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1 Introduction

The goal of this research is an investigation of some advanced versions of al-
gebraic approaches to parallel domain decomposition algorithms for solving
sparse large systems of linear algebraic equation (SLAEs) with nonsymmet-
ric sparse matrices arising from some approximation of the multi-dimension
boundary value problems (BVPs) in complicated computational domains on
non-structured grids.

Algebraic domain decomposition methods (DDMs) are the main tool to
provide high performance computing when solving very large SLAEs which
is the bottleneck of the modern interdisciplinary tasks. There are many pub-
lications on this topic, see Toselli and Widlund [2005], Dolean et al. [2015],
Dubois et al. [2012], Gurieva and Il’in [2015] and literature cited there, for ex-
ample. They present a manifold of mathematical and technological contradic-
tory problems. On the one hand, high convergence rate of iterative processes
leads to high computational complexity of algorithms. On the other hand,
performance of applied program packages depends on used data structures
and code adaptation to a particular parallel architecture.

We describe some essential aspects of the algorithms implemented on the
basis of the multi-preconditioned semi-conjugate residual method and the
coarse grid correction procedure with basic functions of different orders. In
some sense, the proposed approaches present a further development of the
ideas considered in papers by Saad [2003], Bridson and Greif [2006].

This paper is organized as follows. Section 2 contains the formulation of
the problems to be solved. Section 3 is devoted to the parallel structure of
algorithms. Section 4 deals with demonstration of the numerical results. In
conclusion, the results obtained are described.
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2 Statement of the problem

Let us have a boundary value problem

Lu = f(r), r ∈ Ω, lu|Γ = g(r), (1)

in a computational open domain Ω with a boundary Γ and a closure Ω̄ =
Ω
⋃
Γ , where L and l are some linear differential operators. We suppose that

(1) has a unique solution u(r) which is smooth enough.
Let us decompose Ω into P subdomains (with or without overlapping):

Ω =
P⋃

q=1
Ωq, Ω̄q = Ωq

⋃
Γq,

Γq =
⋃

q′∈ωq

Γq,q′ , Γq,q′ = Γq

⋂
Ω̄q′ , q′ 6= q.

(2)

Here Γq is the boundary of Ωq which is composed from the segments Γq,q′ ,
q′ ∈ ωq, and ωq = {q1, . . . , qMq} is a set of Mq contacting, or conjuncted,
subdomains. We can denote also by Ω0 = Rd/Ω the external subdomain:

Ω̄0 = Ω0

⋃
Γ, Γq,0 = Γq

⋂
Ω̄0 = Γq

⋂
Γ, Γq = Γ i

q

⋃
Γq,0, (3)

where Γ i
q =

⋃
q′ 6=0

Γq,q′ and Γq,0 = Γ e
q mean internal and external parts of

the boundary of Ωq. We define also an overlapping ∆q,q′ = Ωq

⋂
Ωq′ of the

neighbouring subdomains. If Γq,q′ = Γq′,q and ∆q,q′ = 0 then overlapping of
Ωq and Ωq′ is empty.

The idea of DDM includes the definition of sets of boundary value problems
for all subdomains which should be equivalent to the original problem (1):

Luq(r) = fq, r ∈ Ωq, lq,q′(uq)
∣∣
Γq,q′

= gq,q′ ≡ lq′,q(uq′)
∣∣
Γq′,q

,

q′ ∈ ωq, lq,0uq|Γq,0 = gq,0, q = 1, . . . , P.
(4)

At each segment of the internal boundaries of subdomains, the interface
conditions in the form of the Robin boundary condition are imposed:

αquq + βq
∂uq

∂nq

∣∣
Γq,q′

= αq′uq + βq′
∂uq′
∂nq′

∣∣
Γq′,q

,

|αq|+ |βq| > 0, αq · βq ≥ 0.
(5)

Here αq′ = αq, βq′ = βq and nq means the outer normal to the boundary
segment Γq,q′ of the subdomain Ωq.

We consider the iterative additive Schwarz method which can be inter-
preted as a sequential recomputation of the boundary condition:

Lun
q = fq, lq,q′u

n
q |Γq,q′ = lq′,qu

n−1
q′ |Γq′ ,q . (6)

306 Yana Gurieva, Valery Ilin, Danil Perevozkin



In order to solve the considered problem numerically we need to perform its
dicretization. We introduce the grid computational domain Ωh which consists
of a set of the numbered nodes Ql, l = 1, . . . , N , where N is the total number
of mesh points. Then we divide Ωh into P grid subdomains Ωh

q

Ω̄h =
⋃P

q=1 Ω̄
h
q , Ω̄h = Ωh

⋃
Γ h, Ω̄h

q = Ωh
q

⋃
Γ h
q , (7)

In the case of a non-overlapping decomposition, for q′ 6= q′′ we have
Ωh

q′
⋂
Ωh

q′′ = ∅, and Γ h
q′,q′′ = Ω̄h

q′
⋂
Ω̄h

q′′ is the common boundary (a grid

separator) between the contacting subdomains Ωh
q′ , Ω

h
q′′ .

