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Abstract This work considers the combined space-time discretization of
time-dependent partial differential equations by using first order least square
methods. We also impose an explicit constraint representing space-time mass
conservation. To alleviate the restrictive memory demand of the method, we
use dimension reduction via accurate element agglomeration AMG coarsen-
ing, referred to as AMGe upscaling. Numerical experiments demonstrating
the accuracy of the studied AMGe upscaling method are provided.

1 Introduction

In this paper we explore a robust approach to derive combined space-time
discretization methods for two classes (parabolic and hyperbolic) of time-
dependent PDEs. We use the popular FOSLS (first order systems least-
squares) approach (cf., e.g., Cai et al. [1994] or Carey et al. [1995]) ) treat-
ing time as an additional space variable and, in addition, we prescribe a
space-time divergence equation as a constraint in order to maintain certain
space-time mass conservation (following, e.g., Adler and Vassilevski [2014]).

More specifically, our approach is applied to the following model problem

[1] Johannes Kepler University Linz, Institute of Computational Mathematics, Altenberger
Straße 69, 4040 Linz, Austria neumueller@numa.uni-linz.ac.at · [2] Center for Applied

Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Liv-
ermore, CA 94551, U.S.A. panayot@llnl.gov · [3] The University of Texas at Austin,
Institute for Computational Engineering and Sciences (ICES), 201 E. 24th Street, Stop

C0200, Austin, Texas 78712-0027, U.S.A. uvilla@ices.utexas.edu

0 This work was performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The work
was partially supported by ARO under US Army Federal Grant # W911NF-15-1-0590.

225



∂S

∂t
+ div(L(S)) = q0(x, t), x ∈ Ω ⊂ Rd, t ∈ (0, T ), (1)

where L is at most a first-order differential operator with respect to the space
variable x only. At t = 0 we impose an initial condition S = S0 and on ∂Ω
for all t ∈ (0, T ) we apply some appropriate boundary conditions (if any).
More specifically we consider differential operators of the form

L(S) := −k∇xS and L(S) := f(S)u(·)

for respectively parabolic and hyperbolic problems, as explained in more de-
tails in Section 4 and 5.

2 Space-time Constrained First Order System Least
Squares

Problem (1) can be rewritten as a first order system by introducing the “flux”
variable σ := [L(S);S]⊤ as

σ −
[
L(S)
S

]
= 0,

divx,t σ = q0,
(2)

where divx,t is the d+1-dimensional space-time divergence operator. We then
introduce the FOSLS functional as

J(σ, S) =

∥∥∥∥σ −
[
L(S)
S

]∥∥∥∥
2

0, K−1

+ ‖q0 − divx,t σ‖20 ,

where K = K(x) ∈ R(d+1)×(d+1) is a symmetric and positive definite co-
efficient matrix and ‖ · ‖0 (‖ · ‖0,K−1) denotes the (weighted) L2(ΩT )-norm
with respect to the space-time domain ΩT := Ω×(0, T ). A constrained least-
square version of (2) is given by minimizing the functional J(σ, S) under the
constraint which is given by the conservation equation

(divx,t σ, w) = (q0, w) for all w ∈ L2(ΩT ).

Here we denote with (·, ·) the inner product with respect to L2(ΩT ). First
order optimality conditions for the constrained minimization problem lead
to the system of variational equations: Find σ ∈ H(divx,t;ΩT ), S ∈ V and
µ ∈ L2(ΩT ), such that
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(σ,ψ)K−1 + (divx,t σ, divx,tψ) −
([

L(S)
S

]
, ψ

)

K−1

+(µ, divx,tψ) = (q0, divx,tψ),

−
(
σ,

[
L(φ)
φ

])

K−1

+

([
L(S)
S

]
,

[
L(φ)
φ

])

K−1

= 0,

(divx,t σ, w) = (q0, w)

