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1 Introduction

Cyclic reduction was conceived in 1965 for the solution of tridiagonal lin-
ear systems, such as the one-dimensional Poisson equation [12]. Generalized
to higher dimensions by recursive blocking, it is known as block cyclic re-
duction (BCR) [5]. It can be used for general (block) Toeplitz and (block)
tridiagonal linear systems; however, it is not competitive for large problems,
because its arithmetic complexity grows superlinearly. Cyclic reduction can
be thought of as a direct Gaussian elimination that recursively computes the
Schur complement of half of the system. The complexity of Schur comple-
ment computations is dominated by the inverse. By considering a tridiagonal
system and an even/odd ordering, cyclic reduction decouples the system such
that the inverse of a large block is the block-wise inverse of a collection of
independent smaller blocks. This addresses the most expensive step of the
Schur complement computation in terms of operation complexity and does
so in a way that launches concurrent subproblems. Its concurrency feature, in
the form of recursive bisection, makes it interesting for parallel environments,
provided that its arithmetic complexity can be improved.

We address the time and memory complexity growth of the traditional
cyclic reduction algorithm by approximating dense blocks as they arise with
hierarchical matrices (H-Matrices). The effectiveness of the block approxi-
mation relies on the rank structure of the original matrix. Many relevant
operators are known to have blocks of low rank off the diagonal. This philos-
ophy follows recent work discussed below, but to our knowledge this is the
first demonstration of the utility of complexity-reducing hierarchical substi-
tution in the context of cyclic reduction.
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The synergy of cyclic reduction and hierarchical matrices leads to a par-
allel fast direct solver of log-linear arithmetic complexity, O(N log2 N), with
controllable accuracy. The algorithm is purely algebraic, depending only on a
block tridiagonal structure. We call it Accelerated Cyclic Reduction (ACR).
Using a well-known implementation of H-LU [9], we demonstrate the range of
applicability of ACR over a set of model problems including the convection-
diffusion equation with recirculating flow and the wave Helmholtz equation,
problems that cannot be tackled with the traditional FFT enabled version
of cyclic reduction, FACR [18]. We show that ACR is competitive in time
to solution as compared with a global H-LU factorization that does not ex-
ploit the cyclic reduction structure. The fact that ACR is completely alge-
braic expands its range of applicability to problems with arbitrary coefficient
structure within the block tridiagonal sparsity structure, subject to their
amenability to rank compression. This gives the method robustness in some
applications that are difficult for multigrid. The concurrency and flexibility
to tune the accuracy of individual matrix block approximations makes it in-
teresting for emerging many-core architectures. Finally, as with other direct
solvers, there are complexity-accuracy tradeoffs that would naturally lead to
the development of a new scalable preconditioner based on ACR.

2 Related Work

Exploiting underlying low-rank structure is a trending strategy for improving
the performance of sparse direct solvers.

Nested dissection based clustering of an H-Matrix is known as
H-Cholesky by Ibragimov et al. [13] and H-LU by Grasedyck et al. [9], the
main idea being to introduce H-Matrix approximation on Schur complements
based on domain decomposition. This is accomplished by a nested dissection
ordering of the unknowns, and the advantage is that large blocks of zeros
are preserved after factorization. The non-zero blocks are replaced with low-
rank approximations, and an LU factorization is performed, using hierarchical
matrix arithmetics. Recently, Kriemann et al. [14] demonstrated that H-
LU implemented with a task-based scheduling based on a directed acyclic
graph is well suited for modern many-core systems when compared with the
conventional recursive algorithm. A similar line of work by Xia et al. [21] also
proposes the construction of a rank-structured Cholesky factorization via
the HSS hierarchical format [6]. Figure 1 illustrates the differences between
nested dissection ordering and the even/odd (or red/black) ordering of cyclic
reduction.

Multifrontal factorization, with low-rank approximations of frontal
matrices, as in the work of Xia et al. [19] also relies on nested dissection
as the permutation strategy, but it uses the multifrontal method as a solver.
Frontal matrices are approximated with the HSS format, while the solver
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relies on the corresponding HSS algorithms for elimination [20]. A similar
line of work is the generalization of this method to 3D problems and general
meshes by Schmitz et al. [17, 16]. More recently, Ghysels et al. [8] introduced
a method based on a fast ULV decomposition and randomized sampling of
HSS matrices in a many-core environment, where HSS approximations are
used to approximate fronts of large enough size, as the complexity constant
in building an HSS approximation is only convenient for large matrices.

This strategy is not limited to any specific hierarchical format. Aminfar et
al. [3] proposed the use of the HODLR matrix format [1], also in the context
of the multifrontal method. The well known solver MUMPS now also ex-
ploits the low-rank property of frontal matrices to accelerate its multifrontal
implementation, as described in [2].

Consider a 2D domain
Nested dissection
clusters contiguous

unknowns

Cyclic reduction
clusters staggered

unknowns

Fig. 1 The nested dissection ordering recursively clusters contiguous unknowns by bi-
section, whereas the red/black ordering recursively clusters staggered unknowns, allowing

isolation of a new readily manipulated diagonal block.