After an approximation of the original continuous problem (1) on the non-
structured grid Ωh, one can obtain a SLAE

Au ≡ ∑
l′∈ω̄l

al,l′ul′ = f, A = {al,l′} ∈ RN,N , u = {ul}, f = {fl} ∈ RN ,

(8)
where the matrix A is supposed to be invertible and nonsymmetric in general.
We consider the nodal grid equations only, i.e. each vector component ul or
fl corresponds to some mesh point Ql ∈ Ωh. Here ω̄l is the stencil of the grid
point Ql, and Nωl

≪ N is the corresponding number of the neighbouring
nodes. Also, we denote by Nq and Nq,q′ the numbers of the grid nodes in the
grid subdomain Ωh

q and the boundary segment Γ h
q,q′ respectively.

3 Deflated DDM in Krylov subspaces

From here after, we consider a decomposition of the grid computational do-
main without mesh separators. It means that the continuous internal bound-
aries Γq,q′ for q 6= 0 do not contain mesh points, and Γ h

q,q′ 6= Γ h
q′,q.

If we denote by ûq, f̂q ∈ RNq , q = 1, . . . , P the subvectors corresponding
to a subdomain Ωq, the system (8) can be written in the following block form

Aq,qûq = fq −
∑

r∈ωq

Aq,rûr ≡ f̂q, Aq,r ∈ RNq,Nr , q = 1, . . . , P. (9)

The additive Schwarz method is then described by the following formula:

Bq,qû
n
q ≡ (Aq,q + Cq,q)û

n
q =

= fq + Cq,qû
n−1
q − ∑

r∈ωq

Aq,rû
n−1
r , n = 1, 2, . . . (10)

Here we suppose that the preconditioning matrices Bq,q are nonsingular ones
and hence for n → ∞ the iterative process (10) converges to a unique solu-
tion u = {ûq} of SLAE (8). The matrix Cq,q in (10) is responsible for the
interface condition between the subdomains and has nonzero entries for the
near-boundary nodes of Ωq only.
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In the case of a decomposition without overlapping, the global solution
vector is the direct sum of its subvectors, i.e. u = û1 ⊕ . . .⊕ ûP . In general,
the formulae of the iterative method within the Schwarz approach can differ
from that above, and we use RAS (Restricted Additive Schwarz, see Toselli
and Widlund [2005], Dolean et al. [2015]) for a definition of the iterative pro-
cess. Here we have to construct the grid domain decomposition in two steps.
Firstly, we define a decomposition into some non-intersected subdomains, see
(7). Let us denote by Γ 0

q the grid boundary of Ωh
q and define an extended sub-

domain Ω1
q = Ωh

q

⋃
Γ 0
q = Ω̄h

q . At the second step we extend each subdomain
layer-by-layer and define a set of the embedded subdomains:

Γq ≡ Γ 0
q = {l′ ∈ ωl, l ∈ Ωq, l′ /∈ Ωq, Ω1

q = Ω̄0
q = Ωq

⋃
Γ 0
q },

Γ t
q = {l′ ∈ ωl, l ∈ Ωt−1

q , l′ ∈ Ωt−1
q , Ωt

q = Ω̄t−1
q = Ωt−1

q Γ t−1
q },

t = 1, . . . , ∆q.
(11)

Here ∆q is a measure parameter of the extension of the subdomain Ω
∆q
q . The

RAS iterative process can be described as un
RAS = {un

l , l ∈ Ω0
q}.

The conventional additive Schwarz (AS) method can be rewritten in more
general form as

Bn(u
n − un−1) = f −Aun−1 ≡ rn−1, n = 1, 2, . . . , (12)

where the preconditioning matrix Bn = block-diag {Bn
q,q} may be chosen

differently at each iteration.
To solve SLAE (1), we apply a preconditioned iterative process in the

Krylov subspaces instead of (12) . In particular, we use multi-preconditioned
semi-conjugate residual (MPSCR) method (Gurieva and Il’in [2015]), which
is the unification of the ideas presented in (Bridson and Greif [2006], Il’in
and Itskovich [2007], Eisenstat et al. [1983], Yuan et al. [2004]). Let us have
some rectangular matrices and vectors of iterative parameters

Pn = (pn1 . . . p
n
mn

) = {pnk} ∈ RN,mn , ᾱn = (αn,1 . . . αn,mn)
T = {αn

k} ∈ Rmn .

