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1 Introduction

The Balancing Domain Decomposition by Constraints (BDDC) method was
first introduced by Dohrmann [2003]. Compared to its parent, the BDD
method by Mandel [1993], one of the advances in BDDC method is the use of
constraints to enforce equality of averages across faces, edges, or at individual
dofs on substructure boundaries called corners. These constraints serve two
purposes. First, they ensure that the coefficient matrix of the coarse problem
is always invertible. Second, they induce a natural coarse space leading to fast
convergence. While corner constraints do not have significant contribution in
serving the second purpose, they are mainly responsible for the first one.
In addition, in order to use positive definite sparse direct solvers, which are
faster and more robust than their indefinite counterparts, the corners should
be chosen so that the local matrix sub-assembled for all dofs in each substruc-
ture except corners is positive definite. Here we do not consider a change of
basis, cf. Li and Widlund [2006], as it destroys good sparsity pattern of local
matrices and is more complicated to implement.

Different corner selection algorithms have been proposed by Dohrmann
[2003], Lesoinne [2003], Klawonn and Widlund [2006], Š́ıstek et al. [2012] to
guarantee such choices of corners. However, based on our experience, the im-
plementation of this type of algorithms is an involved and time-consuming
task, which does depend on the physical problem to be solved and also the
type of FE formulation being used. Furthermore, the situation becomes far
more complicated when subdomains are disconnected, or only connected by
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corners or edges. Unfortunately, the currently available parallel mesh parti-
tioners, ParMETIS by Karypis et al. [1997] and PT-Scotch by Chevalier and
Pellegrini [2008], cannot guarantee connected subdomains.

In this paper, we present a perturbed formulation of the BDDC method
where the coarse coefficient matrix and the local stiffness matrices are guar-
anteed to be positive definite. For this new formulation, corner constraints are
optional and should be selected only for convergence purpose. Consequently,
one can consider much smaller coarse problems, only involving faces and/or
edges. This is particularly important when dealing with unstructured meshes
and partitions generated by mesh partitioners, due to the proliferation of cor-
ners. Since the coarse problem is the bottleneck that can destroy scalability,
these strategies are better suited for large scale simulations.

The presentation of this paper is concise, engineering-friendly and useful to
quickly absorb the of essential ideas of the method for implementation. For a
full mathematical treatment with complete analysis and additional numerical
experiments, we refer the reader to Badia and Nguyen [2016].

2 BDDC Overview

Even though our results do apply for linear elasticity, our presentation, due
to limited space, only features Poisson’s equation: find u(x) ∈ H1

0 (Ω), for a
given polygonal (polyhedral) domain Ω ⊂ Rn, n = 2, 3 and a source term
f(x) ∈ L2(Ω), such that

∫

Ω

∇u(x) · ∇v(x) dx

︸ ︷︷ ︸
≡a(u,v)

=

∫

Ω

f(x)v(x) dx

︸ ︷︷ ︸
≡(f,v)

, for all v(x) ∈ H1
0 (Ω). (1)

Let Th be a shape-regular mesh of size h of Ω. Discretizing (1) using the
space Vh ⊂ H1

0 (Ω) of linear piecewise polynomials defined on Th, we arrive
at the following system of equations:

Au = f. (2)

Let us also consider a nonoverlapping partition of Ω into subdomains,
also known as substructures, Ω̄ = ∪J

j=1Ω̄j with the inter-subdomain interface

Γ = ∪J
j=1∂Ωj\∂Ω. We assume that the partition is quasi-uniform, and the

subdomains are obtained by aggregation of elements in Th. We denote Hi, or
generically H, the size of Ωi.

Let K(i) be the stiffness matrix associated with substructure Ωi. It should
be noted that K(i) is symmetric positive semidefinite and is singular when
Ωi is a floating subdomain (∂Ωi ∩ ∂Ω = ∅).
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Denote by Ri the global to local mapping that restrict any vector u to its
local counterpart ui, i.e., ui = Ru. It follows that

A = RTKR, where R = [RT
1 . . . RT

N ]T , K = diag(K(1), . . . ,K(N)).

For simplicity, we assume that interior dofs are always ordered before
interface dofs, namely

u = [uT
I uT

Γ ]
T , uI = RIu, uΓ = RΓu.

This leads to the following reordered block structures

A =

[
AII AIΓ

AΓI AΓΓ

]
, K =

[
AII KIΓ

KΓI KΓΓ

]
, and K(i) =

[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI K

(i)
ΓΓ

]
.

The BDDC preconditioner for solving the linear system (2) is completely
defined by a weight matrix W = diag(W (1), . . . ,W (N)) and a constraint
matrix C. The matrix W forms a partition of unity, namely

RTWR =
N∑

i=1

RT
i W

(i)Ri = I.