3 Accelerated Cyclic Reduction

Consider the two-dimensional linear variable-coefficient Poisson equation (1)
and its corresponding block tridiagonal matrix structure resulting from a
second order finite difference discretization, as shown in (2):

−∇ · κ(x)∇u = f(x), (1)

A = tridiag(Ei, Di, Fi) =




D1 F1

E2 D2 F2

. . .
. . .

. . .
En−1 Dn−1 Fn−1

En Dn



. (2)

We leverage the fact that for arbitrary κ(x), the tridiagonal blocks Di

are exactly representable by rank 1 H-Matrix since the off-diagonal blocks
have only one entry regardless of their coefficient, and the blocks Ei and Fi
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are diagonal. As cyclic reduction progresses, the resulting blocks will have
a bounded increase in the numerical ranks of their off-diagonal blocks. This
numerical off-diagonal rank may be tuned to accommodate for a specified
accuracy. We choose the H-Matrix format proposed in [10] by Hackbusch,
although ACR is not limited to a specific hierarchical format. In terms of ad-
missibility condition, we choose weak admissibility, as the sparsity structure
is known beforehand and it proved effective in our numerical experiments.

Approximating each block as an H-Matrix, we use the corresponding hi-
erarchical arithmetic operations as cyclic reduction progresses, instead of the
conventional linear algebra arithmetic operations. The following table sum-
marizes the complexity estimates in terms of time and memory while dealing
with a n×n block in a typical dense format and as a block-wise approximation
with a rank-r H-Matrix.

Inverse Storage
Dense Block O(n3) O(n2)

H Block O(r2n log2 n) O(rn log n)

The following table summarizes the complexity estimates of the methods
discussed so far in a two-dimensional square mesh where N is the total num-
ber of unknowns, neglecting the dependence upon rank. The derivation of
the complexity estimates for H-LU can be found in [4].

Operations Memory
BCR O(N2) O(N1.5)

H-LU O(N log2 N) O(N logN)

ACR O(N log2 N) O(N logN)

With block-wise approximations in place, block cyclic reduction becomes
ACR. BCR consists of two phases: reduction and back-substitution. The re-
duction phase is equivalent to block Gaussian elimination without pivoting
on a permuted system (PAPT )(Pu) = Pf . Permutation decouples the sys-
tem, and the computation of the Schur complement reduces the problem size
by half. This process is recursive and finishes when a single block is reached,
although the recursion can be stopped when the system is small enough to
be solved directly.

As an illustration, consider a system of n = 8 points per dimension, which
translates into a N × N sparse matrix, with N = n2. The first step is to
permute the system, which with an even/odd ordering becomes:




D0 F0

D2 E2 F2

D4 E4 F4

D6 E6 F6

E1 F1 D1

E3 F3 D3

E5 F5 D5

E7 D7







u0

u2

u4

u6

u1

u3

u5

u7




=




f0
f2
f4
f6
f1
f3
f5
f7




. (3)
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Consider the above 2 × 2 partitioned system (3) as H. The upper-left
block is block-diagonal, which means that its inverse can be computed as
the inverse of each individual block (D0, D2, D4, and D6), in parallel and
with hierarchical matrix arithmetics. The Schur complement of the upper-left
partition may then be computed as follows:

[
H11 H12

H21 H22

] [
ueven

uodd

]
=

[
feven
fodd

]
. (4)

(H22 −H21H
−1
11 H12)uodd = f (1), f (1) = fodd −H21H

−1
11 feven. (5)

Superscripts indicates algorithmic steps. A key property of the Schur com-
plement of a block tridiagonal matrix is that it yields another block tridiag-
onal matrix, as can been seen in the resulting permuted matrix system (5):




D
(1)
0 F

(1)
0

D
(1)
2 E

(1)
2 F

(1)
2

E
(1)
1 F

(1)
1 D

(1)
1

E
(1)
3 D

(1)
3







u
(1)
0

u
(1)
2

u
(1)
1

u
(1)
3


 =




f
(1)
0

f
(1)
2

f
(1)
1

f
(1)
3


 . (6)

One step further, the computation of the Schur complement of the per-
muted system (6), results in:



D

(2)
0 F

(2)
0

E
(2)
1 D

(2)
1






u
(2)
0

u
(2)
1


 =



f
(2)
0

f
(2)
1


 . (7)

A last round of permutation and Schur complement computation leads

to the D
(3)
0 block, which is the last step of the reduction phase of Cyclic

Reduction. A back-substitution phase to recover the solution also consists
of log n steps. Each step involves matrix-vector products involving the off-
diagonal blocks E(i) and F (i) and the inverses of the diagonal D(i) blocks
computed during the elimination phase. These matrix-vector operations are
done efficiently with hierarchical matrix arithmetics.

4 Numerical Results in 2D

We select two test cases to provide a baseline of performance and robust-
ness as compared with the H-LU implementation in HLIBpro [11], and with
the AMG implementation in Hypre [15]. Tests are performed in the shared
memory environment of a 36-core Intel Haswell processor.

