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Preface of DD23 Book of Proceedings 

The proceedings of the 23rd International Conference on Domain Decomposition Methods contain 
developments up to 2015 in various aspects of domain decomposition methods bringing together 
mathematicians, computational scientists, and engineers who are working on numerical analysis, scientific 
computing, and computational science with industrial applications. The conference was held on Jeju Island, 
Korea, July 6-10, 2015. 

Background of the Conference Series 

The International Conference on Domain Decomposition Methods has been held in fourteen countries 
throughout Asia, Europe, and North America beginning in Paris in 1987. Held annually for the first fourteen 
meetings, it has been spaced out since DD15 at roughly 18-month intervals. A complete list of the past meetings 
appears below. The twenty-third International Conference on Domain Decomposition Methods was the first one 
held in Korea and it took place on the beautiful Jeju Island. 

The main technical content of the DD conference series has always been mathematical, but the principal 
motivation was and is to make efficient use of distributed memory computers for complex applications 
arising in science and engineering. As we approach the dawn of exascale computing, where we will 
command 1018 floating point operations per second, clearly efficient and mathematically well-founded 
methods for the solution of large-scale systems become more and more important-as does their sound 
realization in the framework of modern HPC architectures. In fact, the massive parallelism, which makes 
exascale computing possible, requires the development of new solutions methods, which are capable of 
efficiently exploiting this large number of cores as well as the connected hierarchies for memory access. 
Ongoing developments such as parallelization in time asynchronous iterative methods, or nonlinear domain 
decomposition methods show that this massive parallelism does not only demand for new solution and 
discretization methods, but also allows to foster the development of new approaches.  

The progress obtained in domain decomposition techniques during the last decades has led to a broadening 
of the conference program in terms of methods and applications. Multi-physics, nonlinear problems, and 
space-time decomposition methods are more prominent these days than they have been previously.  
Domain decomposition has always been an active and vivid field, and this conference series is representing 
well the highly active and fast advancing scientific community behind it. This is also due to the fact that there 
is basically no alternative to domain decomposition methods as a general approach for massively parallel 
simulations at a large scale. Thus, with growing scale and growing hardware capabilities, also the methods 
can-and have to-improve.  

However, even if domain decomposition methods are motivated historically by the need for efficient 
simulation tools for large scale applications, there are also many interesting aspects of domain 
decomposition, which are not necessarily motivated by the need for massive parallelism. Examples are the 
choice of transmission conditions between sub-domains, new coupling strategies, or the principal handling of 
interface conditions in problem classes such as fluid structure interaction or contact problems in elasticity. 

While research in domain decomposition methods is presented at numerous venues, the International 
Conference on Domain Decomposition Methods is the only regularly occurring international forum dedicated 
to interdisciplinary technical interactions between theoreticians and practitioners working in the 
development, analysis, software implementation, and application of domain decomposition methods. 

The list of previous Domain Decomposition Conferences is the following: 



1. Paris, France, January 7-9，, 1987
2. Los Angeles, USA, January 14-16，, 1988
3. Houston, USA, March 20-22，，, 1989
4. Moscow, USSR, May 21-25，, 1990
5. Norfolk, USA, May 6-8，, 1991
6. Como, Italy, June 15-19，, 1992
7. University Park, Pennsylvania, USA, October 27-30，, 1993
8. Beijing, China, May 16-19，, 1995
9. Ullensvang, Norway, June 3-8，，, 1996
10. Boulder, USA, August 10-14，, 1997
11. Greenwich, UK, July 20-24，, 1998
12. Chiba, Japan, October 25-20, 1999
13. Lyon, France, October 9-12，, 2000
14. Cocoyoc, Mexico, January 6-11，, 2002
15. Berlin, Germany, July 21-25, 2003
16. New York, USA, January 12-15，, 2005
17. St. Wolfgang-Strobl, Austria, July 3-7，, 2006
18. Jerusalem, Israel, January 12-17，, 2008
19. Zhangjiajie, China, August 17-22，, 2009
20. San Diego, California, USA, February 7-11，, 2011
21. Rennes, France, June 25-29，, 2012
22. Lugano, Switzerland, September 16-20，, 2013
23. Jeju Island, Korea, July 6-10, 2015

International Scientific Committee on Domain Decomposition Methods 

 Petter Bjørstad, University of Bergen, Norway
 Susanne Brenner, Louisiana State University, USA
 Xiao-Chuan Cai, CU Boulder, USA
 Martin Gander, University of Geneva, Switzerland
 Laurence Halpern, University Paris 13, France
 David Keyes, KAUST, Saudi Arabia
 Hyea Hyun Kim, Kyung Hee University, Korea
 Axel Klawonn, Universität zu Köln, Germany
 Ralf Kornhuber, Freie Universität Berlin, Germany
 Ulrich Langer, University of Linz, Austria
 Alfio Quarteroni, EPFL, Switzerland
 Olof Widlund, Courant Institute, USA
 Jinchao Xu, Penn State, USA
 Jun Zou, Chinese University of Hong Kong, Hong Kong

About the Twenty-Third Conference 

The twenty-third International Conference on Domain Decomposition Methods had 108 participants from 
over 22 countries. It was the first one to be held in Korea. 

As in previous meetings, DD23 featured a well-balanced mixture of established and new topics, such as 
space-time domain decomposition methods, isogeometric analysis, exploitation of modern HPC architectures, 
optimal control and inverse problems, and electromagnetic problems. From the conference program, it is 
evident that the growing capabilities in terms of theory and available hardware allow for increasingly 



complex nonlinear and multi-scale simulations, confirming the huge potential and flexibility of the domain 
decomposition idea. The conference, which was organized over an entire week, featured presentations of three 
different types: The conference contained 

 11 invited presentations, fostering also younger scientists and their scientific development, selected
by the International Scientific Committee，

 a poster session, which also gave rise to intense discussions with the mostly younger presenting
scientists，

 9 minisymposia, arranged around a special topic，
 7 sessions of contributed talks

The present proceedings volume contains a selection of 42 papers, split into 8 plenary papers, 21 
minisymposia papers, and 13 contributed papers and posters. 

Sponsoring Organizations 

 KAIST Mathematics Research Station
 National Institute for Mathematical Sciences
 The Korean Federation of Science and Technology Societies
 KISTI Supercomputing Center
 A3 Foresight Program
 NVIDIA
 Jeju Convention & Visitors Bureau

The organizing committee would like to thank the sponsors for the financial support. 

Local Organizing/Program Committee Members 

 Chang-Ock Lee (KAIST; CHAIR)
 Kum Won Cho (KISTI)
 Taeyoung Ha (NIMS)
 Hyeonseong Jin (Jeju National University)
 Hyea Hyun Kim (Kyung Hee University)
 Eun-Hee Park (Kangwon National University)
 Eun-Jae Park (Yonsei University)

Research Activity in Domain Decomposition According to DD23 and its Proceedings 

The conference and the proceedings contain three parts: the plenary presentations, the minisymposia 
presentation, and the contributed talks and posters. 

Plenary Presentations 

The plenary presentations of the conference have been dealing with established topics in Domain 
Decomposition as well as with new approaches. 

 Global convergence rates of some multilevel methods for variational and quasi-variational inequalities,
Lori Badea (Institute of Mathematics of the Romanian Academy, Romania)

 Robust solution strategies for fluid-structure interaction problems with applications, Yuri Bazilevs
(University of California, San Diego, USA)

 BDDC algorithms for discontinuous Petrov Galerkin methods, Clark Dohrmann (Sandia National
Laboratories, USA)



 Schwarz methods for the time-parallel solution of parabolic control problems, Felix Kwok (Hong
Kong Baptist University, Hong Kong)

 Computational science activities in Korea, Jysoo Lee (KISTI, Korea)
 Recent advances in robust coarse space construction, Frédéric Nataf (Université Paris 6, France)
 Domain decomposition preconditioners for isogeometric discretizations, Luca F. Pavarino

(University of Milano, Italy)
 Development of nonlinear structural analysis using co-rotational finite elements with improved

domain decomposition method, Sang Joon Shin (Seoul National University, Korea)
 Adaptive coarse spaces and multiple search directions: Tools for robust domain decomposition

algorithms, Nicole Spillane (Universidad de Chile, Chile)
 Element based algebraic coarse spaces with applications, Panayot Vassilevski (Lawrence Livermore

National Laboratory, USA)
 Preconditioning for nonsymmetry and time-dependence, Andrew Wathen (University of Oxford,

United Kingdom)

Minisymposia 

There are 9 minisymposia organized within DD23: 

1. Space-time domain decomposition methods (Ulrich Langer, Olaf Steinbach)

The space-time discretization of transient partial differential equations by using quite general 
space-time finite and boundary elements in the space-time computational domain allows for an almost 
optimal, adaptive space-time resolution of wave fronts and moving geometries. The global solution of 
the resulting systems of algebraic equations can easily be done in parallel, but requires appropriate 
preconditioning techniques by means of multilevel and domain decomposition methods. This 
minisymposium presents recent results on general space-time discretizations and parallel solution 
strategies. 

2. Domain decomposition with adaptive coarse spaces in finite element and isogeometric applications
(Durkbin Cho, Luca F. Pavarino, Olof B. Widlund)

The aim of the minisymposium is to bring together researchers in both fields of Finite Elements 
and Isogeometric Analysis (IGA) to discuss the latest research developments in Domain 
Decomposition Methods with adaptive coarse spaces. While coarse spaces are essential for the design 
of scalable algorithms, they can become quite expensive for problems with large number of 
subdomains, or very irregular coefficients/domains, or for IGA discretizations where the high 
irregularity of the NURBS basis functions yields large interface and coarse problems. This 
minisymposium will focus on recently proposed novel adaptive coarse spaces, generalized 
eigenproblems and primal constraints selection. 

3. Domain decomposition and high performance computing (Santiago Badia, Jakub Šístek, Kab Seok
Kang)

The next generation of supercomputers, able to reach 1 exaflop/s, is expected to reach billions of 
cores. The success of domain decomposition for large scale scientific computing will be strongly 
related to the ability to efficiently exploit extreme core counts. This MS is mainly oriented to novel 
algorithmic and implementation strategies that will boost the scalability of domain decomposition 
methods, and their application for large scale problems. Since large scale computing is demanded by 
the most complex applications, generally multiscale, multiphysics, non-linear, and/or transient in 
nature, tailored algorithms for these types of applications will be particularly relevant. 

4. Domain decomposition methods and parallel computing for optimal control and inverse problems
(Huibin Chang, Xue-Cheng Tai, Jun Zou)



This mini-symposium will bring together active experts working on domain decomposition 
methods and parallel computing for large-scale ill-posed problems from image processing, optimal 
control and inverse problems to discuss and exchange the latest developments in these areas. 

5. Efficient solvers for electromagnetic problems (Victorita Dolean, Zhen Peng)

In this mini symposium we explore domain decomposition type solvers for electromagnetic wave 
propagation problems. These problems are very challenging (especially in time harmonic regime 
where the problem is indefinite in nature and most of the iterative solvers will fail). The mini-
symposium will discuss different areas of recent progress as parallel domain decomposition libraries, 
sweeping preconditioners, iterative methods based on multi-trace formulations, or new results on 
optimized Schwarz methods. 

6. Domain decomposition methods for multiscale PDEs (Eric Chung, Hyea Hyun Kim)

It is well known that classical ways to construct coarse spaces are not robust and give large 
condition numbers depending on the heterogeneities and contrasts of the coefficients. Recently, there 
are increasing interests in constructing domain decomposition methods with enriched coarse spaces or 
adaptive coarse spaces. The purpose of this minisymposium is to bring together researchers in the area 
of domain decomposition methods for PDEs with highly oscillatory coefficients, and provide a forum 
for them to present the latest findings. 

7. Birthday minisymposium Ralf Kornhuber (60th Birthday) (Rolf Krause, Martin Gander)

This MS will bring together talks which are related to the scientific work of Ralf Kornhuber. This 
includes fast numerical methods for variational inequalities, multigrid methods, numerical methods for 
phase field equations, and biomechanics. 

8. Recent approaches to nonlinear domain decomposition methods (Axel Klawonn, Oliver Rheinbach)

For a few decades already, Newton-Krylov algorithms with suitable preconditioners such as 
domain decomposition (DD) or multigrid (MG) methods (Newton-Krylov-DD or Newton-Krylov-MG) 
have been the workhorse for the parallel solution of nonlinear implicit problems. The standard 
Newton-Krylov approaches are based on a global linearization and the efficient parallel solution of the 
resulting linear (tangent) systems in each linearization step (“first linearize, then decompose”). 
Increasing local computational work and reducing communication are key ingredients for the efficient 
use of future exascale machines. In Newton-Krylov-DD/MG methods these aspects can be mainly 
treated at the level of the solution of the linear systems by the preconditioned Krylov methods. 
Computational work can be localized and communication can be reduced by a complete reordering of 
operations: the nonlinear problem is first decomposed and then linearized, leading to nonlinear domain 
decomposition methods. An early approach in this direction is the ASPIN (Additive Schwarz 
Preconditioned Inexact Newton) method by Cai and Keyes. Recently, there has been work on 
nonlinear FETI-DP and BDDC methods by Klawonn, Lanser, and Rheinbach. In this minisymposium, 
recent approaches to nonlinear domain decomposition methods will be presented. 

9. Tutorial for domain decomposition on heterogenous HPC (Junard Lee)

At this minisymposium, we will have a tutorial session. We will cover heterogeneous HPC 
architecture, CUDA programming language, Open ACC directives and how to implement these 
technologies to accelerate PDE solvers specially domain decomposition method. 

Contributed Presentations and Posters 

The contributed talks have been distributed over 7 different sessions: 

1. Domain Decomposition Methods for Applications



2. Optimized Schwarz Methods
3. Fast Solvers for Nonlinear and Unsteady Problems
4. Domain Decomposition Methods with Lagrange Multipliers
5. Efficient Methods and Solvers for Applications
6. Multiphysics Problems
7. Coarse Space Selection Strategies

The proceedings part with poster presentations is also a real treasure trove for new ideas in domain 
decomposition methods. 
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Global convergence rates of some
multilevel methods for variational and
quasi-variational inequalities

Lori Badea1

1 Introduction

The first multilevel method for variational inequalities has been proposed
in Mandel [1984a] for complementarity problems. An upper bound of the
asymptotic convergence rate of this method is derived in Mandel [1984b].
The method has been studied later in Kornhuber [1994] in two variants, stan-
dard monotone multigrid method and truncated monotone multigrid method.
These methods have been extended to variational inequalities of the sec-
ond kind in Kornhuber [1996] and Kornhuber [2002]. Also, versions of this
method have been applied to Signorini’s problem in elasticity in Kornhuber
and Krause [2001]. In Badea [2003] and Badea [2006] global convergence rates
of some projected multilevel relaxation methods of multiplicative type are
given. Also, a global convergence rate was derived in Badea [2008] for a two-
level additive method. Two-level methods for variational inequalities of the
second kind and for some quasi variational inequalities have been analyzed in
Badea and Krause [2012]. In Badea [2014], it was theoretically justified the
global convergence rate of the standard monotone multigrid methods and, in
Badea [2015], this result has been extended to the hybrid algorithms, where
the type of the iterations on the levels is different from the type of the itera-
tions over the levels. Finally, a multigrid method for inequalities containing
a term given by a Lipschitz operator is analyzed in Badea [2016]. Evidently,
the above list of citations is not exhaustive and, for further information, we
can see the review article Gräser and Kornhuber [2009].

This is a review paper regarding the convergence rate of some multilevel
methods for variational inequalities and also, for more complicated problems
such as variational inequalities of the second kind, quasi-variational inequali-
ties and inequalities with a term containing a Lipschitz operator. The meth-
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ods are first introduced as some subspace correction algorithms in a reflexive
Banach space and, under some assumptions, general convergence results (er-
ror estimations, included) are given. In the finite element spaces, we prove
that these assumptions are satisfied and that the introduced algorithms are
in fact one-, two-, multilevel or multigrid methods. The constants in the error
estimations are explicitly written in functions of the overlapping and mesh
parameters for the one- and two-level methods and in function of the number
of levels for the multigrid methods.

In this paper, we denote by V a reflexive Banach space and K ⊂ V is a
non empty closed convex subset. Also, F : K → R is a Gâteaux differentiable
functional and we assume that there exist two real numbers p, q > 1 such that
for any M > 0 there exist αM , βM > 0 for which

αM ||v − u||p ≤< F ′(v)− F ′(u), v − u >
and ||F ′(v)− F ′(u)||V ′ ≤ βM ||v − u||q−1,

for any u, v ∈ K, ||u||, ||v|| ≤ M . In view of these properties, we can prove
that F is a convex functional and 1 < q ≤ 2 ≤ p.

2 One- and two-level methods

In this section we introduce one- and two-level methods of multiplicative
type, first as a general subspace correction algorithm. Details concerning the
proof of its global convergence can be found in Badea [2003]. The one- and
two-level methods are derived from this algorithm by the introduction of the
finite element spaces and details are given in Badea [2006]. Similar results
can be proved for the additive variant of the methods (see Badea [2008]).
We consider the variational inequality

u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K, (1)

and if K is not bounded, we suppose that F is coercive, i.e. F (v) →
∞ as ||v|| → ∞. Then, problem (1) has an unique solution. Let V1, · · · , Vm
be some closed subspaces of V for which we make the following

Assumption 1 There exists a constant C0 > 0 such that for any w, v ∈ K
and wi ∈ Vi with w +

∑i
j=1 wj ∈ K, i = 1, · · · ,m, there exist vi ∈ Vi,

i = 1, · · · ,m, satisfying

w+

i−1∑

j=1

wj+vi ∈ K, v−w =

m∑

i=1

vi,

m∑

i=1

||vi||p ≤ Cp
0

(
||v − w||p +

m∑

i=1

||wi||p
)
.

