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1 Introduction

Over the last decade, an intensive research effort has been devoted to inves-
tigate the time direction in evolution problems for parallelization. This is be-
cause modern supercomputers have now so many processors that often space
parallelization strategies for evolution problems saturate before all available
processors can be used. In the relatively recent field of time parallelization,
there are four main algorithmic techniques that have been investigated: meth-
ods based on multiple shooting [3], like the parareal algorithm [22] for which
a detailed convergence analysis can be found in [17] for the linear case and
in [8] for the nonlinear case; methods based on space-time decomposition,
like classical Schwarz waveform relaxation [2, 16, 18] and optimized variants
[11, 9, 10, 1], and Dirichlet-Neumann and Neumann-Neumann waveform re-
laxation [24, 21, 14]; space-time multigrid methods [19, 20, 5, 15]; and direct
time parallelization methods like tensor product methods [23], RIDC [4], and
ParaExp [7]; for an up to date overview and a historical perspective of these
approaches, see [6].

We have recently proposed and analyzed a new approach to make the
tensor product time parallelization technique from [23] robust. For linear
problems of diffusion type, we have derived in [13] asymptotic estimates of
the best choice of the main parameter in these methods, balancing truncation
error and roundoff error, and the study for wave equations is in preparation
[12]. These methods are however only applicable to linear problems. We pro-
pose here a new idea which permits these techniques also to be used for
nonlinear problems.
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2 Scalar Model Problem

We start with the nonlinear scalar model problem

ut = f(u), u(0) = u0. (1)

Discretization using a backward Euler method with variable time step leads
to

un − un−1

∆tn
= f(un), (2)

and writing this system over several time steps, we obtain

Bu :=
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− 1
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un


 =




f(u1) +
1

∆t1
u0

f(u2)
...

f(un)


 =: f(u). (3)

Parallelization in time based on diagonalization uses the assumption that B
can be diagonalized, B = SΛS−1, which is possible if all the time steps are
different. One then diagonalizes the system (3) in time,

Λû := S−1BSS−1u = S−1f(u). (4)

If the right-hand side is linear, f(u) = au, we get with e1 := (1, 0, . . . , 0)T

S−1f (u) = S−1(au+
u0

∆t1
e1) = aû+

u0

∆t1
S−1e1,

and the system is indeed diagonalized in time, and all time steps can be
solved in parallel by a diagonal solve,

(Λ − aI)û =
u0

∆t1
S−1e1.

The solution is then obtained by simply applying S,

u = Sû.

Since our problem is nonlinear however, it is not possible to directly diago-
nalize (4).

Since the discretized system (3) is nonlinear, we will have to apply an
iterative method to solve it, e.g. we can apply Newton’s method to

F(u) := Bu− f(u) = 0.

This leads with some initial guess u0 to the iteration
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um = um−1 − (F ′(um−1))−1F(um−1).

Now the Jacobian is

F ′(u) = B − diag(f ′(u1), f
′(u2), . . . , f

′(un)) =: B −D(u).

The Newton iteration can thus be rewritten as

(B −D(um−1))um = (B −D(um−1))um−1 − (Bum−1 − f(um−1))

= f(um−1)−D(um−1)um−1, (5)

and for a given iteration step m− 1, um−1 is known. Denoting by B̃m−1 :=

B − D(um−1) and f̃
m−1

:= f(um−1) − D(um−1)um−1, we have to solve at
each iteration step of Newton the evolution problem

B̃m−1um = f̃
m−1

.

This can be done by diagonalization now, since it is a linear problem: having
B̃m−1 = S̃Λ̃S̃−1, we can solve

Λ̃ûm := S̃−1B̃m−1S̃S̃−1um = S̃−1f̃
m−1

for all ûm
j , j = 1, 2, . . . , n in parallel.

A major disadvantage that is brought in by the nonlinear term is that one
has to compute a factorization of the time stepping matrix B̃m−1 at each
Newton iteration. This could be avoided if we do not use the exact Jacobian
at each Newton iteration, but an approximation which uses for example a
scalar approximation of the diagonal matrix by averaging,

D(u) ≈ 1

n

n∑

j=1

f ′(uj)I.

Now we can use the old factorization of the time stepping matrix B and solve
in parallel at each quasi Newton step

(Λ− 1

n

n∑

j=1

f ′(um−1
j )I)ûm = S̃−1f (um−1)− 1

n

n∑

j=1

f ′(um−1
j )um−1. (6)

Using this approximate Jacobian, the quasi Newton method will then however
only converge linearly in general, and we will compare in the numerical section
the two approaches to see how much is lost due to this approximation.
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3 A PDE Model Problem

Suppose we want to solve the time dependent semi-linear heat equation

ut = ∆u+ f(u), u(0, x) = u0(x), (7)

with homogeneous Dirichlet boundary conditions. Using a standard five point
finite difference discretization in space over a rectangular grid of size J =
J1J2, we obtain the discrete problem

un − un−1

∆tn
= ∆hun + f(un), (8)

where now un and un−1 are vectors in RJ . As in the scalar case, we need to
introduce an iteration to solve this nonlinear problem, but here the system
has to be treated also by tensor products to separate space and time. Let
It be the N × N identity matrix associated with the time domain and Ix
be the J × J identity matrix associated with the spatial domain. Setting
u := (u1, . . . ,uN ), f(u) := (f(u1) +

1
∆t1

u0, f(u2), · · · , f(uN )), and using
the Kronecker symbol, we can rewrite (8) as one large nonlinear system,

(B ⊗ Ix)u = (It ⊗∆h)u+ f (u). (9)

To solve (9) with an iterative method, one could for example apply Newton’s
method to solve

F(u) := (B ⊗ Ix − It ⊗∆h)u− f(u) = 0.

