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1 From FETI to HTFETI method

The FETI (Finite Element Tearing and Interconnecting) method is based
on eliminating primal unknowns so that dual linear systems in terms of La-
grange multipliers are solvable by the projected conjugate gradient method
(see Farhat and Roux [1994]). The projections on the kernel of G⊤ are com-
puted by the orthogonal projector

P = I−G
(
G⊤G

)−1
G⊤. (1)

The H(ybrid)FETI method (see Klawonn and Rheinbach [2010]) combines the
classical FETI method and the FETI-DP method (see Farhat et al. [2001])
with the aim to adapt a code to parallel computer architectures. In this
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Fig. 1 Cantilever beam in 2D.
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paper, we use another variant of the Hybrid FETI method (see Brzobohatý
et al.) that starts from the T(otal)FETI method (see Dostál et al. [2006]).
Its implementation (HTFETI) does not differ significantly from the original
approach (TFETI). In some sense, having both algorithms in one library
requires just a few additions across the code of the TFETI method. Note
that TFETI approach also enforces the boundary conditions by Lagrange
multipliers so that stiffness matrices on all subdomains exhibit the same
defect and kernel matrices may be easily assembled.

We will shortly introduce our HTFETI method for the 2-dimensional prob-
lem given by cantilever beam, see Fig.1.a. After discretization, domain de-
composition, and linear algebra object assembly, the linear system reads as
follows:
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We denote:

Bc =

(
Bc,1 Bc,2 O O
O O Bc,3 Bc,4

)
, B =

(
B1 B2 B3 B4

)
.

The matrix Bc is a copy of specific rows from the matrix B correspond-
ing to components of λ acting on the corners between subdomains 1,2, and
3,4, respectively (see Fig.1.c). Although the whole matrix in (2) is singu-
lar, it beneficially affects convergence of the iterative process (Farhat and
Roux [1994]). If the redundant rows of Bc are omitted, the primal solution
components remain the same. To simplify our presentation, we permute (2)
as 
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, (3)

and then we introduce a new notation consistently with the line partition
in (3):
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Eliminating ũi, i = 1, 2, we also eliminate the subset of dual variables λc,j ,
j = 1, 2 related to the matrix Bc. Therefore, the structure behaves like a
problem decomposed into two clusters: the 1st and 2nd subdomains belong to
the first cluster, the 3rd and 4th subdomains belong to the second cluster, see
Fig.1.b. Here, K̃1, K̃2 can be interpreted as the cluster stiffness matrices with
the kernels R̃1, R̃2, respectively. Denoting K̃=diag(K̃1, K̃2), B̃ = (B̃1, B̃2),

R̃
⊤

= (R̃
⊤
1 , R̃

⊤
2 ), F̃ = B̃K̃

+
B̃

⊤
, G̃ = −B̃R̃, d̃ = B̃K̃

+
f̃ − c̃, and ẽ =

−R̃
⊤
f̃
⊤
, we arrive at the Schur complement system

(
F̃ G̃

G̃
⊤
O

)(
λ̃

α̃

)
=

(
d̃

ẽ

)
(5)

that can be solved by the same iterative method as in the classical FETI
method. The dimension of the new coarse problem G̃⊤G̃ is smaller (size =
6) compared to the FETI case. To keep optimality of the HTFETI approach,
the matrix K̃ can not be factorized directly. The implicit factorization will be
demonstrated by its first block (cluster). It is obtained by solving the linear
system K̃1x̃1 = b̃1, i.e.,

(
K1:2 B⊤

c,1:2

Bc,1:2 O

)(
x1

µ

)
=

(
b

z

)
, (6)

where K1:2 = diag(K1,K2) and Bc,1:2 = (Bc,1,Bc,2). The subindex 1 : 2
adverts to the first and the last ordinal number of the subdomains in the
cluster. Although (6) can be interpreted as a FETI problem, we solve it by a
direct solver. The respective Schur complement system reads as:

