré inequality is
particularly important; see Dohrmann et al. [2008a].

In this paper we primarily consider the Additive Average method, introduced in
Bjørstad et al. [1997]. We note that [Toselli and Widlund, 2005, Assumption 4.3]
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was not needed in the original proof. The original proof uses the trace theorem, and
to our knowledge this theorem is not available if the subdomains are only John do-
mains. In Dryja and Sarkis [2010], the authors proved a condition number estimate
of the Additive Average method for the scalar elliptic equation in R2 without the
use of a trace theorem. Following the setup of Dryja and Sarkis [2010], we have
extended the result to R3 and can show that this convergence estimate, with some
modification, holds also when subdomain are John domains. To our knowledge con-
vergence estimates for methods where the subdomains are John or uniform domains
have previously only been available for methods in R2. We have obtained an esti-
mate valid for both R2 and R3. In addition, when restricted to R2 our result may
be improved so that it is comparable with the results of Dohrmann and Widlund
[2012a]. In this paper we must leave out the proof due to page restrictions.

In certain cases of domain decomposition, the length of the subdomain bound-
aries can grow with refinement. One example is the snowflake domain shown in
figure 1. In Dohrmann and Widlund [2012b,a] it was pointed out that such domains
introduce a factor into the condition number bound which depends on the Hausdorff
dimension of the resulting boundary as h goes to zero. For the snowflake domain in
figure 1, we have a bound of this factor. Numerical results in section 4 are presented
to indicate that this factor need to be present in the condition number bound.

This paper has the following layout. In section 2 we present the test problem, as-
sumptions and definitions. In section 3 we introduce the additive average Schwarz
preconditioner with convergence estimate as our main result. Finally we present
some numerical results in section 4, mainly to illustrate effects of various subdo-
mains on the condition number.

2 The Differential Problem

Find u ∈ H1
0 (Ω) such that

a(u,v) = f (v), v ∈ H1
0 (Ω), (1)

where
a(u,v) := (α(·)∇u,∇v)L2(Ω), f (v) :=

∫

Ω
f vdx (2)

We assume that α ∈ L∞(Ω), with α(x) ≥ α0 > 0 and that f ∈ L2(Ω). Here Ω is
a polygonal or polyhedral region in Rn where n ∈ {2,3}. Let T h(Ω) be the shape
regular triangulation of Ω into triangular or tetrahedral elements. Let Vh be a space
of piecewise linear continuous functions.

Vh(Ω) :=
{

v ∈C0(Ω);v|ek
∈ P1(x)

}
,

where ek are elements of T h(Ω) and P1(x) is the set of linear polynomials.
The finite element problem is then defined as: Find uh ∈Vh(Ω) such that
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a(uh,v) = f (v), v ∈Vh(Ω). (3)

2.1 Assumptions

Let Ω be divided into disjoint subdomains Ωi, Ω = ∪iΩ i, i ∈ {1, · · · ,N}, where
each Ωi is a John domain, as defined in Dohrmann et al. [2008a], with a uniformly
bounded John constant. Let the boundary ∂Ωi be aligned with the triangulation of
T h(Ω) such that the inherited triangulation of Ωi is shape regular with a mesh
parameter hi and Hi := diam(Ωi). According to Dohrmann et al. [2008a], diam(Ωi)

can be estimated above and below by |Ωi|
1
n with one of the constants depending on

the John constant CJ . Denote by Ω h
i the layer around ∂Ωi which is a union the of e(i)k

the element of T h(Ωi) which touch ∂Ωi, the boundary of Ωi. We assume that all
elements in Ω h

i are quasi uniform. We also, as in Dryja and Sarkis [2010], introduce

α i := sup
x∈Ω h

i

α(x), α i := inf
x∈Ω h

i

α(x). (4)

2.2 The Snowflake Domain.

When proving the condition number estimate in Theorem 1, we needed to estimate
the number of elements in the internal boundary layer given by Ω h

i ∩Ωi. Usually
such an estimate is given by c(Hi/hi)

n−1 where c is a constants not depending on
the mesh parameter. This is not correct for all types of subdomains.