Then MPSCR iterations are defined by the recursions for n = 0, 1, . . .:

r0 = f −Au0, un+1 = un + Pnᾱn, rn+1 = rn −APnᾱn. (13)

Let us suppose that at each n-th iteration we have mn different nonsingular

matrix preconditioners B
(k)
n , k = 1, . . . ,mn. In this case the initial search

vectors are chosen as p0k = (B
(k)
0 )−1r0. Let these vectors be linearly inde-

pendent and let the matrices Pn in (13) have full ranks mn. Then under the
orthogonality conditions

(Apnk , Ap
n′
k′ ) = ρn,kδk,k′ , ρn,k = (Apnk , Ap

n
k ), (14)

where δn,n′ is the Kronecker symbol, the formulas (13), with the coefficients
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αn
k = (rn, A(B

(k)
n )−1rn)/ρn,k, k = 1, . . . ,mn, (15)

provide the minimal norm ||rn|| of the residual in the block Krylov subspaces
Span{AP1, . . . , APn}. The matrices Pi, i = 1, . . . , n+ 1, are defined as

Pn+1 = Qn+1 −
n∑

k=0

mk∑
l=0

βn
k,lp

k
l , Qn+1 = {qn+1

k = (B
(k)
n+1)

−1rn+1},

βn
k,l = (Apkl , A(B

(k)
n )−1rn)ρn,l, k = 1, . . . ,mn.

(16)

We apply MPSCRmethod with two types of preconditioners (B
(s)
n and B

(c)
n )

at each iteration. The first one corresponds to the block Jacobi–Schwarz pre-
conditioner from (10) and (12), and the second one is responsible for a coarse
grid correction, or aggregation, or deflation approach (Toselli and Widlund
[2005], Dolean et al. [2015]). This procedure is based on the low rank approx-
imation of the original matrix A (Gurieva and Il’in [2015]):

(B
(c)
n )−1 ≡ Ãn = WnÂ

−1
n WT

n , Ân = WT
n AWn ∈ RN(c)

n ,N(c)
n ,

Wn = (w1 . . . wN
(c)
n

) ∈ RN,N(c)
n , N

(c)
n ≪ N.

(17)

Here Wn are some full rank rectangular matrices whose columns consist of
the entries presenting the values of the finite basis functions wq(r) defined

at some coarse grid with the number of the macro-nodes N
(c)
n ≪ N (this

number can have different value at different iterations). This macrogrid can

be independent of the domain decomposition, but we use N
(c)
n = P and wq(r)

with the entries equal one in Ωq and the zero entries in other subdomains.
One disadvantage of SCR is the long recursions and high memory require-

ments to compute the search vectors pnk . More lightweight approach is in an
application of the BiCGStab (Saad [2003]) with a deflation to improve the
residual at the first iteration only. Having initial guess u−1, we compute

u0 = u−1 + (B
(c)
0 )−1r−1, r−1 = f −Au−1,

r0 = f −Au0, p0 = r0 − (B
(c)
0 )−1r0,

(18)

where B
(c)
0 is defined by (17). This trick provides the orthogonality proper-

ties WT
0 r0 = 0, WT

0 Ap0 = 0. The next iterations are implemented by the
corresponding steps of the conventional BiCGStab method.

4 Numerical experiments

Consider solving a model Dirichlet boundary value problem for 2D and 3D
diffusion-convection equation with constant coefficients p, q, r:
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∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 + p∂u

∂x + q ∂u
∂y + r ∂u

∂z = f(x, y, z),

(x, y, z) ∈ Ω, u|Γ = g(x, y, z), Ω = [0, 1]3.
(19)

Problem (19) is discretized by the monotone exponential finite volume scheme
(Il’in [2003]) on a square (cubic) mesh with N = Nd

x degrees of freedom,
for different values of Nx. The stopping criterion for external iterations was
||rn|| ≤ εe = 10−7. All the experiments were carried out on the hybrid cluster
NKS-30T where every MPI process was run on Intel Xeon E5450 processor.

The implementation of DDM was made via the hybrid programming with
two levels of a parallelization. At the upper level, the iterative Krylov pro-
cess over P subdomains has been organized on the basis of MPI approach
which forms one MPI-process for every subdomain and provides data com-
munications. The auxiliary SLAEs in subdomains were solved by PARDISO
from Intel MKL which uses multithreading, thus giving one more level of
parallelism.