(
Fc,1:2 Gc,1:2

G⊤
c,1:2 O

)(
µ

β

)
=

(
dc,1:2

ec,1:2

)
, (7)

where Fc,1:2 = Bc,1:2K
+
1:2B

⊤
c,1:2, Gc,1:2 = −Bc,1:2R1:2, dc,1:2 = Bc,1:2K

+
1:2b−

z, ec,1:2 = −R⊤
1:2b, and R1:2 = diag (R1, R2). To obtain the vector x̃1, both

systems (6), (7) are subsequently solved in three steps:

β = S+
c,1:2

(
G⊤

c,1:2F
−1
c,1:2dc,1:2 − ec,1:2

)
,

µ = F−1
c,1:2 (dc,1:2 −Gc,1:2β) ,

x = K+
1:2

(
b−B⊤

c,1:2µ
)
+R1:2β,

(8)

where Sc,1:2 = G⊤
c,1:2F

−1
c,1:2Gc,1:2 is the singular Shur complement matrix.

Treatment of singular matrices in the hybrid total FETI method 211



The kernel R̃1 of K̃1 is the last object going to be effectively evaluated.
The orthogonality condition K̃1R̃1 = O can be written by

(
K1:2 B⊤

c,1:2

Bc,1:2 O

)(
R1:2

O

)
H1:2 =

(
O

O

)
, (9)

where R̃1 = (R⊤
1:2, O⊤)⊤H1:2. Assuming that the subdomain kernels R1

and R2 are known, it remains to determine H1:2. The first equation in (9)
does not impose any condition onto H1:2. The second equation gives

Bc,1:2R1:2H1:2 = −Gc,1:2H1:2 = O, (10)

implying that H1:2 is the kernel of Gc,1:2, which is not full-column rank
matrix due to the absence of the Dirichlet boundary condition in Bc,1:2.

Preprocessing in the HTFETI method starts in the same way as in the
FETI approach preparing factors Ki and kernels Ri for each subdomain.
Then, only one pair consisting of Fc,j:k and Sc,j:k is assembled and factorized
on each cluster. The dimension of Fc,1:2 is controlled by the number of
Lagrange multipliers λc,1 glueing the cluster subdomains. The dimension of
Sc,1:2 is given by the sum of defects of all matricesKi belonging to a particular
cluster.

2 Solving a singular system via kernel detection

This work continues with the results of Dostál et al. [2011], Brzobohatý et al.
[2011], Kučera et al. [2012], Kučera et al. [2013], and it queries from work
published by Suzuki and Roux [2014].

If a problem with large jumps in the material coefficients and/or with an
irregular decomposition is solved by the FETI method, direct factorizations of
singular symmetric stiffness matrices Ki can be very unstable due to unclear
criteria for distinguishing null pivots. We propose a heuristic technique for
detecting kernels Ri of symmetric positive semi-definite (SPSD) matrices
utilizing direct solvers designed primarily for non-singular cases. The mesh
of the subdomain, the stiffness matrix of which is assembled above, must be
given by the specific graph decomposition. In the three-dimensional case, e.g.,
deleting any two nodes of the relevant graph does not yield two components
(the resulting graph will remain connected). The analyzed matrix should be
also diagonally scaled. Via fixing nodes (FNs) the goal is to find (see Dostál
et al. [2011]) an appropriate set of indices s (size(s) ≥ defect(Ki)) and a
complementary set of indices r characterizing the singular and non-singular
part of Ki, respectively. The original stiffness matrix Ki (the subindex will
be omitted in the rest of this section) can be permuted by the matrix Q so
that
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QKQT =

(
Krr Krs

Ksr Kss

)
,

where Krr is the well-conditioned matrix. It is sufficient to find at least 3
noncollinear nodes from the finite element mesh in the case of 3-dimensional
linear elasticity. The DOFs corresponding to these nodes determine the set
s. Our choice of the FNs is based on a random number generator. From
mechanical point of view, the structure is sufficiently supported by those FNs
against any rigid movement. As the Schur complement S = Kss−KsrK

−1
rr Krs

is a relatively small matrix, it can be analysed by robust algorithms for dense
matrices.

Once the Schur complement is correctly defined, it is spectrally de-
composed using, e.g., LAPACK to UΣU⊤. Its eigenvalues are stored in
Σ = diag(σ1, σ2, · · · , σn) in the descending order. The k-th eigenvalue is
considered to be zero, if

σk/σk−1 < 10−4.

