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1 Introduction

We are interested in formulating and analyzing Schwarz methods for the
biharmonic equation

∆2u = f in Ω, (1)

where ∆ denotes the Laplacian, f is a source term and Ω is a domain in R2.
The biharmonic equation is quite different from the Laplace equation, since
it requires two boundary conditions, and not just one.

A classical clamped boundary condition would impose the value and nor-
mal derivative at the boundary,

D1(u) :=


u
∂u
∂n

]
, (2)

and a two level additive Schwarz method with this “Dirichlet” boundary
condition at the interfaces between subdomains was studied in [1], where a
condition number estimate of order 1 + (Hδ )

4 was proved for large overlap

and order 1 + (Hδ )
3 for small overlap. A non-overlapping Schwarz precondi-

tioner for a discontinuous Galerkin discretization was introduced in [8], with
a condition number estimate of order (1+ H

h )
3. The convergence rate for the

classical Schwarz method with “Dirichlet” condition (2) was also studied in
[15].

Considering (2) as “Dirichlet” condition, there are two corresponding pos-
sibilities for the associated “Neumann” conditions, depending on which func-
tional minimization led to the necessary optimality condition in (1). If the
problem comes from a Stokes formulation [4], the variational derivative leads
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for the “Neumann” conditions to

N1(u) :=


∆u

−∂n∆u

]
. (3)

If one however uses the energy functional of a thin plate, see [11] and refer-
ences therein, the “Neumann” condition associated with (2) is

N2(u) :=


∆u− (1− σ)∂ττu

−∂n∆u− (1− σ)∂τ (∂nτu)

]
, (4)

where ∂τ is the tangential derivative along the boundary and σ ∈ (0, 1) is a
material constant. While condition (3) does not always lead to a well posed
problem for the biharmonic equation, condition (4), which can be interpreted
as the freely supported boundary condition for the plate problem, is always
well posed up to a linear function, analogously to the Neumann condition
for the Laplace equation. A FETI method using (2) and (4) was proposed
and studied in [7], and later in [13], where continuity of the transverse dis-
placements is enforced at substructure cross points, and a condition number
estimate of order (1+log H

h )
3 was obtained. An optimized Schwarz waveform

relaxation method based on combining the “Dirichlet” condition (2) with the
“Neumann” condition (3) was introduced in [14] for the corresponding time
dependent problem, and an optimized choice of the combining parameters in
the transmission conditions was illustrated by numerical experiments.

The clamped condition (2) is however not the only possible choice for a
“Dirichlet” condition. Instead of (2) and (3), one could also consider

D3(u) :=


u
∆u

]
(5)

as the “Dirichlet” condition, and then naturally the corresponding “Neu-
mann” condition would be

N3(u) :=


∂nu

−∂n∆u

]
, (6)

see for example [5, 17]. Similarly, in the thin plate case, instead of (2) and
(4), another choice for the “Dirichlet” condition would be

D4(u) :=


u

∆u− (1− σ)∂ττu

]
, (7)

and then the corresponding “Neumann” condition would be

N4(u) :=


∂nu

−∂n∆u− (1− σ)∂τ (∂nτu)

]
. (8)
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When the boundary is flat, conditions (5) and (7) are essentially equivalent,
since imposing u also imposes ∂ττ . Similarly also conditions (6) and (8) are
equivalent for flat boundaries. For curved boundaries however, and as trans-
mission conditions, these conditions are different.

Because of these different choices for the “Dirichlet” conditions, the classi-
cal Schwarz methods studied in [1] and [15] are not the only possible ones for
the biharmonic equation, and similarly there are also more possibilities for
optimized Schwarz methods than the one in [14]. We will show that a differ-
ent choice of “Dirichlet” conditions in the classical Schwarz method permits
the removal of the typical power of 3 in the convergence estimates, and leads
to faster methods, while optimized Schwarz methods are robust with respect
to which condition is chosen to be the “Dirichlet” one.

2 Classical Schwarz Methods

Because of the three different possibilities for the “Dirichlet” conditions in
(2), (5) and (7), we get three classical Schwarz methods which we index by j ∈
{1, 3, 4}. To simplify the description and analysis, we consider an unbounded
domain Ω = R2 and solutions u decaying at infinity. We assume that Ω is
divided into two subdomains Ω1 = (−∞, L) × R and Ω2 = (0,+∞) × R,
where L ≥ 0 denotes the overlap.

Given an initial approximation u0
2, the three classical alternating Schwarz

methods indexed by j ∈ {1, 3, 4} compute for n = 1, 2, . . .

∆2un
1 = f1 in Ω1, ∆2un

2 = f2 in Ω2,
Dj(u

n
1 ) = Dj(u

n−1
2 ) at x = L, Dj(u

n
2 ) = Dj(u

n
1 ) at x = 0.