To obtain the Jacobian needed, we define the diagonal matrix function

J(u) :=




Js(u1)
. . .

Js(uN )


 , (10)

where Js(un) := diag(f ′(u1
n), · · · , f ′(uJ

n)) ∈ MJ(R). We can then write the
Jacobian of F in compact form,

F′(u) = B ⊗ Ix − It ⊗∆h − J(u).

Newton’s method corresponds then to computing for m = 1, 2, . . .

(
B ⊗ Ix − It ⊗∆h − J(um−1)

)
(um−um−1) = f(um−1)−(B⊗Ix−It⊗∆h)u

m−1,

and we see that the linear terms cancel, so we can simplify to obtain

(
B ⊗ Ix − It ⊗∆h − J(um−1)

)
um = f(um−1)− J(um−1)um−1. (11)
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In contrast to the scalar case, where one could simply diagonalize at each
Newton iteration a modified time stepping matrix B̃m−1 to keep Newton’s
method without any approximation, this modified B̃m−1 would here also
depend on the space dimension now, and one would have to diagonalize a
B̃m−1 matrix at each spatial discretization point, which becomes prohibitive.
So we perform a similar approximation as in the scalar case: we define

J̃(u) :=
1

N

N∑

n=1

Js(un),

and obtain with this approximation the quasi-Newton algorithm

(
B ⊗ Ix − It ⊗ (∆h + J̃(um−1))

)
um = f(um−1)− (It ⊗ J̃(um−1))um−1.

(12)
Now we can use the factorization B = SΛS−1, and defining

f̃
m−1

:= f (um−1)− (It ⊗ J̃(um−1))um−1,

the quasi-Newton step (12) over all time steps can be parallelized in time by
solving

(Λ⊗ Ix − It ⊗ (∆h + J̃(um−1)))ûm = (S−1 ⊗ Ix)f̃
m−1

, (13)

followed by computing um = (S ⊗ Ix)û
m.

4 Numerical Experiments

We first show a numerical experiment for the scalar model problem (1) where
we chose either f(u) = −u2 or f(u) =

√
u. We solve these problems on the

time interval (0, T ) using N time steps on a geometrically stretched grid [13]

∆tn :=
(1 + ε)n

∑N
n=1(1 + ε)n

T,

with T = 1, N = 10, and initial condition u(0) = 1. We show in Figure 1
on the left how the time parallel Newton method (5) and the Quasi-Newton
method (6) converge for ε = 0.05. Although the approximation leads only
to linear convergence, the first few steps lead already to a high accuracy
approximation, like for the true Newton method. On the right in Figure 1,
we show how the accuracy at the end of the time interval is influenced by
the stretching of the time grid determined by ε. For a highly anisotropic time
grid, ε close to 1, the truncation error is bigger than for a time grid with equal
time steps [13]. When ε becomes too small however, then roundoff errors due
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Fig. 1 Left: Quadratic and linear convergence of the time parallel Newton and Quasi-
Newton methods for two scalar model problems. Right: accuracy for different choices of
the time grid stretching ε.

to the diagonalization process lead to large errors, and an optimal choice has
been determined asymptotically for linear problems in [13]. We can see on
the right in Figure 1 that there is also an optimal choice in the nonlinear
case, and it seems to be very similar for the two examples we considered.

We next test the algorithm for the PDE model problem (7) using the same
two nonlinear functions as for the scalar model problem, homogeneous bound-
ary conditions and initial condition u(0, x) = 1. We discretize the Laplacian
using a five point finite difference stencil with mesh size h = 1/20 and use
the same time grid as for the scalar model problem. We show in Figure 2 on
the left how the Newton method (11) which can only be time parallelized at
the cost of many time stepping matrix factorizations, and the Quasi-Newton
method (13) that is easily time parallelized converge. Again the approxima-
tion still leads to a rapidly converging method. On the right in Figure 2, we
show how the accuracy at the end of the time interval is influenced by the
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Fig. 2 Left: linear convergence of the time parallel Quasi-Newton method for two PDE
model problems. Right: accuracy for different choices of the time grid stretching ε.
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stretching of the time grid in the PDE case, and again we see that there is
an optimal choice for the stretching parameter.

5 Conclusion

We have introduced a new method which allows us to use diagonalization
for time parallelization also for nonlinear problems. We have shown two vari-
ants for nonlinear scalar problems, and one for a nonlinear PDE. Numerical
experiments show that the methods converge rapidly, and there is also an
optimal choice of the geometric time grid stretching, like in the original algo-
rithm for linear problems [13, 12]. The geometric stretching is only one way
to make diagonalization possible: random or adaptive time steps could also
be used, but they must be determined for the entire time window before its
parallel solve, and they must all be different, otherwise the diagonalization is
not possible. In an adaptive setting, one could adaptively determine a macro
time step with a larger tolerance as time window, before parallelizing its solve
with smaller geometric or random time steps. We are currently investigating
such variants, and also the generalization to nonlinear hyperbolic problems.
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