For linear problems, the last condition has a more simple form and is named
the stability condition of the space decomposition. To solve problem (1), we
introduce the following subspace correction algorithm.
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Algorithm 1 We start the algorithm with an arbitrary u0 ∈ K. At iteration
n+ 1, having un ∈ K, n ≥ 0, we sequentially compute for i = 1, · · · ,m,

wn+1
i ∈ Vi, u

n+ i−1
m + wn+1

i ∈ K : 〈F ′(un+
i−1
m + wn+1

i ), vi − wn+1
i 〉 ≥ 0,

for any vi ∈ Vi, u
n+ i−1

m +vi ∈ K, and then we update un+
i
m = un+

i−1
m +wn+1

i .

The following result proves the global convergence of this algorithm (see
Theorem 2 in Badea [2003]).

Theorem 1. On the above conditions on the spaces and the functional F , if
Assumption 1 holds, then there exists an M > 0 such that ||un|| ≤ M , for
any n ≥ 0, and we have the following error estimations:

(i) if p = q = 2 we have ||un − u||2 ≤ 2
αM

(
C̃1

C̃1+1

)n [
F (u0)− F (u)

]
.

(ii) if p > q we have ||u− un||p ≤ p
αM

F (u0)−F (u)
[
1+nC̃2(F (u0)−F (u))

p−q
q−1

] q−1
p−q

,

where

C̃1 = βM ( p
αM

)
q
pm2− q

p

[
(1 + 2C0)

(
F (u0)− F (u)

) p−q
p(p−1) +

(
βM ( p

αM
)

q
pm2− q

p

) 1
p−1

C
p

p−1

0 /η
1

p−1

]
/(1− η) and

C̃2 = p−q

(p−1)(F (u0)−F (u))
p−q
q−1 +(q−1)Ĉ

p−1
q−1

.

The value of η in the the expression of C̃1 can be arbitrary in (0, 1), but we
can also chose a η0 ∈ (0, 1) such that C̃1(η0) ≤ C̃1(η) for any η ∈ (0, 1).

One-level methods are obtained from Algorithm 1 by using the finite ele-
ment spaces. To this end, we consider a simplicial regular mesh partition Th
of mesh size h over Ω ⊂ Rd. Also, let Ω = ∪m

i=1Ωi be a domain decomposition
of Ω, the overlapping parameter being δ, and we assume that Th supplies a
mesh partition for each subdomain Ωi, i = 1, . . . ,m. In Ω, we use the linear
finite element space Vh whose functions vanish on the boundary of Ω and, for
each i = 1, . . . ,m, we consider the linear finite element space V i

h ⊂ Vh whose
functions vanish outside Ωi. Spaces Vh and V i

h , i = 1, . . . ,m, are considered
as subspaces of W 1,σ, 1 ≤ σ ≤ ∞, and let Kh ⊂ Vh be a convex set satisfying

Property 1. If v, w ∈ Kh, and if θ ∈ C0(Ω̄), θ|τ ∈ C1(τ) for any τ ∈ Th, and
0 ≤ θ ≤ 1, then Lh(θv + (1 − θ)w) ∈ Kh, where Lh is the P1-Lagrangian
interpolation.

We see that the convex sets of obstacle type satisfy this property, and we
have (see Proposition 3.1 in Badea [2006] for the proof)

Proposition 1. Assumption 1 holds for the linear finite element spaces, V =
Vh and Vi = V i

h, i = 1, . . . ,m, and for any convex set K = Kh ⊂ Vh
having Property 1. The constant C0 in Assumption 1 can be written as C0 =
C(m+ 1)(1 + m−1

δ ), where C is independent of the mesh parameter and the
domain decomposition.

Global convergence rates of some multilevel methods for variational and quasi-variational . . . 3



In the case of the two-level methods, we consider two regular simplicial
mesh partitions Th and TH on Ω ⊂ Rd, Th being a refinement of TH . Besides
the finite element spaces Vh, V

i
h , i = 1, . . . ,m and the convex set Kh, defined

for the one-level methods, we introduce the linear finite element space V 0
H

corresponding to the H-level, whose functions vanish on the boundary of
Ω. The two-level method is obtained from the general subspace correction
Algorithm 1 for V = Vh, K = Kh, and the subspaces V0 = V 0

H , V1 = V 1
h ,

V2 = V 2
h , . . ., Vm = V m

h . Also, these spaces are considered as subspaces of
W 1,σ, 1 ≤ σ ≤ ∞, and we have the following (see Proposition 4.1 in Badea
[2006] for the proof)

Proposition 2. Assumption 1 is satisfied for the linear finite element spaces
V = Vh and V0 = V 0

H , Vi = V i
h, i = 1, . . . ,m, and any convex set

K = Kh having Property 1. The constant C0 can be taken of the form
C0 = Cm

(
1 + (m− 1)Hδ

)
Cd,σ(H,h), where C is independent of the mesh

and domain decomposition parameters, and

Cd,σ(H,h) =





1 if d = σ = 1 or 1 ≤ d < σ ≤ ∞
(
ln H

h + 1
) d−1

d if 1 < d = σ <∞
(
H
h

) d−σ
σ if 1 ≤ σ < d <∞.

Some numerical results have been given in Badea [2009] to compare the
convergence of the one-level and two-level methods. They concern the two-
obstacle problem of a nonlinear elastic membrane,

u ∈ [a, b] :

∫

Ω

|∇u|σ−2∇u∇(v − u) ≥ 0, for any v ∈ [a, b] (2)

where Ω ⊂ R2, K = [a, b], a ≤ b, a, b ∈ W 1,σ
0 (Ω), 1 < σ < ∞. These

numerical experiments have confirmed the previous theoretical results.

3 Multilevel and multigrid methods

Details concerning the results in this section can be found in Badea [2014] and
Badea [2015]. As in the case of the one- and two-level methods, we consider
problem (1). Let Vj , j = 1, . . . , J , be closed subspaces of V = VJ which will
be associated with the level discretizations, and Vji, i = 1, . . . , Ij , be closed
subspaces of Vj which will be associated with the domain decompositions on
the levels. We consider K ⊂ V a non empty closed convex subset and write
I = max

j=J,...,1
Ij .

To get sharper error estimations in the case of the multigrid method, we
consider some constants 0 < βjk ≤ 1, βjk = βkj , j, k = J, . . . , 1, for which
〈F ′(v + vji) − F ′(v), vkl〉 ≤ βMβjk||vji||q−1||vkl||, for any v ∈ V , vji ∈ Vji,
vkl ∈ Vkl with ||v||, ||v+vji||, ||vkl|| ≤M , i = 1, . . . , Ij and l = 1, . . . , Il. Also,
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we fix a constant p
p−q+1 ≤ σ ≤ p and assume that there exists a constant C1

such that ||∑J
j=1

∑Ij
i=1 wji|| ≤ C1(

∑J
j=1

∑Ij
i=1 ||wji||σ)

1
σ , for any wji ∈ Vji,

j = J, . . . , 1, i = 1, . . . , Ij . Evidently, in general, we can take βjk = 1, j, k =

J, . . . , 1 and C1 = (IJ)
σ−1
σ . In the multigrid methods, the convex sets where

we look for the corrections are iteratively constructed from a level to another
during the iterations in function of the current approximation. In this general
background we make the following

Assumption 2 For a given w ∈ K, we recursively introduce the level convex
sets Kj, j = J, J − 1, . . . , 1, satisfying

- at level J : we assume that 0 ∈ KJ , KJ ⊂ {vJ ∈ VJ : w + vJ ∈ K} and
consider a wJ ∈ KJ ,

- at a level J − 1 ≥ j ≥ 1: we assume that 0 ∈ Kj , Kj ⊂ {vj ∈ Vj : w +
wJ + . . .+ wj+1 + vj ∈ K} and consider a wj ∈ Kj.

Also, we make a similar assumption with that in the case of the -one and
two-level methods,

Assumption 3 There exists two constants C2, C3 > 0 such that for any
w ∈ K, wji ∈ Vji, wj1 + . . . + wji ∈ Kj, j = J, . . . , 1, i = 1, . . . , Ij, and
u ∈ K, there exist uji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij, which satisfy

uj1 ∈ Kj and wj1 + . . .+ wji−1 + uji ∈ Kj , i = 2, . . . , Ij , j = J, . . . , 1,

u− w =

J∑

j=1

Ij∑

i=1

uji,

J∑

j=1

Ij∑

i=1

||uji||σ ≤ Cσ
2 ||u− w||σ + Cσ

3

J∑

j=1

Ij∑

i=1

||wji||σ

The convex sets Kj, j = J, . . . , 1, are constructed as in Assumption 2 with

the above w and wj =

Ij∑

i=1

wji, j = J, . . . , 1.

The general subspace correction algorithm corresponding to the multigrid
method is written as (see Algorithm 2.2 in Badea [2014] or Algorithm 1.1 in
Badea [2015]),

Algorithm 2 We start with an arbitrary u0 ∈ K. At iteration n+1 we have
un ∈ K, n ≥ 0, and successively perform:

- at level J: as in Assumption 2, with w = un, we construct KJ .
Then, we write wn

J = 0, and, for i = 1, . . . , IJ , we successively calculate

wn+1
Ji ∈ VJi, w

n+ i−1
IJ

J + wn+1
Ji ∈ KJ ,

〈F ′(un + w
n+ i−1

IJ

J + wn+1
Ji ), vJi − wn+1

Ji 〉 ≥ 0

for any vJi ∈ VJi, w
n+ i−1

IJ

J + vJi ∈ KJ , and write w
n+ i

IJ

J = w
n+ i−1

IJ

J + wn+1
Ji .

- at a level J − 1 ≥ j ≥ 1: as in Assumption 2, we construct Kj with
w = un and wJ = wn+1

J , . . . , wj+1 = wn+1
j+1 .

Global convergence rates of some multilevel methods for variational and quasi-variational . . . 5



Then, we write wn
j = 0, and for i = 1, . . . , Ij, we successively calculate

wn+1
ji ∈ Vji, w

n+ i−1
Ij

j + wn+1
ji ∈ Kj,

〈F ′(un +

J∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j + wn+1
ji ), vji − wn+1

ji 〉 ≥ 0

for any vji ∈ Vji, w
n+ i−1

Ij

j + vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

J + wn+1
ji .

- we write un+1 = un +
J∑

j=1

wn+1
j .

Convergence of this algorithm is given by (see Theorem 1.1 in Badea [2015])

Theorem 2. Under the above conditions on the spaces and the functional F ,
if Assumptions 2 and 3 hold, then there exists anM > 0 such that ||un|| ≤M ,
for any n ≥ 0, and we have the following error estimations:

(i) if p = q = 2 we have ||un − u||2 ≤ 2
αM

( C̃1

C̃1+1
)n[F (u0)− F (u)],

(ii) if p > q we have ||u− un||p ≤ p
αM

F (u0)−F (u)

[1+nC̃2(F (u0)−F (u))
p−q
q−1 ]

q−1
p−q

,

where

C̃1 =
1

C2ε

[
C2

ε
+ 1 + C1C2 + C3

]
,

C̃2 = p−q

(p−1)(F (u0)−F (u))
p−q
q−1 +(q−1)C̃

p−1
q−1
3

with

C̃3 =

αM

p

C2ε


 C2

ε
1

p−1 (αM

p )
q−1
p−1

+
(1 + C1C2 + C3)(IJ)

p−σ
pσ

(αM

p )
q
p

(F (u0)− F (u))
p−q

p(p−1)

]

ε =
αM

p

1

2C2βMI
σ−1
σ + p−q+1

p J
σ−1
σ − q−1

p ( max
k=1,··· ,J

J∑

j=1

βkj)

.

To get the multilevel method corresponding to Algorithm 2, we consider a
family of regular meshes Thj

of mesh sizes hj , j = 1, . . . , J , over the domain
Ω ⊂ Rd and assume that Thj+1

is a refinement of Thj
. Let, at each level j =

1, . . . , J , {Ωi
j}1≤i≤Ij be an overlapping decomposition of Ω, of overlapping

size δj . We also assume that, for 1 ≤ i ≤ Ij , the mesh partition Thj
of Ω

supplies a mesh partition for each Ωi
j , diam(Ωi

j+1) ≤ Chj and I1 = 1.

We introduce the linear finite element spaces, Vhj
= {v ∈ C(Ω̄j) : v|τ ∈

P1(τ), τ ∈ Thj
, v = 0 on ∂Ωj}, j = 1, . . . , J , corresponding to the level

meshes, and V i
hj

= {v ∈ Vhj
: v = 0 in Ωj\Ωi

j}, i = 1, . . . , Ij , associated with
the level decompositions. Spaces Vhj

j = 1, . . . , J − 1, will be considered as
subspaces of W 1,σ, 1 ≤ σ ≤ ∞.

The multilevel and multigrid methods will be obtained from Algorithm 2
for a two sided obstacle problem (1), i.e. the convex set is of the form K =
{v ∈ VhJ

: ϕ ≤ v ≤ ψ}, with ϕ, ψ ∈ VhJ
, ϕ ≤ ψ. Concerning the construction

of the level convex sets, we have (Proposition 3.1 in Badea [2014])
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Proposition 3. Assumption 2 holds for the convex sets Kj, j = J, . . . , 1,
defined as,

- for w ∈ K, at the level J , we take ϕJ = ϕ − w, ψJ = ψ − w, KJ =
[ϕJ , ψJ ], and consider an wJ ∈ KJ ,

- at a level j = J − 1, . . . , 1, we define ϕj = Ihj
(ϕj+1 − wj+1), ψj =

Ihj
(ψj+1 − wj+1), Kj = [ϕj , ψj ], and consider an wj ∈ Kj, Ihj

: Vhj+1
→

Vhj
, j = 1, . . . , J − 1, being some nonlinear interpolation operators between

two consecutive levels.

Also, our second assumption holds (see Proposition 2 in Badea [2015]),

Proposition 4. Assumption 3 holds for the convex sets Kj, j = J, . . . , 1,
defined in Proposition 3. The constants C2 and C3 are written as

C2 = CI
σ+1
σ (I + 1)

σ−1
σ (J − 1)

σ−1
σ [
∑J

j=2 Cd,σ(hj−1, hJ )
σ]

1
σ

C3 = CI2(I + 1)
σ−1
σ (J − 1)

σ−1
σ [
∑J

j=2 Cd,σ(hj−1, hJ )
σ]

1
σ

We proved that Assumptions 2 and 3 hold, and have explicitly written con-
stants C2 and C3 in function of the mesh and overlapping parameters. We
can then conclude from Theorem 2 that Algorithm 2 is globally convergent.
Convergence rates given in Theorem 2 depend on the functional F , the maxi-
mum number of the subdomains on each level, I, and the number of levels J .
Since the number of subdomains on levels can be associated with the num-
ber of colors needed to mark the subdomains such that the subdomains with
the same color do not intersect with each other, we can conclude that the
convergence rate essentially depends on the number of levels J .

In the general framework of multilevel methods we take C1 = CJ
σ−1
σ

maxk=1,··· ,J
∑J

j=1 βkj = J and, as functions depending only of J , we have

C2 = C(J − 1)
σ−1
σ Sd,σ(J) and C3 = C(J − 1)

σ−1
σ Sd,σ(J) where

Sd,σ(J) =




J∑

j=2

Cd,σ(hj−1, hJ )
σ




1
σ

=





(J − 1)
1
σ if d = σ = 1

or 1 ≤ d < σ <∞
CJ if 1 < d = σ <∞
CJ if 1 ≤ σ < d <∞.

In the above multilevel methods a mesh is the refinement of that one
on the previous level, but the domain decompositions are almost indepen-
dent from one level to another. We obtain similar multigrid methods by
decomposing the domain by the supports of the nodal basis functions of each
level. Consequently, the subspaces V i

hj
, i = 1, . . . , Ij , are one-dimensional

spaces generated by the nodal basis functions associated with the nodes
of Thj

, j = J, . . . , 1. In the case of the multigrid methods, we can take

C1 = C and maxk=1,··· ,J
∑J

j=1 βkj = C. Now we can write the convergence
rate of the multigrid method corresponding to Algorithm 2 in function of
the number of levels J for a given particular problem. In Badea [2014], the
convergence rate of the multigrid method for the example in (2) has been
written.

Global convergence rates of some multilevel methods for variational and quasi-variational . . . 7



Remark 1. (see also Badea [2014])
1. The above results referred to problems inW 1,σ with Dirichlet boundary

conditions, but they also hold for Neumann or mixed boundary conditions.
2. Similar convergence results can be obtained for problems in (W 1,σ)d.
3. The analysis and the estimations of the global convergence rate which

are given above refers to two sided obstacle problems which arise from the
minimization of functionals defined on W 1,σ, 1 < σ <∞.