We can now find the matrix of energy minimizing coarse basis functions
Ψ and obtain the coefficient matrix of the coarse space Kc as follows

[
K Ct

C 0

]

︸ ︷︷ ︸
Kbig

[
Ψ
Λ

]
=

[
0
Rc

]
, Kc = ΨTKΨ. (3)

Finally, the BDDC preconditioner is formulated as

PBDDC = P1 + (I − P1A)P2(I −AP1), (4)

P1 = RT
I A

−1
II RI , P2 = RTW (ΨK−1

c ΨT + P3)WR, (5)

where P3 is defined by

[
K Ct

C 0

] [
P3v
λ

]
=

[
v
0

]
, ∀v. (6)

For more details of the formulation and implementation of the BDDC
method, we refer the reader to Dohrmann [2003, 2007], Badia et al. [2014].
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3 Perturbed BDDC

Preconditioner formulation. Let K̃ = diag(K̃(1), . . . , K̃(N)) be a pertur-

bation of K. Assume that K̃ satisfies the following assumptions:

Assumption 1 There exists two constant CL and CU which are independent
of the size of the domain (d), the size of the subdomains (H), and the number
of the subdomains (N) such that

CL vTKv ≤ vT K̃v ≤ CU vTKv, for all v of appropriate size.

Assumption 2 The matrix K̃(i) is symmetric positive definite (s.p.d) for
all i.

Assumption 3 There exists a constant Cℓ which is independent of the size
of the domain (d), the size of the subdomains (H), and the number of the
subdomains (N) such that:

Cℓ v
T
i K

(i)vi ≤ vTi K̃
(i)vi, for all vi of appropriate size.

Let Ψ̃ , K̃c, P̃3 be defined similarly to Ψ,Kc, P3 as in (3) and (6), but with

K replaced by K̃. Then the perturbed BDDC preconditioner is given as

P̃BDDC = P1 + (I − P1A)P̃2(I −AP1),

P̃2 = RTW (Ψ̃ K̃−1
c Ψ̃T + P̃3)WR,

Remark 1. If Assumption 2 holds, the matrix K̃ is s.p.d. From (3), it follows

that the coarse matrix K̃c is also s.p.d, thus is invertible. In addition, (3)
and (6) can be solved using positive definite sparse direct solvers when K

is replaced by K̃. Consequently, corner constraints are not required in the
perturbed formulation of BDDC.

Choices of perturbation. We present here two practical choices of per-
turbed local stiffness matrices K̃(i). The first one uses M (i), the mass matrix
associated with subdomain Ωi:

K̃(i) = K(i) +
1

d2
M (i). (7)

The second choice is to use

K̃(i) = K(i) +
Hn−1

i

dn
M

(i)
ΓΓ , (8)

where M
(i)
ΓΓ is the stiffness matrix associated with subdomain Ωi assembled

only for dofs on the interface. We call this choice Robin perturbation because
the local Neumann problem in this case can be posed with Robin boundary
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condition (Hn−1
j /Dn)u+∂u/∂ni = 0, where ni is the outward normal vector

of ∂Ωi.
It is not difficult to verify that the choices of K̃(i) in (7) and (8) satisfy

Assumption 1, Assumption 2 and Assumption 3 with Cℓ = CL = 1 and
CU = 1 + CΩ , where CΩ depends only on the shape of Ω. Details can be
found in Badia and Nguyen [2016].

4 Convergence results

In this section, we present (without proofs) two main convergence results of
the perturbed BDDC method. For detailed mathematical analysis, we refer
the reader to Badia and Nguyen [2016].

Theorem 4. There exist a positive constant C, independent of h, H, N , CU,
CL and Cℓ such that

κ(P̃BDDCA) ≤ C
(CU)

2

CL min{Cℓ, CL}

(
1 + ln

H

h

)2

=
αM

αm
,

where αm = C−1
U and αM is consistently defined.

The proof of this theorem uses the fact that the spectrum of the precondi-
tioned matrix of the whole system P̃BDDCA is the same as the the spectrum
of the preconditioned matrix of the Schur complement B̃BDDCS plus addi-
tional eigenvalues equals 1, cf. Dohrmann [2007], Li and Widlund [2006]. The

estimates for eigenvalues in the spectrum of B̃BDDCS is documented in detail
in Badia and Nguyen [2016].

Remark 2. Theorem 4 indicates that the perturbed BDDC method has the
same polylogarithmic bound for the condition number as the standard one.
The precondition number depends on the local problem size but not on the
number of subdomains. In other word, the method is weakly scalable.

In order to be well-posed, the standard BDDCmethod need to have enough
constraints to exclude all subdomain-wise constant functions for Poisson’s
equation and all rigid body modes for linear elasticity. This is no longer
necessary for the perturbed BDDC method as its well-posedness is automat-
ically guaranteed. However, the perturbed BDDC method still need to have
sufficient constraints to achieve fast convergence.

The following theorem concerns the spectrum of the preconditioned system
of the perturbed BDDC method when not all the subdomain-wise constant
functions or the rigid body modes are excluded.