Such information determines splitting U = (Û, Rs) where Rs consists of last
columns of U starting with the column index k, and it is already a part of
the searched kernel of K. If Rs is known, its supplement Rr = −K−1

rr KrsRs

is obtained from (
Krr Krs

Ksr Kss

)(
Rr

Rs

)
=

(
O
O

)
. (11)

As an example, a uniformly meshed cube (L = 30 mm, E = 2.1 ·105 MPa,

µ = 0.3, ρ = 7850 kg/m
3
, g = 9.81 m/s

2
) is used with a variable number

of nodes controlled by n (number of nodes in x, y, and z direction). The
singular set s is selected via several DOFs belonging to randomly chosen
FNs. The quality of a selection (see Fig. 2) is measured by the ratio of bad
choices (collinear nodes) to all possible combinations for a given number of
FNs and the size of mesh n. Probability curves for 3, 4, and 5 FNs depending
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on the mesh parameter n are shown in Fig. 2. Increasing FNs for fixed mesh
(constant n) intuitively helps to ensure noncollinear nodes. For instance, for
n = 10 with 3 FNs the probability of a bad choice is 9.068 · 10−2, with 4
FNs it decreases to 3.272 ·10−4, and with 5 FNs to 1.545 ·10−6. Surprisingly
enough, for a fixed number of FNs and a simultaneously enlarging parameter
n (mesh refinement), the probability of collinear FNs decreases as well.

3 ExaScale PaRallel FETI SOlver - ESPRESO

ESPRESO is a highly efficient parallel solver which contains several FETI
method based algorithms including the HTFETI method suitable for parallel
machines with tens or hundreds of thousands of cores. The solver is based
on a highly efficient communication layer based on MPI, and it is able to
run on massively parallel machines with thousands of compute nodes and
hundreds of thousands of CPU cores. ESPRESO is also being developed to
support modern many-core accelerators. We are currently developing four
major versions of the solver:

• ESPRESO CPU is a CPU version using sparse representation of system
matrices;

• ESPRESO MIC is an Intel Xeon Phi accelerated version working with
dense representation of system matrices in the form of Schur complement;

• ESPRESO GPU is a GPU accelerated version working with dense
structures. Support for sparse structures using cuSolver is under devel-
opment;

• ESPRESO GREEN is a power efficient version developed under the
H2020 READEX project. This version is in the very early development
stage.

In order to solve real engineering problems, we are developing a FEM/BEM
library that enables database files from ANSYS simulation software to be
imported and all inputs required by the FETI or HTFETI solver generated.
In addition, we are developing an interface to ELMER that allows ESPRESO
to be used as its linear solver. This integration is done through API that can
be used as an interface to many other applications.

4 Numerical Experiments

Efficiency of the HTFETI method is presented in the ESPRESO library on
the cube benchmark described in Sec. 2. Weak scalability of the solver, see
Fig.3 left, includes matrix assembly, linear solver preprocessing (preprocess-
ing of the TFETI and HTFETI method), and iterative solver runtime mea-
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Fig. 3 Weak and strong scalability.

sured on 1 to 729 compute nodes of IT4Innovations Salomon supercomputer.
Benchmark configuration: subdomain size 14,739 DOFs (n = 17); 1,000 sub-
domains per cluster; Lumped preconditioner, stopping criteria 10−3. Strong
scalability on 126, 216, 343, 512, and 729 compute nodes of Salomon super-
computer is seen in Fig. 3 right. The problem size is 1.5 billions of unknowns.

5 Conclusions

This paper presents the HTFETI method, an extension of FETI algorithm for
problems with the larger number of subdomains to handle the coarse problem
more effectively. The basic principles are explained and demonstrated on
linear elasticity problem. In the second part, the methodology for factorizing
SPSD matrix using robust applications, e.g., PARDISO, is shown. Efficiency
is proved by the numerical test performed in ESPRESO library for almost 9
billions of unknowns.
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Zdeněk Dostál, David Horák, and Radek Kučera. Total FETI—an easier
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