4. We can compare the convergence rates we have obtained with similar
ones in the literature in the case of H1 (p = q = 2) and d = 2. In this case,
we get that the global convergence rate of Algorithm 2 is 1 − 1

1+CJ3 . The

same estimate, of 1 − 1
1+CJ3 , is obtained by R. Kornhuber for the asymp-

totic convergence rate of the standard monotone multigrid methods for the
complementarity problems.

Algorithm 2 is of multiplicative type over the levels as well as on each
level, i.e. the current correction is found in function of all corrections on
both the previous levels and the current level. We can also imagine hybrid
algorithms where the type of the iteration over the levels is different from
the type of the iteration on the levels. This idea can be also found in Smith
et al. [1996]. In Badea [2015], such hybrid algorithms (multiplicative over
the levels - additive on levels, additive over the levels - multiplicative on
levels and additive over the levels as well as on levels) have been introduced
and analyzed in a similar manner with that of Algorithm 2. The following
remark contains some conclusions withdrawn in Badea [2015] concerning the
convergence rate (expressed only in function of J) of these hybrid algorithms
for problem (2).

Remark 2. 1. Regardless of the iteration type on levels, algorithms having
the same type of iterations over the levels have the same convergence rate,
provided that additive iterations on levels are parallelized.

2. The algorithms which are of multiplicative type over the levels converge
better, by a factor of between 1/J and 1 (depending on σ), than their additive
similar variants.

4 One- and two-level methods for variational inequalities
of the second kind and quasi-variational inequalities

The results in this section are detailed in Badea and Krause [2012] where one-
and two-level methods have been introduced and analyzed for the second kind
and quasi-variational inequalities. In the case of the variational inequalities
of the second kind, let ϕ : K → R be a convex, lower semicontinuous, not
differentiable functional and, if K is not bounded, we assume that F + ϕ
is coercive, i.e. F (v) + ϕ(v) → ∞, as ‖v‖ → ∞, v ∈ K. We consider the
variational of the second kind
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u ∈ K : 〈F ′(u), v − u〉+ ϕ(v)− ϕ(u) ≥ 0, for any v ∈ K (3)

which, in view of the properties of F and ϕ, has a unique solution. An example
of such a problem is given by the contact problems with Tresca friction. To
solve problem (3), we introduce

Algorithm 3 We start the algorithm with an arbitrary u0 ∈ K. At iteration
n + 1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m,

the local corrections wn+1
i ∈ Vi, u

n+ i−1
m + wn+1

i ∈ K as the solution of the
variational inequality

〈F ′(un+
i−1
m + wn+1

i ), vi − wn+1
i 〉+ ϕ(un+

i−1
m + vi)− ϕ(un+

i−1
m + wn+1

i ) ≥ 0,

for any vi ∈ Vi, u
n+ i−1

m +vi ∈ K,and then we update un+
i
m = un+

i−1
m +wn+1

i .

To prove the convergence of the algorithm, we introduce a technical assump-
tion,

m∑

i=1

[ϕ(w +

i−1∑

j=1

wj + vi)− ϕ(w +

i−1∑

j=1

wj + wi)] ≤ ϕ(v)− ϕ(w +

m∑

i=1

wi)

for v, w ∈ K, and vi, wi ∈ Vi, i = 1, . . . ,m, in Assumption 1. In general, ϕ
has not such a property and to show that this assumption holds when the
finite element spaces are used, we have to take a numerical approximation of
ϕ. The convergence of Algorithm 3 is proved by the following

Theorem 3. Under the above assumptions on V , F and ϕ, let u be the so-
lution of the problem and un, n ≥ 0, be its approximations obtained from
Algorithm 3. If Assumption 1 holds, then there exists M > 0 such that such
that ‖un+ i

m ‖ ≤ M , n ≥ 0, 1 ≤ i ≤ m, and we have the following error
estimations:

(i)‖un − u‖2 ≤ p
αM

(
C̃1

C̃1+1

)n [
F (u0) + ϕ(u0)− F (u)− ϕ(u)

]
if p = q = 2,

(ii) ‖u− un‖p ≤ p
αM

F (u0)+ϕ(u0)−F (u)−ϕ(u)
[
1+nC̃2(F (u0)+ϕ(u0)−F (u)−ϕ(u))

p−q
q−1

] q−1
p−q

if p > q,

where

C̃1 = βM (1 + 2C0)m
2− q

p (
p

αM
)

q
p
(
F (u0)− F (u) + ϕ(u0)− ϕ(u)

) p−q
p(p−1) +

βMC0m
p−q+1

p 1

ε
1

p−1
( p
αM

)
q−1
p−1 with ε = αM/

(
pβMC0m

p−q+1
p

)
,

C̃2 = p−q

(p−1)(F (u0)+ϕ(u0)−F (u)−ϕ(u))
p−q
q−1 +(q−1)C

p−1
q−1
1

In the case of the quasivariational inequalities, we consider only the case
of p = q = 2 and let ϕ : K×K → R be a functional such that, for any u ∈ K,
ϕ(u, ·) : K → R is convex, lower semicontinuous and, if K is not bounded,
F (·) + ϕ(u, ·) is coercive, i.e. F (v) + ϕ(u, v) → ∞ as ‖v‖ → ∞, v ∈ K. We
assume that for any M > 0 there exists a constant cM > 0 such that

|ϕ(v1, w2) + ϕ(v2, w1)− ϕ(v1, w1)− ϕ(v2, w2)| ≤ cM ||v1 − v2||||w1 − w2||
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for any v1, v2, w1 w2 ∈ K, ||v1||, ||v2||, ||w1|| ||w2|| ≤M . If ϕ has the above
property, the quasi-variational inequality

u ∈ K : 〈F ′(u), v − u〉+ ϕ(u, v)− ϕ(u, u) ≥ 0, for any v ∈ K

has a unique solution. An example of such a problem is given by the contact
problems with non-local Coulomb friction. We can write three algorithms
depending on the first argument of ϕ.

Algorithm 4 We start the algorithm with an arbitrary u0 ∈ K. At iteration
n+ 1, having un ∈ K, n ≥ 0, we compute sequentially for i = 1, · · · ,m, the

local corrections wn+1
i ∈ Vi, u

n+ i−1
m + wn+1

i ∈ K, satisfying

〈F ′(un+
i−1
m + wn+1

i ), vi − wn+1
i 〉+ ϕ(vn+1

i , un+
i−1
m + vi)

−ϕ(vn+1
i , un+

i−1
m + wn+1

i ) ≥ 0,

for any vi ∈ Vi, u
n+ i−1

m +vi ∈ K, and then we update un+
i
m = un+

i−1
m +wn+1

i .

Above, the first argument vn+1
i of ϕ can be taken either un+

i−1
m + wn+1

i or

un+
i−1
m or even un. As we shall see in the next convergence theorem, the

three variants of the algorithm are convergent. Similarly with the case of the
inequalities of the second kind, we introduce the technical assumption

m∑

i=1

[ϕ(u,w +

i−1∑

j=1

wj + vi)− ϕ(u,w +

i∑

j=1

wj)] ≤ ϕ(u, v)− ϕ(u,w +

m∑

i=1

wi)

for any u ∈ K and for v, w ∈ K and vi, wi ∈ Vi, un+
i−1
m + vi ∈ K,

i = 1, . . . ,m, in Assumption 1. Also, in the finite element spaces, ϕ of the
continuous problem is numerically approximated in order to get the above
assumption satisfied. Convergence of the three algorithms is proved by

Theorem 4. Under the above assumptions on V , F and ϕ, let u be the
solution of the problem and un, n ≥ 0, be its approximations obtained
from one of the variants of Algorithm 4. If Assumption 1 holds, and if
αM

2 ≥ mcM +
√
2m(25C0 + 8)βMcM , for any M > 0, then there exists an

M > 0 such that ‖un+ i
m ‖ ≤M , n ≥ 0, 1 ≤ i ≤ m, and we have the following

error estimation

‖un − u‖2 ≤ 2
αM

(
C̃1

C̃1+1

)n [
F (u0) + ϕ(u, u0)− F (u)− ϕ(u, u)

]
.

where
C̃1 = C̃2/C̃3 with C̃2 = βMm(1 + 2C0 +

C0

ε1
) + cMm(1 + 2C0 +

1+3C0

ε2
),

C̃3 = αM

2 − cM (1 + ε3)m and ε1 = ε2 = 2cMm
αM
2 −cMm

, ε3 =
αM
2 −cMm

2cMm .

Remark 3. 1. Extension of the previous methods (given for variational in-
equalities of the second kind and quasi-variational inequalities) to methods
with more than two levels, having an optimal rate of convergence, is not very
evident because of the technical conditions we have introduced, which are not
satisfied when the domain decompositions on the coarse levels are considered.

10 Lori Badea



2. By using Newton linearizations of ϕ, R. Kornhuber introduced multi-
grid methods for complementarity problems and estimated the asymptotic
convergence rates.

5 Multigrid methods for inequalities with a term given
by a Lipschitz operator

In this section, we estimate the global convergence rate of a multigrid method
for the particular case of quasi-variational inequalities when the inequality
contains a term given by a Lipschitz operator. Details concerning the results
of this section can be found in Badea [2016]. As in the previous section,
we consider the case when p = q = 2 and αM = α, βM = β, i.e. they
not depend on M . Let T : V → V ′ be a Lipschitz continuous operator
||T (v)− T (u)||V ′ ≤ γ||v − u|| for any v, u ∈ V, and we consider the problem

u ∈ K : 〈F ′(u), v − u〉+ 〈T (u), v − u〉 ≥ 0 for any v ∈ K.

In the following algorithm, each iteration contains κ intermediate iterations
in which the argument of T is kept unchanged.

Algorithm 5 We start the algorithm with an arbitrary u0 ∈ K. Assuming
that at iteration n+ 1 we have un ∈ K, n ≥ 0, we write ũn = un and carry
out the following two steps:
1. We perform κ ≥ 1 iterations of Algorithm 2 starting with ũn and keeping
the argument of T equal with un, i.e. we apply Algorithm 2 to the inequality

ũ ∈ K : 〈F ′(ũ), v − ũ〉+ 〈T (un), v − ũ〉 ≥ 0 for any v ∈ K

After the κ iterations we get the approximation ũn+κ of ũ.
2. We write un+1 = ũn+κ.

Convergence condition of Theorem 4 depends on the number m of the sub-
spaces in the one- or two-level methods. We will see in the next theorem that
if the Lipschitz constant of the operator T is small enough, the convergence
condition of the above algorithm is independent of the number of levels and
the number of subdomains on the levels.

Theorem 5. We assume that V , F and T satisfy the above conditions and

that Assumptions 2-3 hold. Then, if γ/α < 1/2 and κ satisfies ( C̃
C̃+1

)κ <
1−2 γ

α

1+3 γ
α+4 γ2

α2 + γ3

α3

, Algorithm 5 is convergent and we have the following error

estimation

‖un − u‖2 ≤ 2
α [2

γ
α + ( C̃

C̃+1
)κ(1 + 3 γ

α + 4 γ2

α2 + γ3

α3 )]
n

·[F (u0) + 〈T (u), u0〉 − F (u)− 〈T (u), u〉],

where C̃ =
1

C2ε

[
1 + C2 + C1C2 +

C2

ε

]
, ε =

α

2βI(maxk=1,··· ,J
∑J

j=1 βkj)C2

.

Global convergence rates of some multilevel methods for variational and quasi-variational . . . 11
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Parallel Sum Primal Spaces for
Isogeometric Deluxe BDDC
Preconditioners

L. Beirão da Veiga1, L. F. Pavarino2, S. Scacchi2, O. B. Widlund3, and S.
Zampini4

1 Introduction

In this paper, we study the adaptive selection of primal constraints in BDDC
deluxe preconditioners applied to isogeometric discretizations of scalar elliptic
problems. The main objective of this work is to significantly reduce the coarse
space dimensions of the BDDC isogeometric preconditioners developed in our
previous works, Beirão da Veiga et al. [2013a, 2014b], while retaining their
fast and scalable convergence rates.

Recent works on adaptive selection of primal constraints have focused on
constraints associated with the interface between pairs of subdomains, i.e.
edges in 2D and faces in 3D; see Dohrmann and Pechstein [2011], Mandel
et al. [2012], Pechstein and Dohrmann [2013], Spillane et al. [2013], Klawonn
et al. [2014a,b, 2015a,b, 2016], Kim and Chung [2015]. The more complex
case with constraints associated with three or more subdomains appears in
isogeometric discretizations already for vertex contraints in 2D, where four
subdomains are involved for each fat vertex (in 3D the subdomains involved
for each vertex constraint becomes eight), see Fig. 1. Fewer works have con-
sidered these more general cases, see e.g. Mandel et al. [2012], Kim et al.
[2015], Klawonn et al. [2015a], Calvo and Widlund [2016], and our previous
work Beirão da Veiga et al. [2016], where we have constructed and compared
four different strategies for the adaptive selection of primal constraints. Here
we focus on a promising strategy based on generalized eigenvalue problems
involving parallel sums of local Schur complement blocks. The resulting isoge-
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ometric BDDC algorithm is scalable, quasi-optimal and robust with respect
to both increasing polynomial degree of the isogeometric basis functions em-
ployed and the presence of discontinuous elliptic coefficients across subdomain
interfaces.

For earlier work on the iterative solution of isogeometric approximations,
see Beirão da Veiga et al. [2013b], Collier et al. [2013], Gahalaut et al. [2013],
Kleiss et al. [2012].

2 Model Elliptic Problem and Isogeometric Analysis

Given a bounded and connected domain Ω ⊂ Rd, d = 2, 3, obtained by a
CAD program, a right-hand side f ∈ L2(Ω) and a scalar field ρ satisfying
0 < ρmin ≤ ρ(x) ≤ ρmax, ∀x ∈ Ω, we consider the model scalar elliptic
problem

−∇ · (ρ∇u) = f in Ω, u = 0 on ∂Ω, (1)

and discretize it with IGA based on B-splines and NURBS basis functions;
see, e.g., Hughes et al. [2005], Cottrell et al. [2009], Beirão da Veiga et al.
[2014a]. Given univariate B-spline basis functionsNp

i (ξ) of degree p associated
to the knot vector {ξ1 = 0, ..., ξn+p+1 = 1} defined on the parametric interval

Î := (0, 1), we define by a 2D tensor product (the 3D case is analogous) the

2D parametric space Ω̂ := (0, 1) × (0, 1), the n × m mesh of control points
Ci,j associated with the knot vectors {ξ1 = 0, ..., ξn+p+1 = 1} and {η1 =
0, ..., ηm+q+1 = 1}, the bivariate B-spline basis functions by Bp,q

i,j (ξ, η) =
Np

i (ξ)M
q
j (η), and the bivariate B-spline discrete space as

Ŝh := span{Bp,q
i,j (ξ, η), i = 1, . . . , n, j = 1, . . . ,m}. (2)

Analogously, the NURBS space is the span of NURBS basis functions defined
in one dimension by

Rp
i (ξ) :=

Np
i (ξ)ωi∑n

k=1 N
p
k (ξ)ωk

=
Np

i (ξ)ωi

w(ξ)
, (3)

with the weight function w(ξ) :=
∑n

k=1 N
p
k (ξ)ωk ∈ Ŝh, and in two dimensions

by a tensor product

Rp,q
i,j (ξ, η) :=

Bp,q
i,j (ξ, η)ωi,j∑n

k=1

∑m
ℓ=1 B

p,q
k,ℓ (ξ, η)ωk,ℓ

=
Bp,q

i,j (ξ, η)ωi,j

w(ξ, η)
, (4)

where w(ξ, η) is the weight function and ωk,ℓ are positive weights associated
with a n×m net of control points. The discrete NURBS space on Ω is defined
as the span of the push-forward of the NURBS basis functions (4), i.e.,
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Nh := span{Rp,q
i,j ◦ F−1, with i = 1, . . . , n; j = 1, . . . ,m}, (5)

with F : Ω̂ → Ω, the geometrical map between parameter and physical spaces
F(ξ, η) =

∑n
i=1

∑m
j=1 R

p,q
i,j (ξ, η)Ci,j . The spline space in the parameter space

is then defined as

V̂h := [Ŝh∩H1
0 (Ω̂)]2 = [span{Bp,q

i,j (ξ, η), i = 2, . . . , n−1, j = 2, . . . ,m−1}]2,

and the NURBS space in physical space as

Uh := [Nh∩H1
0 (Ω)]2 = [span{Rp,q

i,j ◦F−1, with i = 2, . . . , n−1, j = 2, . . . ,m−1}]2.

The IGA formulation of problem (1) then reads: Find uh ∈ Uh such that:

a(uh, vh) =< f, vh > ∀v ∈ Uh, (6)

with the bilinear form a(uh, vh) =
∫
Ω
ρ∇uh∇vhdx and the right-hand side

< f, vh >=
∫
Ω
fvhdx. The matrix form of (6) is the linear system

Auh = fh, (7)

with a symmetric positive definite stiffness matrix A.

3 Isogeometric BDDC Deluxe Preconditioners

Knots and subdomain decomposition. By partitioning the associated
knot vector, we decompose the reference interval Î into quasi-uniform subin-
tervals Îk = (ξik , ξik+1

) of characteristic diameter H and we extend this
decomposition to more dimensions by tensor products, e.g., in two dimension

Îk = (ξik , ξik+1
), Îl = (ηjl , ηjl+1

), Ω̂kl = Îk×Îl, 1 ≤ k ≤ N1, 1 ≤ l ≤ N2.