Theorem 5. Assume that ker(Kbig) 6= ∅ then the spectrum of the precondi-
tioned system, counting multiplicities, can be decomposed as
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σ(P̃BDDCA) = A1 ∪ A2, (9)

where |A1| ≤ dim(ker(Kbig)), A1 ⊂ [αm, α̂M ] and A2 ⊂ [αm, αM ]. Here, the
constants αm and αM are defined in Theorem 4, and α̂M > αM .

Remark 3. When the constraints fail to eliminate a small number of subdomain-
wise constant functions or rigid body modes, namely ker(Kbig) 6= ∅ and
dim(ker(Kbig)) is small, Theorem 5 indicates that most of the eigenvalues of
the preconditioned system can still be bounded by the usual bounds as in the
case with sufficient constraints. Some of the remaining eigenvalues might be
larger than the usual upper bound. However, they are isolated (the number
of them is bounded from above by dim(ker(Kbig)). As large isolated eigenval-
ues can only delay the convergence of the CG method by few iterations, cf.
Axelsson and Lindskog [1986], the perturbed BDDC method is still scalable.

5 Numerical Experiments

Both the standard and the perturbed BDDC preconditioners with different
options of constraints will be used to solve (2) by the CGmethod. The number
of CG iterations and the time (in second) to reduce the residual by at least
a factor of 1e-6 will be reported.

In figures, legends C, E and F are used to indicate corner, edge and face
constraints, respectively. The suffix 0 is for the standard BDDC formulation
(no perturbation). The suffix CD is to emphasize that the corner selection
algorithm by Š́ıstek et al. [2012] and the standard BDDC formulation are
used. If the legend is without a suffix, it represents a result with a perturbed
BDDC formulation and that no corner selection algorithm is involved.

We present only results for perturbation by full mass matrices. For results
using a Robin perturbation, we refer to Badia and Nguyen [2016]. It is worth
noting that the results of the two choices are very close.

We consider (1) with Ω being the unit cube and elasticity of a beam
[0 2] × [0 0.5] × [0 0.5]. For the latter, (homogeneous) Dirichlet boundary
condition is only imposed on one side of the beam (the plane x = 0).

We use uniform structured hexahedral meshes which are partitioned into
k × k × k, k = 3, . . . , 11 (Poisson’s problem) and 4k × k × k, k = 2, . . . , 11
(elasticity) cubic subdomains. For weak scability tests, when k increases ( H
decreases), we use smaller mesh size, h, to keep H/h constant.

From Fig. 1 and Fig. 2, we can conclude that the perturbed BDDCmethod,
for all the considered choices of constraints, is weakly scalable, namely the
numbers of iterations are almost constant when the number of subdomains
increases. The performance of the perturbed BDDC method in both iteration
number and time are also very close to those of the standard BDDC method.

Among different choices of constraints, the ones with larger coarse spaces,
cf. Fig. 3, requires fewer number of iterations, as expected. However, when N ,
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the number of subdomains is large, options with smaller coarse spaces, such
as E or F, perform better in time. This is due to the fact that the size of the
coarse problem increases as N increases. Consequently, when N increases,
the cost of solving the coarse problem become more and more dominant and
eventually dictates the time performance as coarse tasks and fine tasks are
overlapped in advanced implementation of BDDC methods, cf. Badia et al.
[2014]. This phenomena exhibits earlier for smaller local problem size (H/h)
and options with larger coarse spaces. Therefore, options with edge or/and
face constraints only are better suited for solving large scale problems. We
emphasize that these options are only available for perturbed BDDC method.
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Fig. 1 Poisson’s equation: Perturbation with full mass matrices.

 15

 20

 25

 30

 35

 40

 0  1000  2000  3000  4000  5000  6000  7000

N
u
m

b
e
r 

o
f 
P

C
G

 i
te

ra
ti
o
n
s

#cores

Weak scaling (H/h=10)

CEF

CEF_CD

EF

E

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1000  2000  3000  4000  5000  6000

T
o
ta

l 
w

a
ll 

c
lo

c
k
 t
im

e
 (

s
e
c
s
.)

#cores

Weak scaling (H/h=10)

CEF

CEF_CD

EF

E

 25

 30

 35

 40

 45

 0  1000  2000  3000  4000  5000  6000  7000

N
u
m

b
e
r 

o
f 
P

C
G

 i
te

ra
ti
o
n
s

#cores

Weak scaling (H/h=20)

CEF

CEF_CD

EF

E

 0

 5

 10

 15

 20

 25

 0  1000  2000  3000  4000  5000  6000

T
o
ta

l 
w

a
ll 

c
lo

c
k
 t
im

e
 (

s
e
c
s
.)

#cores

Weak scaling (H/h=20)

CEF

CEF_CD

EF

E

Fig. 2 Elasticity of a beam: Perturbation with full mass matrices.
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Fig. 3 Size of coarse spaces in Poisson’s problem (left) and elasticity problem (right).
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