(3)
holds for allψ ∈ H(divx,t;ΩT ), all φ ∈ V and all w ∈ L2(ΩT ). Here V denotes
an appropriate function space for the unknown S, such that L : V → L2

is a bounded operator. In a straightforward manner we obtain the finite
element discretization of the CFOSLS system (3) by using appropriate finite
dimensional spaces, i.e. we use σh ∈ Rh ⊂ H(divx,t;ΩT ), Sh ∈ Vh ⊂ V and
µH ∈ WH ⊂ L2(ΩT ). Note that the Lagrangian multiplier µH belongs to
the space WH of discontinuous piecewise polynomials defined on a coarser
mesh TH (the lowest order being piecewise constants). The fine mesh Th is
constructed by performing one uniform refinement of TH . This choice leads
to a relaxed Petrov-Galerkin discretization of the mass conservation equation
and prevents overconstraining the resulting system. A relevant error analysis
of the above discretization has been presented in Adler and Vassilevski [2014].
Finally, using appropriate basis functions for the discrete function spaces, we
obtain the system of linear equations for the saddle point problem



A B⊤ D⊤

B C 0
D 0 0





σh

Sh

µH


 =



fh
0
gH


 . (4)

3 AMGe Upscaling

The AMGe (element agglomeration) coarsening has been developed at LLNL,
originally to derive hierarchies of finite element spaces for designing multi-
grid solvers for bilinear forms corresponding to an entire de Rham sequence of
spaces (H1-conforming, H(curl)-conforming, and H(div)-conforming), (Pas-
ciak and Vassilevski [2008]), and more recently (Lashuk and Vassilevski [2012,
2014]) to ensure that these hierarchies of spaces have guaranteed approxima-
tion properties. Such spaces are hence suitable to construct accurate coarse
discretizations and can be used as a tool for dimension reduction, also refereed
to as numerical upscaling.

The CFOSLS space-time discretization approach leads to saddle–point sys-
tems involving function spaces in the divergence constraint that are H(div)-
conforming. This allows to solve combined space-time problems up to 2 space
dimensions using the existing AMGe upscaling framework for 3D Raviart-
Thomas elements. The goal in the near future is to extend this framework
to 4D Raviart-Thomas analogs. This paper, as a first step, demonstrates the
feasibility of the AMGe upscaling approach applied to combined space-time
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discretization that is both accurate, mass-conservative and achieving rea-
sonable dimension reduction, which makes the expensive direct space-time
approach (applied on the fine grid) feasible at coarser upscaled levels.

In the next sections we study the presented approach in detail for the two
differential operators introduced in the beginning of this work. The finite
element library MFEM (MFEM) is used to assemble the discretized systems
which are then solved using the algebraic multigrid solvers (AMG) in hypre
(HYPRE).

4 Parabolic problem

Here we choose the differential operator L(S) := −k∇xS, where k = k(x)
is a given positive coefficient. For simplicity, we use homogeneous Dirichlet
boundary conditions on ∂Ω for all t ∈ (0, T ). For the variational problem (3)
we then introduce the weight

K =

[
kId 0
0 1

]
.

A natural space for the unknown S is then given by V = L2(0, T,H
1
0 (Ω)). For

the discretization, we use a standard conforming subspace Vh ⊂ V consisting
of piecewise Lagrangian polynomials which are globally continuous. We then
solve the discretized saddle-point problem (4) by using the MINRES method
with the block diagonal preconditioner

P̂ =



Â 0 0

0 Ĉ 0

0 0 Ŵ


 ,

where Â denotes the auxiliary space AMG solver for H(div)-problem applied
to the matrix A (HypreADS, Kolev and Vassilevski [2012]), Ĉ is a standard
AMG preconditioner for C (BoomerAMG, HYPRE), and Ŵ represents the
diagonal of the L2(ΩT ) mass matrix W .

Example 1. In this example we let Ω = (0, 1)2, T = 1 and k ≡ 1. The exact
solution is given by u(x1, x2, t) = e−t sin(πx1) sin(πx2).

The initial – fine – space-time mesh (level 0) is an unstructured tetrahedral
mesh with 490, 200 elements. We use graph partitioning algorithms (Karypis
and Kumar [1998]) to construct the agglomerated space-time meshes shown
in Figure 1. For the discretization, we use lowest order finite element spaces on
the fine grid and then we construct the hierarchy of coarse spaces as explained
in Section 3. Table 1 reports the errors with respect to the exact solution.
We observe that the upscaling procedure allows to dramatically reduce the
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number of unknowns maintaining reasonable good approximations, see also
Figure 1.

