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1 Introduction

Real-world electromagnetic problems such as mounted antennas often involve
multiple electromagnetic scales and properties: These kinds of problems may
contain antenna models with extremely detailed structures and complex ma-
terials besides electrically very large platforms of hundreds of wavelengths.
Potentially, even complete systems, e.g. additionally including the feeding
circuits of the antennas, need to be simulated. There are existing meth-

Fig. 1: Complex models, e.g. involving multiple scales, can be decomposed
into smaller subdomains to apply the most suitable solver to each subdo-
main.

ods suitable to solve the full-wave Maxwell’s equations for each part of
the described complex problem. E.g. the Finite Integration Technique (Wei-
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land [1977]) or the finite element method (Monk [1992]) could be used for
the comparatively small and complex antennas, while a boundary element
method (Chew et al. [2001]) or an asymptotic approach (McNamara et al.
[1990]) would be more appropriate for the electrically large platform. All
these methods have their strengths regarding particular types of electromag-
netic problems, but their capabilities are limited, especially if a combination
of the mentioned problem types occur.
Here, domain decomposition methods come into play. The goal is to spatially
decompose the original model into smaller subdomains and to apply the most
suitable method in each subdomain. To obtain the overall solution, a global
iterative solver is needed. An example for this approach is depicted in Fig. 1.

The presented project pursues a modular domain decomposition approach
to enable the simple integration of existing electromagnetic solvers. Here, the
subdomains are coupled via surface currents. This allows for adding arbi-
trary methods to the developed black box framework, to make use of the full
potential of available electromagnetic solvers.

2 Love’s Equivalence Principle

The method described in this paper is based on the surface equivalence prin-
ciple as developed by A. E. H. Love and described in Schelkunoff [1936].
The coupling of the subdomains is realized by exchanging boundary data in
terms of surface currents. Love’s equivalence principle is illustrated in Fig.
2.

Fig. 2: According to Love’s equivalence principle, sources and material
distributions enclosed by a surface S in an original model (a) can be replaced
by equivalent electric and magnetic surface currents JS and MS on S to
obtain an equivalent model with the same solution outside of S (b).
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Let’s assume an original model domain Ω is decomposed into two subdo-
mains Ω1 and Ω2 by introducing a closed surface S, see Fig. 2(a). Ei and
Hi are the solutions of the original model for the electric and magnetic fields
in subdomain Ωi. εi and µi are the permittivity and the permeability of the
material in the respective subdomain. The field solution on the surface S is
denoted by ES and HS .
According to Love’s equivalence principle, the sources and material distri-
butions enclosed by surface S can be replaced by equivalent electric and
magnetic surface currents JS = nS×HS and MS = ES×nS . Here, nS is the
unit normal vector of S pointing outwards. The resulting equivalent model
for the outer domain Ω1 as shown in Fig. 2(b) reproduces the solution of the

original model in Ω1, i.e. E
(e)
1 = E1 and H

(e)
1 = H1, and null fields in Ω2. In

the equivalent model, it is irrelevant what is modelled inside of the surface
S, since the fields of the solution are forced to zero anyway.
The same applies for the corresponding inner equivalent model. Equivalent
surface currents are defined in the same way on S, but the unit normal vector
nS is inverted pointing inwards. As for the outer equivalent model this results
in null fields in Ω1 and reproduces the solution of the original model in Ω2.
Fig. 3 illustrates again the above described principle with the help of a

Fig. 3: Love’s equivalence principle is demonstrated by means of a reflector
antenna setup using CST MICROWAVE STUDIO R©: By monitoring the
tangential fields on S in the original model (a), either the inside (b) or the
outside (c) of the closed surface S can be replaced by equivalent surface
currents.

reflector antenna setup simulated with CST MICROWAVE STUDIO R©. Ad-
ditionally, the inner equivalent model (Fig. 3(c)) is shown besides the original
and the outer equivalent models.
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 3 Iteration Scheme for Modular Domain Decomposition

The principle described in the previous section will be utilized for the black
box domain decomposition approach. In this way, the subdomains need only
provide surface currents to realize the coupling to the other subdomains. In
the end, this will result in an iterative domain decomposition method, which
will be explained in the following section.

The reflector antenna model from section 2 is again considered. After de-
composing it into the two subdomains Ω1 and Ω2, we obtain a typical cou-
pled system. Now, the idea is to solve this coupled system by making use of
Love’s surface equivalence principle. But, instead of knowing the solution
of the original model ES and HS beforehand, only approximations ẼS and
H̃S are available, since the subdomains have to be solved separately. Here,
the subdomains can basically be truncated by arbitrary boundary conditions,
even transparent boundary conditions can be considered. Additionally, the
exchange surfaces can be chosen in different locations. This gives the result-
ing domain decomposition method a high flexibility in defining the coupling
interfaces between the subdomains and allows for the introduction of overlaps
between them.
The above approach finally results in the following linear system, whose terms
will be explained subsequently:
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The unknowns of the system x1 and x2 are defined on the coupling surfaces
between the subdomains. By solving this system iteratively using a GMRES
solver (Saad and Schultz [1986]), the solution of the original model on the
surface S is obtained. From this, the field solutions in the subdomains can
be derived.
Although eq. 1 describes a domain decomposition formally very much alike
to e.g. the formulation found in Peng and Lee [2010], it goes far beyond non-
overlapping domain decompositions with standard transmission conditions:
It features a high flexibility in defining the coupling interfaces and exten-
sions of the subdomains, as described above. In section 4, this flexibility is
employed to enhance iteration convergence by introducing overlaps without
resorting to e.g. higher order transmission conditions as done in Peng and
Lee [2010].
The iteration scheme of the presented method is illustrated in Fig. 4.
Boundary data in terms of surface fields is iteratively exchanged between
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Fig. 4: Boundary data is iteratively exchanged by monitoring surface fields,
which are then imprinted as current sources in the other domain. By solving
the corresponding linear system using e.g. a GMRES solver, the solution of
the original model is obtained.