For simplicity, we reindex the subdomains using only one index to obtain the

decomposition of our reference domain Ω̂ =
⋃

k=1,..,K Ω̂(k), into K = N1N2

subdomains. We assume that both the coarse subdomains mesh and the fine
element mesh defined by the knot vectors mesh are shape regular and quasi-
uniform.

The Schur complement system. Denote by Γ :=
(⋃K

k=1 ∂Ω̂
(k)
)
\∂Ω̂

the subdomain interface and by ΘΓ = {(i, j) : supp(Bp,q
i,j ) ∩ Γ 6= ∅} the set

of indices associated with the “fat” interface, consisting of several layers of
knots associated with the basis functions with support intersecting two or
more subdomains, see, e.g., Fig. 1.

As in classical iterative substructuring, we reduce the original system (7)
to one on the interface by static condensation, i.e., we eliminate the interior
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(a) (b) (c)

Fig. 1 Schematic illustration in index space of 2D (top row) and 3D (bottom row) “fat”

interface equivalence classes for a configuration with four subdomains with p = 3, κ = 2:
vertex variables are black, while edge variables are white; dual variables are denoted by

circles, while primal variables by square. The figure shows the following configurations: a)

not assembled (all vertex and edge variables are dual); b) partially assembled (all fat vertex
variables are assembled); c) fully assembled (all vertex and edge variables are primal).

degrees of freedom (denoted by subscript I) associated with the basis func-
tions with support in only one subdomain and interface degrees of freedom
(denoted by subscript Γ ), obtaining the Schur complement system

ŜΓw = f̂ , (8)

where using the same subscripts I and Γ on matrix and vector blocks, we
have ŜΓ = AΓΓ −AΓIA

−1
II A

T
ΓI , f̂ = fΓ −AΓIA

−1
II fI . The Schur complement

system (8) is solved by a Preconditioned Conjugate Gradient (PCG) iteration,

where ŜΓ is never explicitly formed since the action of ŜΓ on a vector is
computed by solving Dirichlet problems for individual subdomains and some
sparse matrix-vector multiplications, which are also needed when working
with the local Schur complements required by the application of the BDDC
preconditioner defined below. The preconditioned Schur complement system
solved by PCG is then
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M−1
BDDCŜΓw = M−1

BDDCf̂ , (9)

where M−1
BDDC is the BDDC preconditioner, defined in (11) below.

The BDDC preconditioner. We denote by A(k) the local stiffness ma-
trix associated with the subdomain Ω̄(k). After partitioning the local degrees
of freedom into those in the interior (I) and those on the interface (Γ ), as
before, we further partition the latter into dual (∆) and primal (Π) degrees
of freedom. The associated primal basis functions will be made continuous
across the interface by subassembling them among their supporting elements.
The dual basis functions can be discontinuous across the interface and will
vanish at the primal degrees of freedom. Specific choices for the selection of
primal degrees of freedom will be given below. According to this splitting,
A(k) can then be written as

A(k) =

[
A

(k)
II A

(k)T

ΓI

A
(k)
ΓI A

(k)
ΓΓ

]
=



A

(k)
II A

(k)T

∆I A
(k)T

ΠI

A
(k)
∆I A

(k)
∆∆ A

(k)T

Π∆

A
(k)
ΠI A

(k)
Π∆ A

(k)
ΠΠ


 . (10)

The BDDC preconditioner can be written as

M−1
BDDC = R̃T

D,Γ S̃
−1
Γ R̃D,Γ , where (11)

S̃−1
Γ = R̃T

Γ∆




K∑

k=1

[
0 R

(k)T

∆

] [
A

(k)
II A

(k)T

∆I

A
(k)
∆I A

(k)
∆∆

]−1 [
0

R
(k)
∆

]
 R̃Γ∆ + ΦS−1

ΠΠΦT .

Here SΠΠ is the BDDC coarse matrix, Φ is a matrix mapping primal degrees

of freedom to interface variables defined in (18) below, and R̃Γ∆ and R
(k)
∆

are appropriate restriction matrices; see, e.g., Li and Widlund [2006]. The

matrix R̃T
D,Γ defines the BDDC scaling adopted, that here will be the deluxe

scaling defined in (12), (13) below. We note that the choices of primal con-
straints and scaling are fundamental for the construction of efficient BDDC
preconditioners.

In our previous works Beirão da Veiga et al. [2013a, 2014b], we proved,
with an appropriate choice of primal constraints, that the condition number
of the resulting BDDC preconditioner satisfies a classical polylogarithmic
bound

cond
(
M−1

BDDC ŜΓ

)
≤ C(1 + log(H/h))2,

with C > 0 independent of h,H and the jumps of the coefficient ρ across the
interface Γ .

Deluxe scaling (Dohrmann and Widlund [2013]). We split the in-
terface Γ into certain equivalence classes, associated with subdomain vertices
(V), edges (E), and in three-dimensions faces (F), defined by the set of indices
of the degrees of freedom belonging to the analogous subdomain boundaries.
For simplicity, we define here the deluxe scaling for the class of F with only
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two elements, k, j, as for an edge in two dimensions or a face in three di-
mensions. Consider the local Schur complements S(k) and S(j) associated to

subdomains Ω(k) and Ω(j), respectively. We define two principal minors, S
(k)
F

and S
(j)
F , obtained by removing all rows and columns which do not belong to

the degrees of freedom which are common only to the fat boundaries of Ω(k)

and Ω(j). The deluxe scaling across F is then defined by

D
(k)
F := S

(k)
F

(
S
(k)
F + S

(j)
F

)−1

. (12)

If these Schur complements have small dimensions, they can be computed

explicitly, otherwise the action of
(
S
(k)
F + S

(j)
F

)−1

can be computed by solv-

ing a Dirichlet problem on the union of the relevant subdomains with a zero
right hand side in the interiors of the subdomains. While these strategies are
viable in two dimensions, in our three-dimensional tests we use the numerical
factorization package MUMPS, see Amestoy et al. [2001], which computes
explicitly the subdomain Schur complements (14) while factoring the subdo-
main problem (10).

We then define the block-diagonal scaling matrix

D(k) = diag(D
(k)
Fj1

, D
(k)
Fj2

, . . . , D
(k)
Fjk

),

where j1, j2, . . . , jk are the indices of all the Ω(j), j 6= k, that share an
element of F with Ω(k). We can now define the scaled local operators by

R
(k)
D,Γ := D(k)R

(k)
Γ and the global scaled operator by

R̃D,Γ := ⊕K
k=1R

(k)
D,Γ . (13)

Generalized eigenvalue problems and parallel sums. Consider a fat
edge E of a subdomain Ω(k) and its complement E ′ := Γi \ E . We write the
local Schur complement associated to Ω(k) as

S(k) =

(
S
(k)
E′E′ S

(k)T

E′E
S
(k)
E′E S

(k)
EE

)
,

and we define the Schur complement of a Schur complement

S̃
(k)
EE := S

(k)
EE − S

(k)
E′ES

(k)−1
E′E′ S

(k)T

E′E . (14)

Analogous blocks S
(k)
VV , S̃

(k)
VV are defined for a fat vertex V of Ω(k) and blocks

S
(k)
FF , S̃

(k)
FF for a fat face F of Ω(k). We note that these blocks are only positive

semidefinite for subdomains in the interior of the domain Ω. In the definition
of the parallel sum given in (15) below, we handle any such singular matrices
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by using generalized inverses or by adding to any singular S(k) the term ǫI,
with ǫ > 0 small compared with the eigenvalues of S(k).

Our adaptive selection of primal constraints will be based on generalized
eigenvalue problems (GEP) based on the following definition of parallel sum
(see Anderson and Duffin [1969], Tian [2002]) of r positive definite matrices
A(1), A(2), · · · , A(r) as

A(1) : A(2) · · · : A(r) :=
(
A(1)−1

+A(2)−1

+ · · ·+A(r)−1
)−1

. (15)

We define a first GEP Vpar as follows: let V be a fat vertex in 2D shared
by four subdomains Ω(i), Ω(j), Ω(k), Ω(ℓ), and define the GEP

(
S̃
(i)
VV : S̃

(j)
VV : S̃

(k)
VV : S̃

(ℓ)
VV

)
φ = λ

(
S
(i)
VV : S

(j)
VV : S

(k)
VV : S

(ℓ)
VV

)
φ. (16)

We define another GEP Epar as follows: Let E be a fat edge in 2D shared
by two subdomains Ω(i), Ω(j), and define the GEP

(
S̃
(i)
EE : S̃

(j)
EE

)
φ = λ

(
S
(i)
EE : S

(j)
EE

)
φ. (17)

The analogous GEP Vpar for a fat vertex in 3D will involve parallel sums
with eight terms, while four terms will be involved for a fat edge in 3D and
two terms for a fat face in 3D (since we are considering IGA regular decom-
positions). Alternative choices of generalized eigenvalue problems based on
both parallel and standard sums of matrices can be found in Beirão da Veiga
et al. [2016].

Adaptive choices of reduced sets of primal constraints. Inspired
by the techniques of Dohrmann and Pechstein, we propose an adaptive se-
lection of primal constraints, driven by the desire to reduce the expensive
fat vertex/edge/face primal constrains used in the standard or deluxe BDDC
method. In order to construct the BDDC primal space, we select a threshold
0 < θ < 1, a set of GEPs associated to the equivalence classes considered
(subdomain vertices and/or edges and/or faces) and for each equivalence class
use the following two-step strategy:

a) select the eigenvectors {v1, v2, . . . , vNc
} of the generalized eigenproblem

(16) that are associated to the eigenvalues {λ1, λ2, . . . , λNc
} smaller than θ;

b) perform the following BDDC change of basis in order to introduce the
selected eigenvectors as new primal constraints:

b1) denoting by S̃V φ = λSV φ the eigenproblem (16), compute the matrix

AV = SV [v1v2, . . . , vNc ] ∈ Rn×Nc ,

with n the size of the vi, i = 1, ..., Nc, and Nc ≤ n the number of primal
constraints selected;

b2) compute the SVD decomposition of AV , i.e. the matrices U, S, V such
that AV = USV T and denote by CT the first Nc columns of U ;
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b3) compute the QR factorization CT = QR, where Q = [Qrange Qnull] ∈
Rn×n, with Qrange ∈ Rn×Nc and Qnull ∈ Rn×(n−Nc) spanning the range and

the kernel of CT , respectively, and R =

[
R̃
0

]
∈ Rn×Nc , with R̃ ∈ RNc×Nc

upper triangular;
b4) construct the matrix Φ realizing the BDDC change of basis as

Φ = [QrangeR̃
−T Qnull]. (18)

We denote the resulting primal spaces with the same name as the asso-
ciated GEP they are based on. Among the possible combinations, we will
consider the primal spaces Vpar and Epar in 2D, while in 3D we will need the
richer primal space VEFpar employing GEP Vpar, Epar, Fpar.

4 Numerical Results

We now present the results of numerical experiments with the model problem
(1) discretized on a 2D quarter-ring domain (see Fig. 2a) and on a 3D twisted
domain (see Fig. 3a) using isogeometric NURBS spaces with mesh size h,
polynomial degree p and regularity k. The domain is decomposed into K
non-overlapping subdomains of characteristic size H, as described in Section
3. The Schur complement problems are solved by the PCG method with
the isogeometric BDDC deluxe preconditioner described before, with a zero
initial guess and a stopping criterion of a 10−6 reduction of the Euclidean
norm of the PCG residual. In the tests, we study how the convergence rate of
the BDDC preconditioner depends on h,K, p, k, and jumps in the coefficient
of the elliptic problem. In all tests, the BDDC condition number is essentially
the maximum eigenvalue of the preconditioned operator, since its minimum
eigenvalue is always very close to 1. The 2D tests have been performed with
a MATLAB code based on the GeoPDEs library, De Falco et al. [2011], while
the 3D parallel tests have been performed using the PETSc library, Balay and
et al. [2015], with the PCBDDC preconditioner (contributed to the PETSc
library by S. Zampini, see Zampini [2016]), the PetIGA library, Dalcin et al.
[2016], and run on the parallel machine Shaheen XC40 of KAUST.

2D tests with Vpar and Epar. Fig. 2 reports the results of several tests
for various degrees p and maximal regularity k = p − 1 with BDDC deluxe
preconditioner with Vpar coarse space on the quarter-ring domain shown in
panel a). Panel b) shows that the condition number improves when the num-
ber of vertex primal constraints per vertex is increased from the minimal value
NV

C = 1 to the maximal value NV
C = (k + 1)2 (here K = 4 × 4, H/h = 16

are fixed). For p ≥ 3, the improvement is minimal when only a few vertex
functions are added to the Vpar primal space, but the improvement becomes
substantial when about p2/3 vertex functions are added.
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Fig. 2 2D tests with BDDC deluxe preconditioner. a) quarter-ring domain. b) Condition

numbers with adaptive coarse space Vpar as a function of the number of vertex primal
constraints for fixed K = 4 × 4, H/h = 16, various degrees p and maximal regularity k =

p− 1. The other panels c)-f) show the BDDC condition numbers with minimal (NV
C = 1)

primal space Vpar as a function of: c) the number of subdomains K for fixed H/h = 8;
d) the ratio H/h for fixed K = 4 × 4; e) the polynomial degree p for different regularity
k = 1, 2, p − 1 and fixed K = 4 × 4, H/h = 16. The last panel f) is the analog of e) but

with minimal Epar coarse space.
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Panel c) show the scalability of the deluxe BDDC with minimal (NV
C = 1)

primal space Vpar for increasing number of subdomains K (for fixed H/h =
8), while Panel d) shows the quasi-optimality of deluxe BDDC with minimal
Vpar for increasing ratio H/h (for fixed K = 4 × 4). Panels e) and f) show
the robustness of both minimal Vpar and minimal Epar with respect to the
polynomial degree p, with Epar yielding slightly better results than Vpar. In
both cases, robustness is lost in case of maximal regularity k = p − 1 and
high degree p ≥ 8, but it could be recovered by increasing the primal space,
i.e. by considering NV

C ≥ 1.
3D parallel tests with VEFpar. Fig. 3 reports the condition numbers

cond and iteration counts nit for BDDC deluxe with VEFpar coarse space
on a 3D NURBS domain shown in Panel a). The tests have been run on
the parallel machine Shaheen XC40 of KAUST, with a number of processors
equal to the number of subdomains K. The minimal Vpar and VEpar coarse
spaces did not work well in 3D, yielding high condition numbers (≥ 103)
already for low polynomial degree, so we report only the results with VEFpar.
Table b) shows the scalability of VEFpar for increasing number of subdomains
K for fixed p = 3, k = 2, H/h = 6. The associated timings (for both the
preconditioner setup and the PCG solve) are plotted in panel e). Table c)
shows the quasi-optimality of VEFpar for increasing ratio H/h, for fixed p =
3, k = 2,K = 4×4×4. Table d) reports the results for increasing polynomial
degree p for fixed K = 4 × 4 × 4, H/h = 8, k = p − 1, with both the
minimal (Nc = 1) and adaptive choice (Nc ≥ 1) of primal constraints, where
Nc = max(NV

c , NE
c , NF

c ) is the maximum number of primal constraints over
all equivalence classes (fat vertices, edges, faces). The table reports also the

dimensions |A| of the stiffness matrix, |ŜΓ | of the Schur complement, and
|SΠΠ | of the coarse space. As in the 2D tests, the minimal primal space loses
robustness for increasing p (except the initial condition number drop from
p = 2 to p = 3), but robustness can be recovered by adaptively increasing
the number of primal constraints.

Acknowledgements. For computer time, this research used the resources
of the Supercomputing Laboratory at King Abdullah University of Science
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Development of Nonlinear Structural
Analysis using Co-rotational Finite
Elements with Improved Domain
Decomposition Method

Haeseong Cho1, JunYoung Kwak2, Hyunshig Joo3, and SangJoon Shin4

1 Introduction

Recent advances in computational science and technologies induce increas-
ing size of the engineering problems, and impact the fields of computational
fluids and structural dynamics as well as multi-physics problems, such as
fluid-structure interactions. At the same time, structural components used in
many engineering applications show geometrically nonlinear characteristics.
Therefore, development of effective solution methodologies for large-size non-
linear structural problems is required seriously in the fields of the mechanical
and aerospace engineering. Especially, general finite element methods require
a large number of elements in order to predict precise stress or deformation,
resulting in increased computational costs due to enlarged computational
time and memory requirement. Therefore, careful selection of grid size and
solution methodology becomes important.