The first test is the wave Helmholtz equation.
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∇2u+ k2u = f(x), x ∈ Ω = [0, 1]2 u(x) = 0, x ∈ Γ

f(x) = 100e−100((x−0.5)2+(y−0.5)2).
(8)

For large values of kh, where h is the mesh spacing, discretization leads to
an indefinite matrix. Performance over a range of k is shown in Figure 2, for
h = 2−10. We compare ACR and H-LU with AMG as a direct solver and as a
preconditioner in combination with GMRES. For small α AMG outperforms
the direct methods, but AMG loses robustness with rising indefiniteness.

The second test is convection-diffusion equation with recirculating flow.

−∇2u+ αb(x) · ∇u = f(x), x ∈ Ω = [0, 1]2 u(x) = 0, x ∈ Γ

b(x) =

(
sin(4πx) sin(4πy)

cos(4πx) cos(4πy)

)
f(x) = 100e−100((x−0.5)2+(y−0.5)2).

(9)

Discretization of this equation, again with h = 2−10, leads to a nonsym-
metric matrix, whose eigenvalues go complex (with central differencing) when
the cell Peclet number exceeds 2. Direct algebraic methods are unaffected.

We progressively increase the convection dominance with α. For small α
AMG outperforms the direct methods, but AMG is not robust with respect
to the rising skew-symmetry. ACR maintains its performance for any α, as
shown in Figure 3.
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Fig. 2 Runtime versus wavenumber for fixed
mesh size in the Wave Helmhotz equation.

AMG is the method of choice for small k, but

loses robustness with indefiniteness.
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Fig. 3 Runtime versus velocity magnitude in
convection-diffusion. AMG is the method of

choice in the diffusion dominated limit, but

loses robustness with skew-symmetry.

5 Extensions

The discretization of 3D elliptic operators also leads to a block tridiagonal
structure, with the difference that each block is of size n2×n2, instead of n×n,
as in the 2D discretization. A similar reduction strategy in the outermost
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dimension is possible, and leads to a solver with log-linear complexity in N
and similar parallel structure, except that ranks grow.

The controllable accuracy feature of hierarchical matrices suggests the
possibility of using ACR as a preconditioner, with rank becoming a tuning
parameter balancing the cost per and the number of iterations, while pre-
serving the rich concurrency features of the method.

6 Concluding Remarks

We present a fast direct solver, ACR, for structured sparse linear systems that
arise from the discretization of 2D elliptic operators. The solver approximates
every block using anH-Matrix, resulting in a log-linear arithmetic complexity
of O(N log2 N) with memory requirements of O(N logN).

Robustness and applicability are demonstrated on model scalar problems
and contrasted with established solvers based on the H-LU factorization and
algebraic multigrid. Multigrid maintains superiority in scalar problems with
sufficient definiteness and symmetry, whereas hierarchical matrix-based re-
placements of direct methods tackle some problems where these properties
are lacking. Although being of the same asymptotic complexity as H-LU,
ACR has fundamentally different algorithmic roots which produce a novel
alternative for a relevant class of problems with competitive performance,
and concurrency that grows with the problem size.

In [7] we expand on the consideration of cyclic reduction as a fast direct
solver solver for 3D elliptic operators.
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[11] Wolfgang Hackbusch, Steffen Börm, and Lars Grasedyck. HLib 1.4.
http://hlib.org, 1999-2012. Max-Planck-Institut, Leipzig.

[12] R. W. Hockney. A fast direct solution of Poisson’s equation using Fourier
analysis. J. ACM, 12(1):95–113, Jan 1965.

[13] I. Ibragimov, S. Rjasanow, and K. Straube. Hierarchical Cholesky de-
composition of sparse matrices arising from curl-curl-equation. J. Num.
Math., 15(1):31–57, 2007.

[14] R. Kriemann. H-LU factorization on many-core systems. Comp. Vis.
Sci., 16(3):105–117, 2013.

[15] Lawrence Livermore National Laboratory. hypre: High Performance
Preconditioners. http://www.llnl.gov/CASC/hypre/.

[16] P. G. Schmitz and L. Ying. A fast direct solver for elliptic problems on
general meshes in 2D. J. Comp. Phys., 231(4):1314–1338, 2012.

[17] P. G. Schmitz and L. Ying. A fast nested dissection solver for Carte-
sian 3D elliptic problems using hierarchical matrices. J. Comp. Phys.,
258:227–245, 2014.

[18] P. Swarztrauber. The methods of Cyclic reduction, Fourier analysis and
the FACR algorithm for the discrete solution of Poisson equation on a
rectangle. SIAM Rev., 19(3):490–501, 1977.

[19] J. Xia, S. Chandrasekaran, M. Gu, and X. Li. Superfast multifrontal
method for large structured linear systems of equations. SIAM J. Matrix
Anal. Appl., 31(3):1382–1411, 2010.

[20] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Fast algorithms for hi-
erarchically semiseparable matrices. Numer. Lin. Alg. Appl., 17(6):953–
976, 2010.

[21] J. Xia and M. Gu. Robust approximate Cholesky factorization of rank-
structured symmetric positive definite matrices. SIAM J. Matrix Anal.
and Appl., 31(5):2899–2920, 2010.

128 Gustavo Chavez, George Turkiyyah, David Keyes