the subdomains, where each iteration mainly consists of three parts. First,
the monitored surface fields xj from subdomain Ωj are transformed into a

current source for subdomain Ωi, represented by the operator CjiR
T

i . Af-
terwards, subdomain Ωi is solved by applying its inverted system operator
A−1

i . In the last step, the operator Ri restricts the obtained solution to the
corresponding coupling surface S. In practice, the last step is realized by
monitoring the fields on the coupling surface. After each iteration, the feed-
back is exchanged between the subdomains to take into account the influence
of the other parts of the model.
As shown in Fig. 4, the surfaces where the fields are monitored and the cur-
rents are imprinted do not coincide. This follows from the jumping fields due
to the imprinted electric and magnetic currents.

4 Investigations

The area of application of the presented black box framework mainly com-
prises models with a small number of user-defined, coupled subdomains as is
the case for antenna placement scenarios. Here, the priority is not on scalabil-
ity regarding the number of subdomains, but on the flexibility of the overall
domain decomposition framework.
For first investigations, an “array” of two patch antennas is considered. The
setup of this model and how it is decomposed into two subdomains is il-
lustrated in Fig. 5. Each of the patch elements is simulated with CST’s fi-
nite element frequency domain solver using an absorbing boundary condition
(ABC). By shifting the coupling interfaces, non-overlapping (d = 0) as well
as overlapping (d > 0) setups can be realized. In the latter case, each sub-
domain is extended towards the other one by modelling the structure of the
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original model in the overlap region. The discretizations of the subdomains
can be chosen independently of each other and don’t need to match in the
overlap region nor at the coupling interfaces.

For the validation of the results of the presented domain decomposition
method, the absolute value of the electric field is evaluated along the ar-
ray axis and slightly above the surface of the patch elements for d = 0. In
Fig. 6, the corresponding curves are depicted showing the smooth transition
from one subdomain to the other at x = −3 cm. Furthermore, the results
precisely match the solution of the original model.

An interesting aspect for future investigations is the relationship between
the relative residual of the global iterative solver and the error of the quanti-
ties of interest. For the investigated model (d = 0), the absolute error of the
S-parameter as the quantity of interest is already smaller than 10−3 after the
first iteration, which is sufficient for typical engineering applications (Fig. 7).

Fig. 5: The 1x2 patch antenna array is decomposed into two subdomains,
each calculated by CST’s finite element frequency domain solver. The sub-
domains are truncated by an absorbing boundary condition (ABC) and can
partly overlap by a size d.

As pointed out in section 3, overlaps can be used to accelerate the conver-
gence of the global iterative solver. Fig. 8 compares the convergence of the
relative residual of the global iterative solver for different overlap sizes d. The
larger the overlap size the faster the presented method converges. At the same
time, there is no significant performance drawback, since the overlaps are still
quite small in terms of the wavelength λ. E.g. d = 4× 10−2 λ corresponds to
an overlap size of approximately one mesh cell layer and reduces the number
of iterations from 7 to 4 to reach a relative residual smaller than 10−3.

222 Florian Muth, Hermann Schneider, Timo Euler



Fig. 6: The results of the presented method precisely match the solution
of the original model for the non-overlapping setup (d = 0). Especially, a
smooth transition between the subdomains at x = −3 cm can be observed.

Fig. 7: Comparison of the relative residual of the global iterative solver
with the absolute error of the S-parameter for the non-overlapping setup
(d = 0): For typical engineering applications, an absolute error smaller than
10−3 is already sufficient. The value from the fifteenth iteration was taken
as reference.

5 Discussion and Conclusion

This paper has presented a domain decomposition approach, which is suitable
for electrically large and complex setups. The main advantage is its modular-
ity due to the coupling of the subdomains via surface currents motivated by
the equivalence principle. The resulting black box framework allows for any
numerical method in each subdomain. Another feature is the high flexibil-
ity in defining the coupling interfaces between the subdomains. In this way,
overlapping setups can easily be introduced.
Promising results regarding the coupling of finite element subdomains were
shown. The presented method was proven to converge for both the non-
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Fig. 8: The convergence of the presented method can be accelerated by
introducing an overlap d > 0. There is no significant performance drawback,
since the overlap size is in the range of a fraction of the wavelength λ.

overlapping and the overlapping setup. By introducing a small overlap of a
fraction of a wavelength, the convergence of the method could be accelerated
drastically.
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