One of the most successful approaches for large-size finite element analy-
sis is the finite element tearing and interconnecting (FETI) method proposed
by Farhat and Roux [1]. The basic idea of FETI is to decompose the com-
putational domain into non-overlapping sub-domains. Lagrange multipliers
are used to enforce compatibility of the degrees of freedom along the inter-
faces between the sub-domains. The manner of handling such interfaces can
distinguish the interface problem. Recently, the dual-primal FETI (FETI-
DP) method [2] was proposed; it is a dual sub-structuring method, which
introduces Lagrange multipliers and a small number of coarse mesh nodes to
enforce the continuity at sub-domain interfaces. The resulting dual problem is
then solved by seeking a saddle-point of the relevant Lagrangian functional.
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The FETI-DP method is a standard preconditioned conjugate algorithm,
which may use an arbitrary initial guess. Thus, the solution of the interface
problem is obtained using an iterative process, which requires an adequate
pre-conditioner. Therefore, to improve solution convergence, iterative solvers
rely on various types of preconditioning techniques. By observing such lim-
itation, the combination of domain decomposition methods with the direct
solvers was significantly investigated, an approach that seems to have received
little attention thus far [3]. Bauchau [4] suggested the use of an augmented
Lagrangian formulation (ALF) in conjunction with both global and local La-
grange multipliers. The use of augmented Lagrangian terms was considered
to improve the conditioning of the flexibility matrix, thereby increasing the
convergence performance of the iterative procedure used to solve the interface
problem. As a preliminary step to the present effort, the authors proposed an
improved domain decomposition approach, the FETI-Local, and the FETI
algorithm was developed for multibody type structures [5]. Moreover, in or-
der to improve the computational efficiency, a parallel version of the column
solver was employed to deal with the interface problem [6].

On the other hand, a co-rotational (CR) formulation has been developed
and improved in accordance with an increased amount of interest during the
last few decades to analyze the geometrical nonlinearity of structures [7]. The
main advantage of the CR framework is that it leads to an artificial sepa-
ration between the material and any geometrical nonlinearity. This concept
was originally developed by Rankin et al. during the formulating procedure
of what is known as the element-independent co-rotational (EICR) descrip-
tion [8]. In addition, Felippa et al. concluded that the CR formulation would
be extremely useful for elements of a simple geometry; they were able to
provide a reasonable solution to the localized failure problem as well [7].
However, such nonlinear structural analysis would be confronted with the
significant computational problem with increasing computational costs due
to enlarged computational time and memory requirement, followed by pre-
diction of precise stress and large deformation. Thus, an effective solution
methodology for large-size nonlinear structural problem would be suggested
through an extension of the CR framework into the FETI-Local method.

This manu script is organi zedas follo ws. Formulation pro 
cedure of the FE TI-Local method will be d escrib ed. Aft erthat, d 
erivation of the CR fr ame-work will be introdu ced. Then, unifi ed 
computational algorithm of the FE TI-Lo caland the CRfr amework 
will be d escrib ed. Finally, computational cost and scalabil ity r 
esults obtain edby the prop osedapproach will be pr esent ed.

2 Domain decomposition method: FETI-Local

Consider a planar solid depicted in Fig. 1. To develop a parallel solution
algorithm for this problem, the solid is partitioned into Ns non-overlapping
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Fig. 1: Planar solid separated into four non-overlapping sub-domains by fol-
lowing the FETI-Local.

sub-domains. Each of these sub-domains could themselves be multibody sys-
tems comprising both elastic elements and nonlinear kinematic constraints.
The FETI-Local uses local Lagrange multipliers to impose continuity of dis-
placements at the nodes corresponding to adjacent sub-domains with those
corresponding to the coarse mesh nodes. At corner nodes, i.e., at sub-domain
cross-points, a single interface node is defined, and Lagrange multipliers are
used to enforce equality of the displacements at the coarse mesh with those
corresponding to all the adjacent nodes. Because four sub-domains are as-
sociated at this node, four boundary nodes would be created, one for each
sub-domain. Note that for multiple connections, constraints and Lagrange
multipliers remain localized, i.e., each associated with a single sub-domain.
In finite element formulations, this approach has been used to enforce the
continuity of displacement fields between adjacent incompatible elements [9].
The same approach, called “localized version of the method of Lagrange mul-
tipliers,” has been advocated by Park et al. [10].

In the FETI-Local method, the kinematic continuity conditions between
sub-domain interfaces is enforced via the localized Lagrange multiplier tech-

nique. Let u
[j]
b and c[j] denote the arrays of dofs at a boundary node and

at an interface node, respectively. Kinematic constraint j is written as

C[j] = u
[j]
b − c[j] = 0 and the associated potential is

V [j]
c = sλ[j]T C[j] +

p

2
C[j]T C[j], (1)

where λ[j] is the array of Lagrange multipliers used to enforce the constraint,
and s the scaling factor for those multipliers. The second term of the potential
is a penalty term and p is the penalty coefficient. The potential defined by
eq. (1) combines the localized Lagrange multiplier technique with the penalty
method. This combination is known as the augmented Lagrangian formula-
tion and has been examined extensively [11]. It is an effective approach for
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the enforcement of kinematic constraints in multibody dynamics, as proposed
by Bayo et al. [12].

A variation of the potential defined by eq. (1) is obtained easily.

δV [j]
c =δu

[j]T
b

[
sλ[j] + pC[j]

]
+ δλ[j]T

[
sC[j]

]

+ δc[j]T
[
−sλ[j] − pC[j]

]
,

(2)

The Lagrange multipliers become localized in the formulation, i.e., Lagrange
multipliers are associated with one sub-domain unequivocally. The potential

of kinematic constraint involves two types of dofs, the sub-domain dofs, u
[j]
b

and λ[j], and the interface dofs, c[j]. The constraint forces and stiffness matrix
are partitioned to reflect this fact

f [j] =

{
f [j]

b

f [j]

c

}
, k[j] =

[
k[j]
bb

k[j]
bc

k[j]T
bc

k[j]
cc

]
. (3)

Subscripts (·)b and (·)c denote dofs associated with boundary and interface
nodes, respectively. Partitioning the constraint forces can be defined as fol-
lows.

f [j]

b
=

{
sλ[j] + pC[j]

sC[j]

}
, f [j]

c
= −

{
sλ[j] + pC[j]

}
. (4)

A similar operation for the constraint stiffness matrix leads to

k[j]
bb

=

[
pI sI
sI 0

]
, k[j]

cc
=

[
pI

]
, k[j]

bc
=

[−pI
−sI

]
. (5)

Each constraint element contributes constraint forces and stiffness matri-
ces defined by eqs. (4) and (5), respectively. Using the standard assembly
procedure used in the finite element method, the force arrays and stiffness
matrices generated by all the constraint elements associated with sub-domain
i are assembled into the following sub-domain arrays and matrices

F̌
(i)

b =

N
(i)
b∑

j=1

B[j]T

b
f [j]

b
, Ǩ

(i)

bb
=

N
(i)
b∑

j=1

B[j]T

b
k[j]
bb
B[j]

b
, (6)

where B[j]

b
is the Boolean matrices used for the assembly process, i.e., u

[j]
b =

B[j]

b
ǔ(i). Of course, the assembly procedure can be performed in parallel for

all sub-domains. Similarly, the constraint elements contribute force arrays
and stiffness matrices to the interface problem,

F (i)
c =

N
(i)
b∑

j=1

B[j]T

c
f [j]

c
, K(i)

cc
=

N
(i)
b∑

j=1

B[j]T

c
k[j]
cc
B[j]

c
, (7)
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where B[j]

c
is the Boolean matrices used for the assembly process, i.e., c[j] =

B[j]

c
c. Finally, the constraint coupling stiffness is assembled to find

K(i)

bc
=

N
(i)
b∑

j=1

B[j]T

b
k[j]
bc
B[j]

c
. (8)

By considering the potential energy of the system composed of the strain
energy (A)/the work done by external force(Φ)/additional energy induced by
Lagrange multipliers(Vc), Π = A + Φ + Vc, and the principle of minimum
total potential energy, the governing equations can be expressed as

[
diag(Ǩ

(α)
+ Ǩ

(α)

bb
) K

bc

KT

bc
K

cc

]{
ǔ
c

}
=

{
Q̌− F̌ b

− F c

}
, (9)

where Q̌
T
= [QT , 0] and ǔ is the displacement of the sub-domain. The sub-

domain stiffness matrix Ǩ
(α)

is now

Ǩ
(α)

=

[
K(α) 0
0 0

]
. (10)

Arrays F̌ b and F c are the assembly of their sub-domain counterparts, F̌
(i)

b

and F (i)
c , respectively, K

cc
=

∑Ns

i=1 K
(i)

cc
and

KT

bc
=

[
K(1)T

bc
,K(2)T

bc
, . . . ,K(Ns)T

bc

]
. (11)

The block-diagonal nature of the leading entry of the system matrix makes
this approach amenable to parallel solution algorithms.

3 Co-rotational (CR) Finite Elements

Figure 2 shows the coordinates defined in the present CR framework and ro-
tational transformations when obeying the elemental kinematics. Beginning
with the fixed frame, a rotational operator, R

o
, can be defined by tracking

the elemental initial state. The rotational operator, R
G
, can be defined by

elemental rotational displacement referring to an undeformed configuration.
The complete behavior included in this case can be decomposed into rigid
body rotation and elastic deformational rotation. According to such kinemat-
ics, the origin of each coordinate is taken at the centroid of the triangle.

In the CR formulation, the existing linearized formulation is selected for
the local system matrices, i.e., the stiffness matrix and the internal load
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Fig. 2: Coordinate in the CR framework.

vector. These physical variables is re-expressed between the local and global
quantities by the introduction of a transformation matrix. The virtual work
with respect to the local and global systems can be obtained in terms of the
local and global internal load vectors and displacements.

V = δqT
G
f
G
= δqT

L
f
L
= δqT

G
BT f

L
(12)

Hence the global internal load vector is obtained with Eq. (12) by taking
the transformation matrix, B, into account.

f
G
= BT f

L
, f

L
=

{
f i

L

}T

i = 1, 2, . . . , Ne, (13a)

f i

L
=

{
ni
1, n

i
2,m

i
}T

i = 1, 2, . . . , Ne. (13b)

By the differentiation of Eq. (12) with respect to the displacements, the
internal load vector can then be

δf
G
= K

G
δq

G
(14)

In addition, by Eqs. (12) and (14) the global stiffness matrix K
G

can be
derived as shown below.

K
G
= BTK

L
B +K

T
, K

T
=

δf
G

δq
G

=
δ(BT f

L
)

δq
G

(15)

In the present transformation procedure regarding the load vector and
stiffness matrix, the computed local elemental loads can naturally be related
to the CR frame rather than to the final deformed frame. Thus, the local
internal load can not be a self-equilibrating set of loads under the deformed
frame. Introducing the projector matrix P , resolves this problem [8]. The
projector matrix P can be considered as a type of 3×3 block matrix related

to the elemental nodes, P ij . The derivative form of P is obtained as follows.
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P
ij
=




∂ui
L

∂uj
G

∂ui
L

∂θj
G

∂θi
L

∂uj
G

∂θi
L

∂θj
G


 (16)

Using the differentiation of the local translational and rotational compo-
nents, it can be

P
ij
= I

3
δij − ΞiΓ jT (17)

where δij is Kronecker’s delta. Let rio = riG + ui
L and then Ξi, Γ j can be

Ξi =
{
−rio,2, r

i
o,1, 1

}T
(18a)

Γ j = s−1
r

{
−rjG,2, r

j
G,1, 0

}T

(18b)

After the projector matrix for the element is constructed, the transfor-
mation matrix between the local and global internal load vectors can be
expressed in terms of the projector matrix.

f
G
= BT f

L
= EPT f

L
(19)

Here, the matrix E = diag(R
r
, R

r
, R

r
). Taking the variation of f

G
, the

resulting global stiffness matrix K
G

can be

K
G
= EPTK

L
PET + E

[
−Γ FT

1 P − F 2Γ
T
]
ET (20)

where the vectors F 1 and F 2 are expressed in terms of F t = PT f
L
.

4 Unified Computational Algorithm

The FETI-Local proceeds in the three computational steps as follows. Step
I sets up the structural interface problem, Step II evaluates the solution of
the structural interface problem, and Step III recovers the solution in each
sub-domain. In order to involve nonlinear structural analysis, iterative com-
putational algorithm is developed. A load incremental Newton-Rhapson iter-
ative scheme is employed. The unified computational algorithm is depicted in
Fig. 3. The purpose of Step I is to set up the interface problem. For each sub-
domain, this involves the evaluation and assembly of the stiffness matrix, the
factorization of the stiffness matrix, and the assembly of the interface stiffness
matrix. In Step II, the solution of the interface problem is computed first. In
this step, the stiffness matrix corresponding to the interface nodes existing in
the individual sub-domains needs to be distributed to each processor. Using
the MPI REDUCE routine, the matrix data are collected to a root process.
In Step III, the final solution for each sub-domain is obtained by the linear
solver. From Step II, array c, degrees of freedom at the interface nodes, is
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Fig. 3: Unified computational algorithm.

obtained. Thus, the displacement of each sub-domain is obtained easily. The
MPI BCAST routine sends the value of array to all the other processes first,
and then, the solution of a linear equation for each sub-domain. In order to
handle the sparsity of the system matrix generated in each computational
step, i.e. Eq. (9), the sparse linear solver, PARDISO, is implemented. Such
process is illustrated in Fig. 4.

Fig. 4: Parallel implementation of the FETI-Local.
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 5 Numerical Investigation regarding Nonlinear

Problems

Numerical assessment of the present FETI-Local method was performed by
comparing with the standard FETI method by iterative solvers in the pre-
vious studies conducted by the present authors [5, 6]. The present approach
developed herein is applied to the solution of a static, two-dimensional non-
linear problems. The parallel computations were executed in the TACHYON
system [13], which is one of the supercomputers operated by Korea Institute
of Science and Technology Information. Section 5.1 will discuss the results for
the two-dimensional configuration: the computational cost and scalability in
a parallel environment are examined. Section 5.2 will examine an application
for nonlinear flexible multi-body dynamics.

5.1 Computational Efficiency for Nonlinear Problem

Before the examination of computational efficiency for the analysis of the CR
finite element with the FETI-Local method, geometrically nonlinear charac-
teristic of a cantilevered plate discretized by the CR finite element is eval-
uated. The geometry and operating condition are described in Fig. 5a. The
resulting tip deflection is compared with those predicted by MSC.NASTRAN.
Comparison shows excellent correlation between the CR planar element and
MSC.NASTRAN prediction and it is illustrated in Fig. 5b. Then, the analysis

(a) Analysis condition (b) Comparison of tip deflection

Fig. 5: Nonlinear analysis regarding a cantilevered plate using the CR finite
element

of the CR finite element with FETI-Local method is performed by using the
same condition (Fig. 5a). However, the tip load is chosen to be 150N. The
number of the sub-domains is increased from 8 to 60, but the number of DOFs
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is kept to a total of 39,864. Figure 6 shows benign scalability characteristics
exhibited by the CR finite element with FETI-Local method.

Fig. 6: Computational time and trend of the nonlinear analysis regarding a
cantilevered plate.

5.2 Application for Nonlinear Flexible Multi-body
Dynamics

In this section, the analysis of the CR finite element with the FETI-Local
method is applied to the large scale multi-body system. Analysis condition
and resulting deformed configuration is depicted in Fig 7. In parallel com-
putation, the number of the sub-domains is increased from 9 to 36, but the
number of DOFs is kept to a total of 32,400. To verify an efficiency of the
FETI-Local method in nonlinear flexible multi-body system, equivalent se-
rial analysis employing the classical Lagrange multiplier and PARDISO, is
conducted and compared. As the number of processors is increased, the com-
putational time is varied from 2081.09 to 177.03 (sec). Figure 8 shows benign
scalability characteristics possessed and exhibited by the analysis of the CR
finite element with the FETI-Local method.

6 Conclusion

The development of a nonlinear structural analysis using CR finite element fi-
nite element with a domain decomposition algorithm relying on direct solvers
only was described. While the FETI-Local method uses the domain decom-
position concept that characterizes classical FETI methods, The continuity
of the displacement field within sub-domain interfaces is enforced by using
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(a) Analysis condition (b) Deformed configuration

Fig. 7: Analysis condition and deformed configuration of multi-body system.

Fig. 8: Computational time and trend of multi-body analysis.

a combination of the localized Lagrange multiplier and of the augmented
Lagrangian formulation. Therefore, well-conditioned stiffness matrices is de-
rived. Moreover, direct solvers can be used for both sub-domain and interface
problems. The FETI-Local method was further improved by employing the
sparse matrix solver to handle the sparsity within the governing equation.
The computational cost and scalability of the analysis of the CR finite ele-
ment with the FETI-Local method was compared to those of the sparse linear
equation solver, PARDISO. Good scalability characteristics of the analysis of
the CR finite element with the FETI-Local method were demonstrated for a
general nonlinear analysis and flexible multi-body dynamic analysis.
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An adaptive coarse space for
P.L. Lions algorithm and Optimized
Schwarz Methods

Ryadh Haferssas1, Pierre Jolivet2, and Frédéric Nataf1

Abstract
Optimized Schwarz methods (OSM) are very popular methods which were

introduced in Lions [1990] for elliptic problems and in Després [1990] for
propagative wave phenomena. We build here a coarse space for which the
convergence rate of the two-level method is guaranteed regardless of the reg-
ularity of the coefficients. We do this by introducing a symmetrized variant of
the ORAS (Optimized Restricted Additive Schwarz) algorithm St-Cyr et al.
[2007] and by identifying the problematic modes using two different gener-
alized eigenvalue problems instead of only one as in Spillane et al. [2013,
2014] for the ASM (Additive Schwarz method), BDD (balancing domain de-
composition Mandel [1992]) or FETI (finite element tearing and interconnec-
tion Farhat and Roux [1991]) methods.