level elements dof ||S − SH ||0 ||σ − σH ||0 ||uh − uH ||0 ||σh − σH ||0 iter

0 490,200 1,579,808 3.4360E-03 2.4217E-02 - - 107

1 7,700 218,089 6.2509E-03 3.2351E-02 2.0985E-03 3.5408E-02 80
2 1,043 59,085 2.5489E-02 7.5482E-02 8.3829E-03 1.0854E-01 102

3 179 12,366 8.1318E-02 1.7308E-01 2.6544E-02 2.5752E-01 60

4 39 3,127 2.3470E-01 3.7018E-01 7.6846E-02 5.5365E-01 34
5 8 635 3.0685E-01 5.1457E-01 1.0064E-01 7.7024E-01 27

Table 1 Numerical errors for different agglomeration levels for Example 1.

5 Hyperbolic problem

Here we consider the differential operator L(S) := f0(S∗)S u(·), with the
given velocity field u (satisfying u · nx = 0 on ∂Ω) and the given positive
function f0 = f0(S∗). Such equations can be used, for example, to model
the evolution in time of water or gas saturation in an oil reservoir. We then
introduce the weight

K = K(S∗) =

[
f0(S∗)Id 0

0 1

]
which gives σ = K(S∗)

[
u
1

]
S.

A natural setting for S is given by V = L2(ΩT ). Using the second equation
of (3) we can eliminate the unknown S and we obtain the reduced system
for σ and the Lagrange multiplier µ: Find σ ∈ H(div;ΩT ) and µ ∈ L2(ΩT ),
such that

((
K−1 − δ−1

K

[
u
1

] [
u
1

]⊤)
σ, ψ

)
+(µ, divψ) = 0,

(divσ, w) = (q, w)

(5)

holds for all ψ ∈ H(div;ΩT ) and for all w ∈ L2(ΩT ). Here δK ∈ R is given
by

δK =

[
u
1

]⊤
K

[
u
1

]
and further S = δ−1

K

[
u
1

]⊤
σ.

It can be shown that the matrix K−1 − δ−1
K

[
u
1

] [
u
1

]⊤
in (5) is positive

definite on the nullspace of the divergence operator, if divx(f0(S∗)u) ≥ 0 in
Ω and u · nx = 0 on ∂Ω.
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Numerical solution Sh Numerical solution |σh| Agglomerated mesh on level 0

Numerical solution Sh Numerical solution |σh| Agglomerated mesh on level 1

Numerical solution Sh Numerical solution |σh| Agglomerated mesh on level 2

Numerical solution Sh Numerical solution |σh| Agglomerated mesh on level 3

Fig. 1 Numerical solutions and agglomerated meshes for different levels (Example 1).
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Example 2. In this example we consider Ω = {x ∈ R2 : |x| < 1}, T = 2,
f0(S∗) ≡ 1 and q0 ≡ 0 with the velocity function and the initial condition

u(x1, x2, t) =

[
−x2

x1

]
and S0(x1, x2) = e−100[(x1−0.5)2+x2

2].

For the discretization we use Raviart-Thomas pairs Rh,Wh for σ and the
Lagrange multiplier µ. The initial fine mesh (an unstructured tetrahedral
mesh with 1, 315, 708 elements) and the agglomerated meshes are shown in
Figure 2. Table 2 shows (similarly to what already observed for the parabolic
example) that upscaling allows to achieve both effective dimension reduction
and good approximation of the fine grid solution (level 0). The divergence
free solver Christensen et al. [2015] allows for the robust solution of the
discretized saddle point problem at each level as shown by the number of
iterations reported in Table 2.

level elements dof ||σh − σH ||0 ||µh − µH ||0 iter

0 1,315,708 3,970,948 - - 39

1 164,495 1,636,016 1.1665E-03 1.2176E-09 39
2 21,009 495,815 5.0647E-03 2.2788E-04 33

3 3,215 99,004 9.1879E-03 4.6800E-04 24

4 684 22,324 1.0483E-02 5.6677E-04 19
5 200 8,041 1.2115E-02 7.1052E-04 16

Table 2 Numerical errors for different agglomeration levels for Example 2.
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Numerical solution |σh| Agglomerated mesh on level 0

Numerical solution |σh| Agglomerated mesh on level 1

Numerical solution |σh| Agglomerated mesh on level 2

Fig. 2 Numerical solution and agglomerated meshes for different levels (Example 2).
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