The snowflake domain follows a rule of refinement. It starts with a square with a
boundary node in each corner. With each refinement all boundary edges are divided
into three equal parts, and the middle part is replaced with an equilateral triangle.
In figure 1, we see the first 3 refinements of the a snowflake domain. For the par-
ticular domain in the figure, we see that the triangles at the top and at the bottom
always point into the domain, subtracting from its area, while the triangles at the
left and the right side, always point outwards, adding to its area. The net change
of the domains area is zero. With each refinement, the length of the boundary of
the subdomain increases by a factor 4/3. It is possible to show that the asymptotic
boundary of the snowflake domain is a von Koch curve with a Hausdorff dimension
greater then 1. In Dohrmann and Widlund [2012b,a], it is pointed out that such a
domain introduce a factor into the condition number which depends on the Haus-
dorff dimension, and particularly for the snowflake domain a bound for this factor
is given by c(4/3)log(Hi/hi), with c independent of mesh parameters. This bound can
be rewritten as C(Hi/hi)

0.262 with C independent of mesh parameters.
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Fig. 1 Here we have 3 different levels of refinement of a snowflake domain. This domain has
constant area but its boundary is growing by a factor 4/3 with each refinement.

3 Additive Average Schwarz Method

Let us decompose Vh(Ω) = V0(Ω) +V1(Ω) + ...+VN(Ω), and define Vi(Ω) =
Vh(Ω)∩H1

0 (Ωi) on Ωi and extend by zero outside Ωi for i ∈ {1, · · · ,N}. The coarse
space V0(Ω) is defined as the range of the following interpolation operator IA. For
u ∈Vh(Ω), let IAu ∈Vh(Ω) be defined so that on Ωi

IAu =

{
u j, if x j ∈ ∂Ωih
ū j, if x j ∈ Ωih \∂Ωih

(5)

where
ū j :=

1
ni

∑
x j∈∂Ωih

u j. (6)

Here Ωih and ∂Ωih are the sets of nodal points x j on Ωi and ∂Ωi, respectively, and
ni is the number of nodes on ∂Ωih. u j is the value of u at a nodal point.

For i ∈ {1, · · · ,N}, let us introduce

bi(u,v) := ai(u,v), u,v ∈Vi(Ω), (7)

where ai(·, ·) is the restriction of a(·, ·) to Ωi.
For i = 0 we introduce

b0(u,v) :=
N

∑
i=1

αhn−2
i ∑

x j∈∂Ωih

(u j − ū j)v j. (8)

3.1 The Preconditioner

For i ∈ {0, · · · ,N}, we define the operator T (A)
i : Vh(Ω)→ Vi(Ω) by bi(T

(A)
i u,v) =

a(u,v), with v ∈ Vi(Ω). Of course, each of these problems have a unique solution.
Let us introduce TA := T (A)

0 +T (A)
1 + · · ·+T (A)

N . We replace (3) by the operator equa-
tion
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TAuh = gh (9)

where gh = ∑N
i=0 gi, and gi = T (A)

i uh and uh is the solution of 3.
The main result

Theorem 1. For any u ∈Vh(Ω) the following holds:

C1β−1
1 a(u,u)≤ a(Tu,u)≤C2a(u,u), (10)

where β1 = (α/α)maxi χi(Hi/hi)
2, and C1 and C2 depend on the parameter of an

isoperimetric inequality, and the John constant, but not on the mesh parameter, and
χi is a factor related to the Hausdorff dimension of the subdomain boundary. This
factor χi might be mesh dependent, and can be estimated from the condition that
Cχi(H/h)n−1 are the number of patches needed to to cover Ω h

i , where C is a mesh
independent constant and n is the dimension of the problem.

Due to page restrictions, we leave out the proof. It is similar to that in Dryja and
Sarkis [2010] but extended to R3, and valid for subdomains being John domains
using some results from Dohrmann et al. [2008a].

Remark 1. When restricted to R2 with α constant in Ω , we can show that β1 in
Theorem 1 can be reduced to β1 = maxi χi((1+ log(Hi/hi))(Hi/hi)).

4 Numerical Results

Here we present numerical results, for the simple Poisson equation in R2, for a vari-
ety of more or less irregular subdomains. The purpose of these results is to illustrate
how the geometrical features of the subdomains impact the condition number. All
tests have been done with the Additive Average method, and with the method in
Dohrmann et al. [2008a]. In all the tests the two methods have shown similar per-
formance. All methods are implemented in MATLAB using pcgeig with a default
tolerance of 10−6.