1 Introduction

Substructuring algorithms such as Balancing Neumann-Neumann (BNN) or
Finite Element Tearing and Interconnecting (FETI) are defined for non over-
lapping domain decompositions but not for overlapping subdomains. Schwarz
method Schwarz [1870] is defined only for overlapping subdomains. With the
help of a coarse space correction, the two-level versions of both type of meth-
ods are weakly scalable, see Toselli and Widlund [2005] and references therein.

The domain decomposition method introduced by P.L. Lions Lions [1990]
can be applied to both overlapping and non overlapping subdomains. It is
based on improving Schwarz methods by replacing the Dirichlet interface
conditions by Robin interface conditions. This algorithm was extended to

Laboratoire Jacques-Louis Lions, https://www.ljll.math.upmc.fr/

ryadh.haferssas@ljll.math.upmc.fr, nataf@ann.jussieu.fr · Toulouse Institute of

Computer Science Research, https://www.irit.fr pierre.jolivet@enseeiht.fr
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Helmholtz problem by Desprs Després [1993]. Robin interface conditions can
be replaced by more general interface conditions that can be optimized (Op-
timized Schwarz methods, OSM) for a better convergence, see Gander et al.
[2002], Gander [2006] and references therein. When the domain is decom-
posed into a large number of subdomains, these methods are, on a practical
point of view, scalable if a second level is added to the algorithm via the in-
troduction of a coarse space Japhet et al. [1998], Farhat et al. [2000], Conen
et al. [2014]. But there is no systematic procedure to build coarse spaces with
a provable efficiency.

The purpose of this article is to define a general framework for building
adaptive coarse space for OSM methods for decomposition into overlapping
subdomains. We prove that we can achieve the same robustness that what
was done for Schwarz Spillane et al. [2014] and FETI-BDD Spillane et al.
[2013] domain decomposition methods with so called GenEO (Generalized
Eigenvalue in the Overlap) coarse spaces. Compared to these previous works,
we have to introduce a non standard symmetric variant of the ORAS method
as well as two generalized eigenvalue problems. Although theory is valid only
in the symmetric positive definite case, the method scales very well for saddle
point problems such as highly heterogeneous nearly incompressible elasticity
problems as well as the Stokes system.

2 Symmetrized ORAS method

The problem to be solved is defined via a variational formulation on a domain
Ω ⊂ Rd for d ∈ N:

Find u ∈ V such that : aΩ(u, v) = l(v) , ∀v ∈ V ,

where V is a Hilbert space of functions from Ω with real values. The problem
we consider is given through a symmetric positive definite bilinear form that
is defined in terms of an integral over any open set ω ⊂ Ω. A typical example
is the elasticity system (C is the fourth-order stiffness tensor and ε(u) is the
strain tensor of a displacement field u):

aω(u, v) :=

∫

ω

C : ε(u) : ε(v) dx .

The problem is discretized by a finite element method. Let N denote the
set of degrees of freedom and (φk)k∈N be a finite element basis on a mesh Th.
Let A ∈ R#N×#N be the associated finite element matrix, Akl := aΩ(φl, φk),
k, l ∈ N . For some given right hand side F ∈ R#N , we have to solve a linear
system in U of the form

AU = F .
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Domain Ω is decomposed into N overlapping subdomains (Ωi)1≤i≤N so that
all subdomains are a union of cells of the mesh Th. This decomposition induces
a natural decomposition of the set of indices N into N subsets of indices
(Ni)1≤i≤N :

Ni := {k ∈ N | meas(supp(φk) ∩Ωi) > 0} , 1 ≤ i ≤ N. (1)

For all 1 ≤ i ≤ N , let Ri be the restriction matrix from R#N to the sub-
set R#Ni and Di be a diagonal matrix of size #Ni × #Ni, so that we
have a partition of unity at the algebraic level, Id =

∑N
i=1 R

T
i Di Ri , where

Id ∈ R#N×#N is the identity matrix.
For all subdomains 1 ≤ i ≤ N , let Bi be a SPD matrix of size #Ni ×#Ni,
which comes typically from the discretization of boundary value local prob-
lems using optimized transmission conditions, the ORAS preconditioner St-
Cyr et al. [2007] is defined as

M−1
ORAS,1 :=

N∑

i=1

RT
i DiB

−1
i Ri . (2)

Due to matrices Di, this preconditioner is not symmetric. We introduce here
a non standard variant of the ORAS preconditioner (2), the symmetrized
ORAS (SORAS) algorithm:

M−1
SORAS,1 :=

N∑

i=1

RT
i DiB

−1
i DiRi . (3)

More details are given in Dolean et al. [2015].

3 Two-level SORAS algorithm

In order to define the two-level SORAS algorithm, we introduce two gener-
alized eigenvalue problems.
First, for all subdomains 1 ≤ i ≤ N , we consider the following problem:

Definition 1.

Find (Uik, µik) ∈ R#Ni \ {0} × R such that

DiRiART
i DiUik = µikBi Uik .

(4)

Let γ > 0 be a user-defined threshold, we define Zγ
geneo ⊂ R#N as the vector

space spanned by the family of vectors (RT
i DiUik)µik>γ ,1≤i≤N corresponding

to eigenvalues larger than γ.
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In order to define the second generalized eigenvalue problem, we introduce
for all subdomains 1 ≤ j ≤ N , Ãj , the #Nj ×#Nj matrix defined by

VT
j ÃjUj := aΩj


∑

l∈Nj

Ujlφl,
∑

l∈Nj

Vjlφl


 , Uj , Vj ∈ RNj . (5)

When the bilinear form a results from the variational solve of a Laplace prob-
lem, the previous matrix corresponds to the discretization of local Neumann
boundary value problems.

Definition 2. We introduce the generalized eigenvalue problem

Find (Vjk, λjk) ∈ R#Ni \ {0} × R such that

ÃiVik = λikBiVik .
(6)

Let τ > 0 be a user-defined threshold, we define Zτ
geneo ⊂ R#N as the vector

space spanned by the family of vectors (RT
i DiVik)λik<τ ,1≤i≤N corresponding

to eigenvalues smaller than τ .

We are now ready to define the two level SORAS preconditioner

Definition 3 (The SORAS-GenEO-2 preconditioner). Let P0 denote
the A-orthogonal projection on the coarse space

ZGenEO-2 := Zγ
geneo

⊕
Zτ
geneo ,

the two-level SORAS-GenEO-2 preconditioner is defined as follows:

M−1
SORAS,2 := P0A

−1 + (Id − P0)
N∑

i=1

RT
i DiB

−1
i DiRi(Id − PT

0 ) . (7)

Note that this definition is reminiscent of the balancing domain decompo-
sition preconditioner Mandel [1992] introduced for Schur complement based
methods as well as of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
formula, see Nocedal and Wright [2006]. We have the following theorem

Theorem 1 (Spectral estimate for the SORAS-GenEO-2 precondi-
tioner). Let k0 be the maximum number of neighbors of a subdomain (a
subdomain is a neighbor of itself) and k1 be the maximal multiplicity of the
subdomain intersections, γ, τ > 0 be arbitrary constants used in Definitions 2
and 3.
Then, the eigenvalues of the two-level preconditioned operator satisfy the fol-
lowing spectral estimate

1

1 +
k1
τ

≤ λ(M−1
SORAS,2 A) ≤ max(1, k0 γ)
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where λ(M−1
SORAS,2 A) is an eigenvalue of the preconditioned operator.

The proof is based on the fictitious space lemma Nepomnyaschikh [1991] and
is given in Haferssas et al. [2015].

Remark 1. The following heuristic provides an interpretation to both gener-
alized eigenvalues (4) and (6).
We first remark that for the ASM preconditioner we have a very good upper
bound for the preconditioned operator that does not depend on the number
of subdomains but only on the number of neighbors of a subdomain:

λmax(M
−1
ASMA) ≤ k0 .

Thus from definitions of ASM and SORAS, we can estimate that vectors for
which the action of local matrices (Ri ART )−1 and Di B

−1
i Di differ notably

might lead to a bad upper bound forM−1
SORASA. By taking the inverse of both

operators this condition means that Ri ART and D−1
i Bi D

−1
i differ notably.

By left and right multiplication by Di it means we have to look at vectors Vi

for which Di Ri ART Di Vi and Bi Vi have very different values. This a way
to interpret the generalized eigenvalue problem (4) which controls the upper
bound of the eigenvalues of M−1

SORAS A..
Second, we introduce the following preconditioner M−1

NN

M−1
NN :=

∑

1≤i≤N

Di ÃiDi (8)

which is reminiscent of the Neumann-Neumann preconditioner Tallec et al.
[1998] for substructuring methods. We have a very good lower bound for
the preconditioned operator M−1

NN A that does not depend on the number of
subdomains but only on the maximum multiplicity of intersections:

1

k1
≤ λmin(M

−1
NN A) .

If we compare formulas for M−1
NN (8) and M−1

SORAS (3), we see that we have

to look at vectors Vi for which Di Ãi Di Vi and Bi Vi have very different
values. This is a way to interpret the generalized eigenvalue problem (6)
which controls the lower bound of the eigenvalues of M−1

SORAS A.

4 Nearly Incompressible elasticity

Although our theory does not apply in a straightforward manner to saddle
point problems, we use it for these difficult problems for which it is not
possible to preserve both symmetry and positivity of the problem. Note that
generalized eigenvalue problems (4) and (6) still make sense if A is the matrix
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of a saddle point problem and matricesBi and Ãi are properly defined for each
subdomain 1 ≤ i ≤ N . The new coarse space was tested quite successfully
on Stokes and nearly incompressible elasticity problems with a discretization
based on saddle point formulations in order to avoid locking phenomena. The
mechanical properties of a solid can be characterized by its Young modulus
E and Poisson ratio ν or alternatively by its Lamé coefficients λ and µ. These
coefficients relate to each other by the following formulas:

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (9)

The variational problem consists in finding (uh, ph) ∈ Vh := Pd
2∩H1

0 (Ω)×P1

such that for all (vh, qh) ∈ Vh





∫
Ω
2µε(uh) : ε(vh)dx −

∫
Ω
phdiv (vh)dx =

∫
Ω
fvhdx

−
∫
Ω
div (uh)qhdx −

∫
Ω

1
λphqh = 0

=⇒ AU =

[
H BT

B C

] [
u
p

]
=

[
f
0

]
= F.

(10)

Matrix Ãi arises from the variational formulation (10) where the integration
over domain Ω is replaced by the integration over subdomain Ωi and finite
element space Vh is restricted to subdomain Ωi. Matrix Bi corresponds to a
Robin problem and is the sum of matrix Ãi and of the matrix of the following
variational formulation restricted to the same finite element space:

∫

∂Ωi\∂Ω

2αµ(2µ+ λ)

λ+ 3µ
uh · vh with α = 10 in our test.

In Dolean et al. [2015], we tested our method for a heterogeneous beam
of eight layers of steel (E1, ν1) = (210 · 109, 0.3) and rubber (E2, ν2) =
(0.1 · 109, 0.4999), see Figure 1. The beam is clamped on its left and right
sides. Table 7.1 of Dolean et al. [2015] shows that our method performs con-

Fig. 1: 2D Elasticity: coefficient distribution of steel and rubber.

sistently much better than various domain decomposition methods: the one
level Additive Schwarz (AS) and SORAS methods, the two level AS and SO-
RAS methods with a coarse space consisting of rigid body motions which
are zero energy modes (ZEM) and finally AS with a GenEO coarse space.
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In our test, the GenEO-2 coarse space defined in Definition 3 was built with
τ = 0.4 and γ = 103. Eigenvalue problem (6) accounts for roughly 90% of
the GenEO-2 coarse space size. In figures 3 and 2, we plot the eigenvectors of
the generalized eigenvalue problems (4) and (6) for the linear elasticity case.
The domain decomposition is such that all subdomains contain the 8 alter-
nating layers of steel and rubber. The GenEO coarse space for lower bound
(Fig. 3) will consist of the first 12 modes. The first three are known as the
rigid body modes. The other nine eigenmodes display very different behaviors
for the steel and the rubber. The the 13th eigenvalue and the next ones are
larger than 0.25 and are not incorporated into the coarse space. Interestingly
enough, steel and rubber have the same deformations in these modes.

In this paragraph, we perform a parametric study of the dependence of the
convergence on the thresholds γ and τ of the coarse space. In figure 4 we study
the influence of the parameter τ alone keeping the parameter γ = 1/0.001.
We see that for τ < 10−2, there are plateau in the convergence curves. But
for larger values of τ , convergence curves are almost straight lines. This is in
agreement with the gap in the spectrum of the eigenvalue problem (6), see
Figure 4. A comparable study was made for the impact of the threshold γ. We
see on Figure 5 that this parameter has only a small impact on the iteration
count.

We also performed large 3D simulations on 8192 cores of a IBM/Blue
Gene Q machine with 1.6 GHz Power A2 processors for both elasticity (200
millions of d.o.f’s in 200 sec.) and Stokes (200 millions of d.o.f’s in 150 sec. )
equations. Computing facilities were provided by an IDRIS-GENCI project.
We focus on results for the nearly incompressible elasticity problem. The
problem is solved with a geometric overlap of two mesh elements and a pre-
conditioned GMRES is used to solve the resulting linear system where the
stopping criteria for the relative residual norm is fixed to 10−6. All the test
cases were performed inside FreeFem++ code Hecht [2012] interfaced with
the domain decomposition library HPDDM Jolivet et al. [2013], Jolivet and
Nataf [2014]. The factorizations are computed for each local problem and
also for the global coarse problem using MUMPS Amestoy et al. [2001]. Gen-
eralized eigenvalue problems to generate the GenEO space are solved using
ARPACK Lehoucq et al. [1998]. The coarse space is formed only with the
generalized eigenvalue problem (6) since we noticed that the other one (4)
has only a little effect on the convergence. These computations, see Figure 6,
assess the weak scalability of the algorithm with respect to the problem size
and the number of subdomains. All times are wall clock times. The domain is
decomposed automatically into subdomains with a graph partitioner, rang-
ing from 256 subdomains to 8192. and the problem size is increased by mesh
refinement. In 3D the initial problem is about 6 millions d.o.f decomposed
into 256 subdomains and solved in 145.2s and the final problem is about 197
millions of d.o.f decomposed into 8192 subdomains and solved in 196s which
gives an efficiency near to 75%.
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Fig. 2: Largest eigenvalues and corresponding eigenmodes of the GenEO II
generalized eigenproblem for the upper bound (4)
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Fig. 3: Lowest eigenvalues and corresponding eigenmodes of the GenEO II
generalized eigenproblem for lower bound (6)
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On the Time-domain Decomposition of
Parabolic Optimal Control Problems

Felix Kwok1

1 Introduction

The efficient solution of optimal control problems under partial differential
equation (PDE) constraints has become an active area of research in the
past decade. In this paper, we consider an optimal control problem where the
constraint is a large system of linear ordinary differential equations (ODEs)
arising from the semi-discretization of a linear PDE in space:

∂ty +Ay(t) = Bu(t) + f(t), t ∈ (0, T ), (1a)

y(0) = y0. (1b)

The goal is to find a control u that minimizes the objective functional

F (u) =
1

2

∫ T

0

‖u(t)‖2 dt+ α1

2

∫ T

0

‖Cy − ŷ‖2 dt+ α2

2
‖Dy(T )− ŷT ‖2. (2)

In the above, ŷ = ŷ(t) and ŷT are the target trajectory and target state,
and the functions u and y = y(t,u) are called the control and the state,
respectively. (For the purpose of analysis, we will use an appropriate change
of variables to subsume any mass matrices that appear into the matrices A,
B, C and D.) We will focus on the case where there are no control or state
constraints, and where the governing equation is parabolic, i.e., when A is
positive semi-definite, but not necessarily symmetric.

A formulation similar to the above has been used for a variety of prob-
lems where the goal is to drive a mechanical system to a desired state while
minimizing the cost: it has been used for the control of fluid flow modelled
by the Navier-Stokes equations [4, 23], boundary control problems for the
wave equation [14] and quantum control (see [18] and references therein).
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Recently, medical applications have also been proposed, more specifically in
the optimized administration of radiotherapy to control tumour growth [5].

For problems with no control or state constraints, a Lagrange-multiplier
argument shows that the optimal control satisfies, in addition to the forward
differential equation (1), the adjoint final value problem

∂tλ−A⊤λ = α1C
⊤(Cy − ŷ), (3a)

λ(T ) + α2D
⊤Dy(T ) = α2D

⊤ŷT , (3b)

where λ, the adjoint state, satisfies u = B⊤λ. Together with (1), this leads to
a coupled forward-backward ODE system that must be further discretized in
time and solved. Alternatively, one can discretize (1) and (2) in time and solve
the resulting discrete saddle-point system. Note that the two approaches do
not always “commute”, even if one chooses compatible time discretizations
for (1a) and (3), see [6, 11]. Regardless of the approach taken, the exceedingly
large size of the resulting linear system strongly motivates the use of parallel
solution strategies. In this paper, we only consider the semi-discrete ODE
system; the effect of discretization in time will be studied in a future paper.