Table 1 presents the results for the 2D problem (19) solved by the deflated
BiCGStab-DDM method at the upper level of the iterative process with the
Dirichlet interface condition. Acceleration of the method was done only before
the iterations by the procedure (18). The boundary conditions and the right
hand side were chosen in accordance with the known exact solution u(x, y) =
3xy2−x3. The experiments were made on the square macro-grid of P 2 equal
subdomains, with the number of (N/P )2 mesh points in each subdomain.
Here the number of iterations are given for the grids with the numbers of their
points N = 642, 1282, 2562. Each four columns stand for the case without
deflation, the case with the piece-wise constant, the linear and the quadratic
basis functions wk taken for the deflation matrices W0 ∈ RN,P , respectively.
Zero initial guess and overlapping parameter ∆ = 0, 1, 2, 3 were taken.

Table 1 The numbers of iterations for BiCGStab method (2D problem) for different grids,
macrogrids and basis functions in the deflation matrix, ∆ = 0, 1, 2, 3, p = q = 4

N ∆
P 2

22 42 82

642 0 19 21 23 17 27 27 25 19 38 34 33 26
1 12 12 12 10 18 16 15 13 21 20 19 14
2 9 10 9 8 13 13 11 11 17 16 14 11
3 8 8 8 7 10 12 9 9 13 13 12 10

1282 0 27 29 31 22 43 41 36 26 51 46 44 38
1 16 18 18 14 24 22 21 17 30 27 25 16
2 13 14 13 12 19 18 17 14 23 21 21 15
3 11 12 11 10 15 15 14 12 19 18 16 11

2562 0 42 35 46 35 65 52 45 33 98 73 65 32
1 22 24 22 19 32 30 30 22 43 39 38 31
2 17 20 19 14 26 25 22 18 34 31 30 24
3 15 18 17 13 22 21 20 15 28 25 25 20
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As we can see from these results, an application of the coarse grid correc-
tion gives the considerable improvement of the BiCGStab method, for differ-
ent values of coefficients p, q for the single usage of the acceleration before
the first iteration only. Moreover, the efficiency of the deflation procedure
increases when the smoothness of the basis functions grows. Another way
to decrease the number of iterations is to use small subdomain overlapping,
∆ = 1, 2, 3. But for big ∆ values, the solution of BVPs in the subdomains
becomes too expensive, and so we have the optimal parameters ∆ ≈ 4, in
the sense of the run time. These effects are especially valuable for the big
numbers of subdomains and the degrees of freedom of the SLAE.

The second set of experiments is devoted to application of the SCR method

with two preconditioners B
(s)
n and B

(c)
n , the latter one formed using piecewise

constant basis functions. Here we solved 3D Laplace equation (p = q = r =
f = 0) in (19) with the exact solution u = x2 + y2 + z2 and the initial guess
u0 = 0. Also, the domain decomposition was carried out without overlapping
of the subdomains, with the Dirichlet interface conditions. In each cell of
Table 2 we present the number of iterations and the run time for the grids
N = 323, 643, 1283, and for the number of subdomains (it is equal to the
number of MPI-processes) P = 4, 8, 16, 32, 64. The results for the second set
of experiments indicate that it may not be advantageous to employ coarse
grid correction at every step of an iterative process, especially if low-order
basis functions are used. This observation also correlates with the results
obtained in the first set of experiments.

Table 2 The number of iterations and run times for SCR method with coarse grid cor-
rections at every 5-th iteration and for block algorithm MPSCR, p = q = r = 0, ∆ = 0

N Method
P
4 8 16 32 64

323 SCR 52 0.34 59 0.27 59 0.23 66 0.30 70 0.42
MPSCR 45 0.48 54 0.34 54 0.32 62 0.38 67 0.48

643 SCR 66 4.81 82 2.71 101 1.96 102 1.72 105 2.07
MPSCR 59 5.35 70 3.18 85 2.39 98 2.32 109 2.66

1283 SCR 114 217.2 132 72.5 133 33.1 151 22.3 150 20.6
MPSCR 101 226.3 111 79.1 134 43.2 156 32.8 159 30.7

5 Conclusion

The presented numerical results demonstrate that multi-preconditioned DDM
in the Krylov subspaces have reasonable efficiency. Our main goal is to investi-
gate the scalability of parallel DDM with application of multi-preconditioned
SCR iterative process and the coarse grid correction approach with differ-
ent order of basis functions. Our numerical experiments with the proposed
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approaches have shown the valuable impovement of the methods’ behaviour
for the test problems considered. However, further experimental investiga-
tions are needed to understand the properties of the algorithms and to arrive
at a robust high-performance code and to define a niche of the approaches
presented when used for some particular applied problems.
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