(9)

Taking a Fourier transform in the y direction with Fourier symbol k, and
assuming that the relevant numerical Fourier frequencies |k| lie in the interval
[kmin, kmax] with kmin, kmax > 0, we obtain by a direct computation (see also
[15] for j = 1):

Theorem 1. If L > 0, the convergence factors ρj for the Algorithm (9) are

ρ1(L) = (kminL+
q
k2minL

2 + 1)2e−2kminL ∼ 1− 1

3
k3minL

3,

ρ3,4(L) = e−2kminL ∼ 1− 2kminL.

We see that the classical clamped “Dirichlet” transmission condition (2) leads
to a convergence factor depending on the overlap L cubed, whereas using the
other two possible “Dirichlet” conditions (5) or (7), the convergence factor
only depends linearly on L. This substantially improved convergence factor,
which is now like for Laplace’s equation [9], is illustrated for an example in
Figure 1 on the left.
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3 Optimal and Optimized Schwarz Methods

Optimized Schwarz methods [9] use a combination of Dirichlet and Neumann
conditions as transmission conditions, and allowing a non-local operator for
this combination can lead to optimal Schwarz methods which converge in
a finite number of steps (two in the case of two subdomains, see [9] and
references therein). Letting D2 := D1, such a method, again indexed by
j ∈ {1, 2, 3, 4}, computes for an initial approximation u0

2 and n = 1, 2, . . .

∆2un
1 = f1 in Ω1,

(Nj + PjDj)(u
n
1 ) = (Nj + PjDj)(u

n−1
2 ) at x = L,

∆2un
2 = f2 in Ω2,

(Nj + PjDj)(u
n
2 ) = (Nj + PjDj)(u

n
1 ) at x = 0,

(10)

where Pj is a two by two matrix to be chosen for best performance of the
method, depending on the choice of “Dirichlet” and “Neumann” conditions
Dj and Nj we made. The following result can be obtain by a direct but
lengthy calculation using Fourier analysis.

Theorem 2. If the symbols of the elements in the matrix Pj for variant j of
Algorithm (10) are chosen in the Fourier domain as

P̂1 =


2|k|2 2|k|
2|k|3 2|k|2

]
, P̂2 =


(1 + σ)|k|2 2|k|

2|k|3 (1 + σ)|k|2
]
,

P̂3 =

 |k| 1
2|k|

0 −|k|

]
, P̂4 =

 1
2 (1 + σ)|k| 1

2|k|
1
2 (1− σ)(σ + 3)|k|3 − 1

2 (1 + σ)|k|

]
,

(11)

then the resulting optimal Schwarz method converges in two iterations.

Remark 1. The choice of the matrix Pj , j ∈ {1, 2, 3, 4} in Theorem 2 leads
in each case to the transparent boundary condition, and the associated al-
gorithm can be interpreted as an exact factorization independently of the
PDE one considers, see [12] and references therein, and also the more recent
variants [6, 2, 16, 3]. Such factorizations are theoretically still possible in the
presence of cross points, see [10].

The optimal choice of P̂j in Theorem 2 corresponds to a non-local operator
once back-transformed using the inverse Fourier transform, and thus is often
approximated using an absorbing boundary condition or perfectly matched
layers to obtain a more practical algorithm. Theorem 2 also indicates a very
simple, structurally consistent local approximation: replacing |k| by a con-
stant p ≥ 0 will make the approximation exact for precisely this frequency
|k|, and leads to the following results.

Theorem 3. With the structural consistent approximations for p ≥ 0,

P a
1 =


2p2 2p
2p3 2p2

]
, P a

3 =


p 1

2p

0 −p

]
, (12)
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the convergence factor of the optimized Schwarz algorithm (10) is

ρ(L) =

✓
p− |k|
p+ |k|

◆2

e−2|k|L < 1. (13)

With overlap, L > 0, the optimal choice for p for best performance, and the
associated contraction factor are for L small

p ∼
✓
k2min

2L

◆1/3

, ρ(L) ∼ 1− 4(2kmin)
1/3L1/3, (14)

where kmin is an estimate for the lowest frequency along the interface. Without
overlap, L = 0, and with kmax an estimate for the largest frequency along the
interface, one obtains

p =
p
kminkmax, ρ(0) =

✓√
kmax −

√
kmin√

kmax +
√
kmin

◆2

∼ 1− 4

r
kmin

kmax
, kmax large.

(15)

Proof. The convergence factor (13) can be obtained by a direct computation,
and noticing that it is identical to the case of the Laplace equation, the results
from [9] can then be used to obtain (14) and (15).