There has been much progress in recent years in the development of
effective preconditioners for saddle-point systems that arise from PDE-
constrained optimal control problems; we only mention two classes of such
methods. The first, known as the all-at-once approach, uses block precondi-
tioners that are known to be effective for saddle-point systems. Because of its
large size, the saddle-point matrix is not formed explicitly; instead, one per-
forms the matrix-vector multiplication and preconditioning steps by solving
forward and backward problems similar to (1) and (3). The latter steps can be
parallelized in time using e.g. parareal [15] or parabolic multigrid [13, 10], or
in space by domain decomposition or multigrid methods. We refer the reader
to [21, 20], as well as to [22] for an approach in the infinite-dimensional setting
which also works for problems with control constraints.

A different idea is to apply parallel methods directly to the optimal con-
trol problem itself. One such approach, known as the collective smoothing
multigrid (CSMG) scheme, applies multigrid smoothing and coarsening to
the coupled system and is analyzed in [3]. One can also adapt parareal to
solve optimal control problems directly, see [18, 19, 17, 9]. Another approach,
which arises from the multiple shooting philosophy, is to create smaller prob-
lems by subdividing the time horizon. The problem then consists of finding
the intermediate state and adjoint variables that achieve both local optimality
on each sub-interval and consistency across neighbouring sub-intervals. The
smaller local problems can then be solved independently, and in parallel. This
idea has been used in [12] to derive a block preconditioner for parabolic con-
trol problems, and in [14] to obtain a method with Robin-type consistency
conditions in the context of wave equations. In [1], the authors consider an
additive Schwarz preconditioner that uses Dirichlet interface conditions in
the state and adjoint variables across overlapping sub-intervals.
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2 Optimized Schwarz Methods in Time for Control

In [8], we introduced a time-domain decomposition method inspired by the
Robin-type interface conditions used in optimized Schwarz methods (OSM)
for elliptic problems. In this paper, we consider the natural extension to
problems with non-trivial observation and control operators, namely

1. For k = 1, 2, . . . , solve in parallel for j = 1, 2

∂ty
k
j +Ayk

j = Buk
j + f(t), ∂tλ

k
j −A⊤λk

j = α1C
⊤(Cyk

j − ŷ) (4)

on I1 = (0, β) and I2 = (β, T ), subject to uk
j = B⊤λk

j and the initial and
final conditions

For I1: yk
1(0) = y0, λk

1(β) + pyk
1(β) = hk−1, (5)

For I2: yk
2(β)− qλk

2(β) = gk−1, λk
2(T ) + α2D

⊤Dyk
2(T ) = α2D

⊤ŷT .
(6)

2. Update traces:

gk = yk
1(β)− qλk

1(β), hk = λk
2(β) + pyk

2(β). (7)

The parameters p and q are chosen to optimize convergence. In [8], the method
is analyzed by assuming B = C = I, D = 0 and that A is symmetric. This
allows us to diagonalize A and obtain explicit formulas for the contraction
factors, but the analysis no longer works when A is non-symmetric. In this
paper, we show a different method, based on energy estimates, which allows
one to derive optimal parameters for non-symmetric operators A.

In terms of implementation, each iteration of the method (4)–(7) requires
the solution of subdomain problems with Robin interface conditions. This
may be done using any serial method, such as the all-at-once methods men-
tioned in Section 1. In the numerical experiments in Section 4, we use a
Krylov-accelerated iteration based on shooting methods, which are easy to
implement and naturally applicable to problems with optimized transmission
conditions in time. For example, to solve the local problem on I2, we con-
sider the mapping P2(yβ ,u) =

[
yβ − qλ(β)− gk−1, u−B⊤λ

]
, where the

inputs are the initial state yβ and the control function u = u(t), t ∈ I2,
and λ is calculated by integrating y forward in time, obtaining λ(T ) via
the final condition in (6), and integrating λ backward in time. Because the
differential equations are linear, there exists a linear operator K2 such that
P2(yβ ,u) = K2(yβ ,u) + r0 with r0 = P2(0, 0). To calculate the solution,
which satisfies P2(yβ ,u) = 0, it suffices to solve K2(yβ ,u) = −r0 using a
Krylov subspace method such as GMRES. The preconditioning of such sys-
tems is an important topic that will be addressed in a future paper. Nonethe-
less, we have observed in our experiments that the local solves converge within
about 20 GMRES iterations, even without preconditioning.
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2.1 Energy Estimates

To illustrate the technique for obtaining error estimates, we first consider the
simple case of distributed control and observation with no target state (i.e.,
B = C = I, α2 = 0). By linearity, it suffices to consider the problem with
zero data (i.e. f(t), y0, ŷ and ŷT are all taken to be zero) and study how the
approximate solution converges to zero. To derive an energy estimate for the
first subdomain Ω×I1, where I1 = (0, β), we introduce the auxiliary variables
zk1 := yk

1 + rλk
1 , µ

k
1 := λk

1 − syk
1 with r, s > 0. Note that the parameters r

and s are not the same as the optimization parameters p and q and do not
appear in the algorithm; they are introduced for analysis purposes only and
must be chosen based on a given (p, q) pair. We now let H and S be the
symmetric and skew-symmetric parts of A, such that A = H+S, and rewrite
the problem (4) for subdomain I1 in terms of zk1 and µk

1 to get





∂tz
k
1 +

1

1 + rs
[(1− rs)H + (1 + rs)S − (α1r + s)I] zk1

+
1

1 + rs

[
(α1r

2 − 1)I − 2rH
]
µk

1 = 0,

∂tµ
k
1 +

1

1 + rs

[
(s2 − α1)I − 2sH

]
zk1

+
1

1 + rs
[(α1r + s)I − (1− rs)H + (1 + rs)S]µk

1 = 0.

Note that the matrix multiplying zk1 in the first equation is exactly the neg-
ative transpose of the matrix multiplying µk

1 in the second equation. This
means if we multiply the first and second equations by (µk

1)
⊤ and (zk1)

⊤ and
add the results, the mixed terms cancel. After integrating over (0, β), we
obtain the energy identity

0 = µk
1(β)

⊤zk1(β)− µk
1(0)

⊤zk1(0) +
1

1 + rs

∫ β

0

(µk
1)

⊤(α1r
2 − 2rH − 1)µk

1

+
1

1 + rs

∫ β

0

(zk1)
⊤(s2 − 2sH − α1)z

k
1

(8)
Similarly, for the second subdomain I2, we obtain

0 = µk
2(T )

⊤zk2(T )− µk
2(β)

⊤zk2(β) +
1

1 + r̂ŝ

∫ T

β

(µk
2)

⊤(α1r̂
2 − 2r̂H − 1)µk

2

+
1

1 + r̂ŝ

∫ T

β

(zk2)
⊤(ŝ2 − 2ŝH − α1)z

k
2 ,

(9)
where we used the auxiliary variables zk2 := yk

2 + r̂λk
2 and µk

2 := λk
2 − ŝyk

2 ,
with r̂, ŝ possibly different from r, s.
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To mimic the energy argument of [16], we need to ensure that the boundary
terms in (8), (9) correspond to differences of incoming and outgoing Robin
traces, and that the integral terms never change signs. This motivates the
following theorem.

Theorem 1. Consider the optimized Schwarz method (4)–(7) with B = C =
I and α2 = 0. Assume that

(i) The parameters r, s, r̂, ŝ are non-negative,
(ii) The matrices (1 − α1r

2)I + 2rH, (1 − α1r̂
2)I + 2r̂H, (α1 − s2)I + 2sH,

(α1 − ŝ2)I + 2ŝH are all positive definite,
(iii) There exist c1, c2 > 0 such that (µk

1)
⊤zk1 = c1‖λk

1+pyk
1‖2−c2‖yk

1 −qλk
1‖2,

(iv) There exist ĉ1, ĉ2 > 0 such that (µk
2)

⊤zk2 = ĉ1‖λk
2+pyk

2‖2− ĉ2‖yk
2 −qλk

2‖2.
Then the method satisfies the two-step error estimates

‖yk
1(β)− qλk

1(β)‖2 ≤ ρ2‖yk−2
1 (β)− qλk−2

1 (β)‖2, (10a)

‖λk
2(β) + pyk

2(β)‖2 ≤ ρ2‖λk−2
2 (β) + pyk−2

2 (β)‖2, (10b)

with ρ2 =
c1ĉ2
c2ĉ1

. In particular, the method converges if ρ2 < 1.

Proof. Consider the energies

Ek
1 =

1

1 + rs

∫ β

0

(µk
1)

⊤(1 + 2rH − α1r
2)µk

1 + (zk1)
⊤(α1 + 2sH − s2)zk1 ,

Ek
2 =

1

1 + r̂ŝ

∫ T

β

(µk
2)

⊤(1 + 2r̂H − α1r̂
2)µk

2 + (zk2)
⊤(α1 + 2ŝH − ŝ2)zk2 ,

which must be positive by Assumption (ii) unless µk
1 = zk1 = 0 or µk

2 = zk2 =
0. The energy equality (8) can then be written as

µk
1(β)

⊤zk1(β)− µk
1(0)

⊤zk1(0) = Ek
1 ≥ 0.

Using Assumption (iii) and the definition of µk
1 and zk1 , we get

c1‖λk
1(β)+pyk

1(β)‖2−c2‖yk
1(β)−qλk

1(β)‖2−(λk
1(0)−syk

1(0))
⊤(yk

1(0)+rλk
1(0)) = Ek

1 .

Since yk
1(0) = 0 by (5), we in fact have

c1‖λk
1(β) + pyk

1(β)‖2 − c2‖yk
1(β)− qλk

1(β)‖2 = Ek
1 + r‖λk

1(0)‖2 ≥ 0. (11)

But the transmission conditions (7) imply

c1‖λk−1
2 (β) + pyk−1

2 (β)‖2 ≥ c2‖yk
1(β)− qλk

1(β)‖2. (12)

A similar calculation on subdomain I2, using Assumptions (ii), (iv) and the
fact that λk

2(T ) = 0, yields

54 Felix Kwok



ĉ2‖yk
2(β)− qλk

2(β)‖2 − ĉ1‖λk
2(β) + pyk

2(β)‖2 = Ek
2 + ŝ‖yk

2(T )‖2 ≥ 0. (13)

The transmission conditions (7) now imply that

ĉ2‖yk−1
1 (β)− qλk−1

1 (β)‖2 ≥ ĉ1‖λk
2(β) + pyk

2(β)‖2. (14)

Combining the inequalities (12) and (14) and shifting indices when necessary
leads to the two-step error estimates (10a)–(10b). If ρ2 < 1, then we have

‖yk
j (β)− qλk

j (β)‖ → 0 and ‖λk
j (β) + pyk

j (β)‖ → 0, j = 1, 2.

We thus conclude from (11) and (13) that Ek
j → 0 for j = 1, 2, which implies

that µk
j and zkj both go to zero. This in turn shows that the error in the

forward and adjoint states yk
j and λk

j converges to zero, as required. ⊓⊔

In order to prove convergence of the method for a given choice of optimized
parameters p and q, we need to show that there exists a choice of r, s, r̂, ŝ
such that the assumptions in Theorem 1 are satisfied. This is in fact possible
if we assume pq < 1, together with some mild assumptions on H. For a proof
of the following theorem, see [7].

Theorem 2. Let B = C = I and α2 = 0 (no target state). Assume that
H = 1

2 (A+ A⊤) is positive semi-definite. If p, q ≥ 0 satisfy pq < 1, then the
optimized Schwarz method (4)–(7) converges for any initial guess, provided
at least one of p and q is non-zero. Moreover, if H is positive definite, then
the method also converges for p = q = 0.

2.2 Choice of Parameters and Convergence Rates

We now show how to choose the parameters p, q in order to minimize the
contraction factor ρ in Theorem 1. First, if H is only assumed to be positive
semidefinite, then Assumption (ii) is satisfied provided

0 ≤ r, r̂ < 1/
√
α1, 0 ≤ s, ŝ <

√
α1. (15)

Now Assumption (iii) says

µ⊤
1 z1 = (λ1 − sy1)

⊤(y1 + rλ1) = c1‖λ1 + py1‖2 − c2‖y1 − qλ1‖2, (16)

while Assumption (iv) gives a similar relation for r̂ and ŝ. Expanding and
equating coefficients for λ⊤

1 λ1 and y⊤
1 y1 in (16) leads to the formulas

c1 =
r + q2s

1− p2q2
, c2 =

s+ p2r

1− p2q2
, (17)
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where the denominators are non-zero because pq < 1, as stated in Theorem
2. Equating coefficients for λ⊤

1 y1 leads to a compatibility condition between
r and s:

s =
−2pr + (1− pq)

2q + r(1− pq)
⇐⇒ r =

−2qs+ (1− pq)

2p+ s(1− pq)
.

For a given pair of optimized parameters (p, q) such that pq < 1, there are
many ways of choosing r (or, equivalently, s); our task is to choose r to obtain
the best estimate for the convergence factor ρ. Using the above expressions
to eliminate either r or s from (17) gives

c1
c2

=
q2 + 2qr + r2

1− 2pr + p2r2
=

(
q + r

1− pr

)2

=

(
1− qs

p+ s

)2

. (18)

After deriving a similar expression for ĉ1/ĉ2, we conclude that the contraction
factor ρ is

ρ =
q + r

1− pr
· p+ ŝ

1− qŝ
. (19)

Theorem 3. Let B = C = I and α2 = 0 (no target state). If H = 1
2 (A+A⊤)

is positive semidefinite, then the contraction factor ρ in (19) is minimized for

p =

√
α1√

2 + 1
, q =

1
√
α1(

√
2 + 1)

. (20)

For these parameters, the two-subdomain OSM converges with the contraction
factor

ρ = 3− 2
√
2 ≈ 0.1716.

Proof. Since r is a decreasing function of s (and vice versa), the contraction
factor in (19) can be minimized by choosing the smallest possible r and ŝ for
which the corresponding s and r̂ satisfy the upper bounds in (15). Thus, the
best choices of r and ŝ are given by

r = max

{
0,

−2q
√
α1 + (1− pq)

2p+
√
α1(1− pq)

}
, ŝ = max

{
0,

−2p+
√
α1(1− pq)

2q
√
α1 + (1− pq)

}
.

This leads to the following formula for the contraction factor,

ρ = max

{
q,

1− q
√
α1

p+
√
α1

}
·max

{
p,

√
α1 − p

q
√
α1 + 1

}
,

which must be minimized within the region {(p, q) : p > 0, q > 0, pq < 1}. A
somewhat tedious analysis shows that the minimum occurs for the values of
p and q shown in (20), with the contraction factor ρ = 3− 2

√
2. ⊓⊔

Remark. Since the contraction estimate is independent of the mesh pa-
rameter h and valid for any positive semidefinite matrix H, the above result
is robust with respect to spatial and temporal grid refinement.
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3 More Convergence Results

We now present two convergence results that hold in more general settings.
For a proof of these results, we refer to [7].

Multiple Subdomains. It is straightforward to generalize (4)–(7) to the
case of many time intervals. Theorem 2 holds for the general case as well.
The technique of energy estimates allows us to prove the following result
regarding convergence in the multiple subdomain case:

Theorem 4. Suppose B = C = I, α2 = 0. If H = 1
2 (A + A⊤) is positive

semi-definite and hT is the length of the shortest time sub-interval, then the
optimized Schwarz method (4)–(7) converges whenever pq < 1 and p, q are
not both zero. Moreover, the optimal parameter is given asymptotically by

popt =
√
α1 − α

2/3
1 (4hT )

1/3 +O(h
2/3
T ), qopt = popt/α1,

for which we have the contraction factor

ρopt = 1− 2hT
√
α1 +O((hT

√
α1)

5/3).

Control and Observation Over a Subset. Consider a problem with non-
trivial control and observation matrices B and C, so that the forcing terms
in (4) are restricted to parts of the domain that are controllable or observable.
In this case, the quantities inside the integrals in (8) become

(µk
1)

⊤(α1r
2C⊤C−2rH−BB⊤)µk

1 and (zk1)
⊤(s2BB⊤−2sH−α1C

⊤C)zk1 ,

both of which must be zero or negative for all zk1 and µk
1 in order for the

energy estimates to hold. This restricts the range of allowable parameters r
that can be chosen to minimize the contraction factor in (19). Together with
a similar criterion on s, we obtain the following theorem.

Theorem 5. Let α2 = 0 (no target state). Suppose that

ker(H) ∩ ker(C) ∩ range(B) = ker(H) ∩ ker(B⊤) ∩ range(C⊤) = {0}.

Then the method (4)–(7) with two subdomains converges if the non-negative
parameters p and q are chosen such that pq < 1 and (1 − pq)(1 − r∗s∗) <
2(pr∗ + qs∗), where

r∗ = min
µ∈range(C⊤)

µ6=0

µ⊤Hµ

α1‖Cµ‖2 +

√(
µ⊤Hµ

α1‖Cµ‖2
)2

+
‖B⊤µ‖2
α1‖Cµ‖2 > 0,

s∗ = min
z∈range(B)

z6=0

z⊤Hz

‖B⊤z‖2 +

√(
z⊤Hz

‖B⊤z‖2
)2

+
α1‖Cz‖2
‖B⊤z‖2 > 0.
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Fig. 1 Left: velocity field used in the distributed control problem. Right: convergence of

OSM for two time sub-intervals.

4 Numerical Experiments

Distributed Control. To illustrate Theorem 3, we consider the optimal control
problem where the governing PDE is the two-dimensional advection-diffusion
equation

yt −∇ · (∇y + by) = u on Ω = (0, 1)× (0, 1)

with b = sinπx1 sinπx2

[
x2 − 0.5, 0.5− x1

]⊤
and no-flow conditions on ∂Ω.