In table 1, we present results from solving the Poisson equation on the unit square
with 16 subdomain of various shapes. We mainly look for effects on the condition
number from boundary deformations, and from the use of subdomains with mesh
dependent John constants. We use the results from the square subdomains with con-
stant boundaries and a mesh independent John constant as a reference.

Based on the definition of a John domain in Dohrmann et al. [2008a], the sub-
domains with fingers, see figure 2, are designed to have a mesh dependent John
constant that is doubling with each refinement of h. This does not cause an increase
the condition number in the range of refinement tested as shown in table 1. Similar
results where observed with the method in Dohrmann et al. [2008a]. Subdomains
from the partitioner METIS result in an increase in the condition number, but it is
hard to estimate what geometrical feature causes this increase. It is surprising that
the type 2 subdomains of Dohrmann et al. [2008a] does not increase the condi-
tion number compared to the reference domain. The type 2 subdomain boundary
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is growing with refinement, however we see that the number of elements along the
boundary is given by C(H/h) with C independent of mesh parameters. This might
explain why we do not see any increase in the condition number from this choice of
subdomain geometry.

Table 1 This table shows iteration and condition numbers when solving the Poisson equation on
different subdomains using additive average Schwarz method. The number of subdomains is fixed
at N = 16 and h =

{ 1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256

}
.

Square
subdomains

Square
subdomains
with fingers

METIS
subdomains

Type 2
subdomains

N h itr cond itr cond itr cond itr cond
16 1/16 17 6.22 13 4.20 21 9.18 13 4.20
16 1/32 26 16.61 28 18.91 38 25.26 22 14.00
16 1/64 46 38.34 43 44.47 62 66.85 35 36.41
16 1/128 68 82.32 65 97.42 91 126.29 53 82.86
16 1/256 84 170.58 94 205.13 135 282.69 81 171.98

Fig. 2 Figures showing square subdomains with fingers on the edges. These fingers have length
1/3H and width h thus growing thiner with a refinement of h. This should give a growing John
constant with refinement of h.

Fig. 3 Figures showing rectangular subdomains. Here theory for irregular subdomains estimates
that Hi =CJ |Ωi|

1
2 .

270 Erik Eikeland, Leszek Marcinkowski, Talal Rahman



Table 2 This table shows iteration and condition numbers when solving the Poisson equation
on both square and rectangular subdomains. The numerics is done with fixed H

h = 16 for N =
{4,16,64} subdomains. Using the method presented in Dohrmann et al. [2008a].

Square subdomains Rectangle subdomains
N H/h itr cond itr cond
4 16 13 20.57 13 20.57
16 16 27 20.66 36 55.94
64 16 32 20.69 84 350.61

Table 3 This table shows iteration and condition numbers when solving the Poisson equation on
snowflake subdomains using additive average Schwarz method. Here β = 1.262.

Snowflake subdomains
N H/h itr cond cond

(H/h)
cond

(H/h)β
cond

log(H/h)(H/h)β

9 3 15 6.94 2.31 1.73 1.58
9 9 35 28.53 3.17 1.78 0.81
9 27 75 121.62 4.50 1.90 0.58
9 81 154 488.57 6.03 1.91 0.43

The deliberately poor choice of rectangular subdomains, as shown in figure 3,
illustrate a type of domain where the John constant increases as the number of sub-
domains increases. Theory establishes that for the domains given in figure 3, we
can estimate Hi = CJ |Ωi|

1
2 with a constant which depends on the John constant. In

table 2, we observe an increase in the condition number even though the method in
principle should be scalable and H/h is kept fixed.

Finally in table 3 the results for snowflake domains are listed. Looking at the
ratio of the condition number with different proposed estimates it seems clear that
the original estimate for the additive average Schwarz method given in Bjørstad
et al. [1997] does not hold. If we take into account the Hausdorff dimension of the
subdomain boundary, and adjust the classical convergence estimate by the bound of
the factor χ , then this would result in an estimate C(H/h)β with β = 1.262. This
estimate fits well with the numerical results. The condition number is well within
the bounds established for irregular domains. Similar results were obtained when
using the method of Dohrmann et al. [2008a] on snowflake subdomains.
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