Theorem 4. With the structural consistent approximations for p ≥ 0,

P a
2 =


(1 + σ)p2 2p

2p3 (1 + σ)p2

]
, P a

4 =

 1
2 (1 + σ)p 1

2p
1
2 (1− σ)(σ + 3)p3 − 1

2 (1 + σ)p

]
,

(16)
the convergence factor of the optimized Schwarz algorithm (10) for j = 2
and j = 4 coincide. With overlap, L > 0, the optimal choice of p for best
performance, and the associated contraction factor are for L small

p ∼ 1

21/3

✓
6k4min

(1− σ2)L

◆1/5

, ρ(L) ∼ 1− 16

3

(62k3min(1− σ2))1/5

3− 2σ − σ2
L3/5. (17)

Without overlap, one obtains for kmax large

p ∼
p
kminkmax, ρ(0) ∼ 1− 16k

3/2
min

3− 2σ − σ2

1

k
3/2
max

. (18)

The proof of Theorem 4 requires a detailed asymptotic analysis and is too
long for this short manuscript. We see however that the constant σ from the
plate problem enters the convergence factor, and the convergence of algorithm
(10) for j ∈ {2, 4} is worse than in the case j ∈ {1, 3}. Theorem 3 and
Theorem 4 also show that the optimized Schwarz algorithms have the same
performance, independently of the choice of “Dirichlet” condition, in contrast
to the classical Schwarz method.
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Table 1 Iteration numbers for classical Schwarz (9) and optimized Schwarz (10).

Classical Schwarz j = 1 Classical Schwarz j = 3 Optimized Schwarz j = 1, 3

L \ h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

h 853 6469 50906 >200000 34 68 134 267 6 9 12 14
2h 235 1655 12819 101157 18 35 67 135 5 8 11 14
4h 53 305 2189 16971 9 17 34 67 4 7 9 13

One might be wondering what the importance is of the structural con-
sistent choice of the approximate transmission condition in Theorem 3 and
Theorem 4. Our next result answers this question for one particular case.

Theorem 5. For algorithm (10) in the case j = 1 without overlap, if we
permit the general matrix

P g
1 =


p11 p12
p21 p22

]
, (19)

then the optimal choice of the parameters is

p11 = p22 ≥ 0, p12p21 = p211,
p21
p12

= kminkmax. (20)

Therefore, the structural choice in Theorem 3 is optimal.

The proof of Theorem 5 is technical and too long for this short paper.

4 Numerical Results

We solve the biharmonic equation (1) numerically on the unit square domain
Ω = (0, 1) × (0, 1) with the homogeneous “Dirichlet” conditions D1(u) = 0
on ∂Ω, and choose for the right hand side f := 24y2(1− y)2+24x2(1−x)2+
8[(1 − 2x)2 − 2(x − x2)][(1 − 2y)2 − 2(y − y2)], so that the exact solution
is u = x2(1 − x)2y2(1 − y)2. We discretize (1) using a standard 13-point
finite difference scheme obtained by taking the square of the standard five
point Laplacian, see [11]. We divide the domain into two equal overlapping

subdomains Ω1 and Ω2. We stop the Schwarz iteration when
kun−ukl2

kukl2
≤

10−6, where un denotes the discrete approximation at iteration n, and u is
the discrete solution obtained by a direct method.

We compare for j = 1, 3 the classical Schwarz algorithm (9) to the opti-
mized Schwarz algorithm (10). The results in Table 1 clearly show how the
good choice of “Dirichlet” greatly improves the performance, and also the
superiority of the optimized Schwarz method, as one would expect from the
contraction factor plot in Figure 1 on the left. In Figure 1 on the right we
show the plot corresponding to Table 1, and we can clearly see the asymptotic
difference in behavior as predicted by Theorem 1 and Theorem 3.
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Fig. 1 Left: convergence factors corresponding to an overlap L = 1/50 for the biharmonic

equation and various Schwarz algorithms. Right: graphical representation of the results
from Table 1, and theoretical prediction from Theorem 1 and Theorem 3.

5 Conclusions

We showed that using the classical clamped boundary conditions as “Dirich-
let” transmission conditions for a Schwarz algorithm applied to the bihar-
monic equation leads to a convergence that depends on the overlap cubed,
see also [1, 15]. A better choice of “Dirichlet” conditions involving a Laplacian
leads to a convergence that only depends linearly on the overlap, like in the
case of Laplace’s equation, without additional computational cost, since the
Laplacian appearing in this new “Dirichlet” condition is naturally available,
for example in a mixed formulation. We then proved that optimized Schwarz
methods do not depend on the choice of what the “Dirichlet” condition is,
and they all lead to a still substantially better convergence behavior than the
classical Schwarz method with the best “Dirichlet” condition. We also found
that transmission conditions based on the thin plate model (Dj and Nj for
j = 2, 4) are inferior in performance compared to the ones coming from the
Stokes model (Dj and Nj for j = 1, 3).
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