The governing PDE is discretized using backward Euler in time and an up-
wind finite-difference discretization in space, with mesh parameters h = 1

16
and h = 1

32 respectively. The adjoint PDE is discretized using “forward” Eu-
ler, which is implicit because the adjoint runs backward in time. We solve
the optimal control problem (2) over the time horizon (0, T ) with T = 3,
α1 = 1 and α2 = 0, i.e., we do not have a target state. The time window
is subdivided into two intervals at β = 1. At the interface, we use Robin
interface conditions with the optimized parameters suggested by Theorem 3,
i.e., p = q =

√
2−1. The convergence history in Figure 1 shows that the error

ratios approach the convergence factor of 0.1716, as predicted by Theorem 3.

Control and Observation Over Subsets. For a more realistic example, we
consider the problem of pollution tracking, where the goal is to estimate the
rate at which a certain pollutant is released based on concentration readings
elsewhere in the domain. The governing equation is the 2D advection-diffusion
equation, where the domain is as shown in Figure 2. The flow field is computed
by solving the Stokes equation, where the curved part of the domain is a no-
flow boundary representing a shoreline, and the straight boundary contains
in-flow and out-flow boundary conditions. The source of the pollution is a
region near the centre of the domain, and we seek the rate of release that
minimizes the discrepancy between the predicted and observed concentration
at the point indicated by the red triangle on the curved boundary.
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Fig. 2 Top left: velocity field for the pollution tracking problem. Top right: concentrations
observed at one point on the boundary. Bottom left: concentration at t = 11 that best

matches the observations at the boundary point indicated by the red triangle. Bottom

right: release rate that yields the concentration to the left.

The advection-diffusion equation that models the concentration of pollu-
tants is discretized using backward Euler in time and a finite volume method
in space for unstructured grids, as presented in [2]. The resulting problem has
736 degrees of freedom in space, and the time interval of (0, T ) with T = 20
is split into 2, 4, 8 and 16 equal sub-intervals to test the optimized Schwarz
method. Applying the minimization procedure in Theorem 3 to the bounds
on r and s in Theorem 5, we determine the best parameters p and q to be
0.8563. We show in Figure 2 a snapshot of the concentration and source term
that best match the observed concentration shown in the bottom right panel.

In Figure 3, we show the convergence of the OSM as a stand-alone solver
and as a preconditioner used within GMRES. We see that the convergence
of the stationary method depends only very weakly on the number of subdo-
mains, even though Theorem 4 suggests that the number of iterations should
scale like O(1/N), where N is the number of subdomains. Nonetheless, when
Krylov acceleration is used, we still see a moderate increase in the number of
iterations as N increases. Thus, a coarse grid correction is most likely needed
to ensure the scalability of the method. The design of a two-level method
that incorporates coarse grid correction will be the subject of a future paper.
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Fig. 3 Convergence of the optimized Schwarz method applied to the pollution tracking

problem.
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Parallel solver for H(div) problems
using hybridization and AMG

Chak S. Lee1 and Panayot S. Vassilevski2

1 Introduction

This paper is concerned with the H(div) bilinear form acting on vector func-
tions u, v:

a(u,v) =

∫

Ω

α∇ · u∇ · v + β u · v dx. (1)

Here α, β ∈ L∞(Ω) are some positive heterogeneous coefficients, and Ω is a
simply-connected polygonal domain in Rd, d = 2, 3. Discrete problems asso-
ciated with a(·, ·) arise in many applications, such as first order least squares
formulation of second order elliptic problems (Cai et al. [1994]), precondi-
tioning of mixed finite element methods (Brezzi and Fortin [1991]), Reissner-
Mindlin plates (Arnold et al. [1997]) and the Brinkman equations (Vassilevski
and Villa [2013]). Let A be the linear system obtained from discretization of
a(·, ·) by some H(div)-conforming finite elements of arbitrary order on a gen-
eral unstructured mesh. Our goal is to design a scalable parallel solver for
A.

It is well known that finding efficient iterative solvers for A is not trivial
because of the “near-null space” of A. The currently available scalable par-
allel solvers include the auxiliary space divergence solver (ADS) (Kolev and
Vassilevski [2012]) in the hypre library [www.llnl.gov/CASC/hypre/] and
PCBDDC (Zampini [2016]) in the PETSc library. The former relies on the
regular HX-decomposition forH(div) functions proposed in Hiptmair and Xu
[2007]. The setup of ADS is quite involved and requires additional input from
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the user, namely, some discrete gradient and discrete curl operators. On the
other hand, PCBDDC is based on the Balancing Domain Decomposition by
Constraints algorithm (Dohrmann [2003]). Its construction requires that the
local discrete systems are assembled at subdomain level. To accommodate
high contrast and jumps in the coefficients, the primal space in PCBDDC
is adaptively enriched by solving some generalized eigenvalue problems, see
Zampini and Keyes [2016].

In this paper, we propose an alternative way to solve systems with A.
Our approach is based on the traditional hybridization technique used in the
mixed finite element method (Brezzi and Fortin [1991]), thus reducing the
problem to a smaller problem for the respective Lagrange multipliers that
are involved in the hybridization. The reduced problem is symmetric posi-
tive definite, and as is well-known, is H1-equivalent. Thus, in principle, one
may apply any scalable AMG solver that is suitable for H1 problems. Unlike
ADS, the hybridization approach does not require additional specialized in-
formation (such as discrete gradient and discrete curl) from the user. Instead,
it requires that the original problem is given in unassembled element-based
form.

One main issue that has to be addressed is the choice of the basis of
the Lagrange multiplier space. In general, the reduced problem contains the
constant function in its near null-space. However, if the basis for the Lagrange
multipliers is not properly scaled (i.e., does not provide partition of unity),
the coefficient vector of the constant functions is not a constant multiple of
the vector of ones. The latter is a main assumption in the design of AMG
for H1-equivalent problems. We resolve this problem in an algebraic way by
constructing a diagonal matrix which we use to rescale the reduced system
such that the constant vector is the near-null space of the rescaled matrix,
so that the respective AMG is correctly designed.

The proposed hybridization with diagonal rescaling is implemented in a
parallel code and its scalability is tested in comparison with the state-of-
the-art ADS solver. The results demonstrate that the new solver provides a
competitive alternative to ADS; it outperforms ADS very clearly for higher
order elements.

Although in this paper we focus on finite element problems discretized
by Raviart-Thomas elements, the proposed approach can be applied to
otherH(div) conforming discretizations like Brezzi-Douglas-Marini elements,
Arnold-Boffi-Falk elements (Arnold et al. [2005]), or numerically upscaled
problems (Chung et al. [2015], Kalchev et al. [2016]).

The rest of the paper is organized as follows. In Sect. 2, we give a detailed
description of the hybridization technique. The properties of the hybridized
system are discussed in Sect. 3. After that, we present in Sect. 4 several
challenging numerical examples to illustrate the performance of the method
comparing it with ADS.
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2 Hybridization

We consider the variational problem associated with the bilinear form (1):
find u ∈ H0(div;Ω) such that

a(u,v) = (f ,v), ∀ v ∈ H0(div;Ω). (2)

Here, f is a given function in
(
L2(Ω)

)d
and (·, ·) is the usual L2 inner product

in Ω. Our following discussion is based on discretization of the variational
problem (2) by Raviart-Thomas elements of arbitrary order. We note that
other H(div)-conforming finite elements can also be considered. Let Th be a
general unstructured mesh on Ω. The space of Raviart-Thomas elements of
order k ≥ 0 on Th will be denoted by RTk. For instance, if Th is a simplicial
mesh, then RTk is defined to be

RTk =
{
vh ∈ H0(div;Ω)

∣∣ vh|τ ∈
(
Pk(τ)

)d
+ xPk(τ) ∀τ ∈ Th

}
,

where Pk(τ) denotes the set of polynomials of degree at most k on τ . For
definitions of RTk on rectangular/cubic meshes, see for example Brezzi and
Fortin [1991]. Discretization of (2) by RTk elements results in a linear system
of equations

Au = f. (3)

We are going to formulate an equivalent problem such that the modified
problem can be solved more efficiently. We note that RTk basis functions are
either associated with degrees of freedom (dofs) in the interior of elements, on
boundary faces, or interior faces of a conforming finite element mesh. Those
associated with dofs in the interior of elements or on boundary faces are
supported in only one element, while those associated with dofs on interior
faces are supported in two elements. In hybridization, the RTk basis functions
that are associated with dofs on interior faces are split into two pieces, each
supported in one and only one element. In practice, the splitting can be done
by making use of the element-to-dofs relation table to identify the shared
dofs between any pair of neighboring elements. This relation table can be
constructed during the discretization. The space of Raviart-Thomas element
after the splitting will be denoted by R̂T k. If we discretize a(·, ·) with the

basis functions in R̂T k, the resulting system will have a block diagonal matrix
Â. Next, we need to enforce the continuity of the split basis functions in some
way such that the solution of the modified system coincides with the original
problem. Suppose a RTk basis function φ is split into φ̂1 and φ̂2. The simplest
way is to use Lagrange multiplier space to make the coefficient vectors of the
test functions from both sides of an interior interface to be the same. If we
set such constraints for all the split basis functions, we obtain a constraint
matrix C.
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Remark 1. There are other ways to enforce continuity of R̂T k. For example,
when constructing the constraint matrix C, one can also use the normal traces
λ of the original RTk basis functions as Lagrange multipliers; see Cockburn
and Gopalakrishnan [2004].

The modified problem after introducing the Lagrange multipliers takes the
saddle–point form [

Â CT

C 0

] [
û
λ

]
=

[
f̂
0

]
. (4)

Here, û is the coefficient vector of ûh. The saddle point problem (4) can be
reduced to

Sλ = g, (5)

where S = CÂ−1CT and g = CÂ−1f̂ . The Schur complement S and the new
right-hand side g can be explicitly formed very efficiently because Â is block
diagonal. In fact, the inversion of Â is embarrassingly parallel. Here, each
local block of Â is invertible, so Â−1 is well-defined. We will show in the next
section that S is actually an s.p.d. system of the Lagrange multipliers, and
that it can be solved efficiently by existing parallel linear solvers. After solving
for λ, û can be computed by back substitution û = Â−1(f̂ −CTλ). Note that

the back substitution involves only an action of Â−1 (already available in
the computation of S) and some matrix-vector multiplications, which are
inexpensive (local) and scalable computations.

3 Discussion

The hybridization approach described in the previous section can be summa-
rized as follows:

1. Split the RTk basis to obtain Â and f̂ .
2. Compute Â−1 and form S = CÂ−1CT and g = CÂ−1f̂ .
3. Solve the system Sλ = g.
4. Recover û by back substitution.

As explained in Sect. 2, step 2 and 4 are scalable (inexpensive local) compu-
tations. In contrast, step 3 involves the main computational cost. Thus, it is
important that we can solve S efficiently. In this section, we describe some
properties of S. First, we show that S is related to some hybridized mixed
discretization of the second order differential operator −∇ · (β−1∇) + α−1I
(acting on scalar functions). We note that the differential problem associated
with (2) is

−∇(α∇ · u) + βu = f (6)

with homogeneous Dirichlet boundary condition u·n = 0. The latter operator
acts on vector-functions. We now make the following connection between
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these two operators. If we introduce an additional variable p = α∇ · u, then
(6) becomes the following first order system (for u and p)

βu−∇p = f ,

∇ · u− α−1p = 0.
(7)

It is noteworthy to note that the structure of (7) is the same as the
mixed formulation of the differential operator −∇ · (β−1∇) + α−1I. So we
can apply a hybridized mixed discretization (Cockburn and Gopalakrishnan
[2004, 2005]) for −∇ · (β−1∇) + α−1I to discretize (7). To apply the hy-
bridized mixed discretization, we note that the weak form of (7) is to find
(u, p) ∈ H0(div;Ω)× L2(Ω) such that

(βu,v) + (p,∇ · v) = (f ,v) ∀ v ∈ H0(div;Ω)

(∇ · u, q)− (α−1p, q) = 0 ∀ q ∈ L2(Ω).
(8)

Let W k
h ⊂ L2(Ω) be a space of piecewise polynomials such that RTk and

W k
h form a stable pair for the mixed discretization of (8). For instance, for

simplicial meshes, we can take

W k
h =

{
q ∈ L2(Ω)

∣∣∣ q|τ ∈ Pk(τ) ∀τ ∈ Th
}
.

If (8) is discretized by the pair R̂T k-W
k
h and the continuity of R̂T k is enforced

by the constraint matrix C as described in Sect. 2, we get a 3 by 3 block
system of equations of the form



M̂ B̂T CT

B̂ −W 0
C 0 0





û
p
λ


 =



f̂
0
0


 . (9)

As M̂ and W are weighted L2 mass matrices of the spaces R̂T k and W k
h

respectively, they are invertible. Hence, the 2 by 2 block matrix

[
M̂ B̂T

B̂ −W

]
is

invertible, and (9) can be reduced to

[
C 0

]
[
M̂ B̂T

B̂ −W

]−1 [
CT

0

]
λ =

[
C 0

]
[
M̂ B̂T

B̂ −W

]−1 [
f̂
0

]
. (10)

Since the (1, 1) block of

[
M̂ B̂T

B̂ −W

]−1

can be written as (M̂ + B̂TW−1B̂)−1

and Â = M̂ + B̂TW−1B̂, the reduced problem (10) is in fact identical to
(5). Therefore, the Schur complement S in (5) can be characterized by the
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hybridized mixed discretization for the differential operator −∇ · (β−1∇) +
α−1I.

Remark 2. Actually the hybridized mixed discretization for −∇ · (β−1∇) +
α−1I in Cockburn and Gopalakrishnan [2004, 2005] gives rise to the reduced

system S̃ for the Lagrange multiplier λ where

S̃ = C
(
M̂−1 − M̂−1B̂T

(
B̂M̂−1B̂T +W

)−1
B̂M̂−1

)
CT .

However, since W is invertible, an application of the Sherman-Morrison-
Woodbury formula implies that S̃ = S.

In Cockburn and Gopalakrishnan [2005], the authors proved that S is spec-
trally equivalent to the norm |||·||| on the space of Lagrange multipliers defined
as

|||λ|||2 =
∑

τ∈Th

1

|∂τ | ‖λ−mτ (λ)‖2∂τ

where mτ (λ) =
1

|∂τ |
∫
∂τ

λ ds. More precisely, there are constants C1 and C2,

depending only on the approximation order k, the coefficients α, β of the op-
erator, and the shape regularity of Th such that C1|||λ|||2 ≤ λTSλ ≤ C2|||λ|||2
for all λ. Consequently, S is symmetric positive definite. Moreover, this shows
that the near-null space of S is spanned by the constant functions, which is
the main assumption to successfully apply solvers of AMG type. When solv-
ing with S, we opt for the parallel algebraic multigrid solver BoomerAMG
(Henson and Yang [2002]) from the hypre library.

Depending on the choice of basis for the Lagrange multipliers space, the
coefficient vector of a constant function is not necessarily a constant vector
and the latter affects adversely the performance of classical AMG methods
such as BoomerAMG from hypre. To resolve this issue, we chose to rescale S
by a diagonal matrix D such that the constant vector is now in the near-null
space of DTSD. To achieve this, we solve the homogeneous problem Sd = 0
by applying a few smoothing steps to a random initial guess. In our numerical
experiments to be presented in the next section, we use 5 conjugate gradient
(CG) iterations preconditioned by the Jacobi smoother in the computation of
d, which is fairly inexpensive. Once d is computed, we set Dii = di (the i-th
entry of d). Noticing that D1 = d, so 1 is in the near-null space of DTSD.
We can then apply CG preconditioned by BoomerAMG constructed from
DTSD to efficiently solve the system

(DTSD)λD = DT g.

Lastly, the original Lagrange multiplier λ is recovered simply by setting λ =
DλD.

Another useful feature of S is that its size is less than or equal to the size
of the original matrix A. This is because there is a one-to-one correspondence
between Lagrange multipliers and Raviart-Thomas basis functions associated
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with interior faces. For higher order Raviart-Thomas elements, a portion of
the basis functions are associated with interior of elements. These basis func-
tions are supported in one element only, so they do not need Lagrange mul-
tipliers to enforce their continuity. Hence, for higher order approximations,
methods for solving with S are likely to be more efficient and faster than solv-
ing with A (using state-of-the-art solvers such as ADS) which is confirmed
by our experiments.

4 Numerical Examples

In this section, we present some numerical results regarding the performance
of our hybridization AMG solver. The numerical results are generated us-
ing MFEM [mfem.org], a scalable C++ library for finite element methods
developed in the Lawrence Livermore National Laboratory (LLNL). All the
experiments are performed on the cluster Sierra at LLNL. Sierra has a total
of 1944 nodes (Intel Xeon EP X5660 clocked at 2.80 GHz), which are con-
nected by InfiniBand QDR. Each node has 12 cores and equipped with 24
GB of memory.

In the solution process, the hybridized system with S is rescaled by the
diagonal matrix D as described in the previous section. The rescaled system
DTSD is then solved by the CG method preconditioned with BoomerAMG
(constructed from DTSD) from the hypre library. As one of our goals is
to compare the hybridization AMG solver with ADS, we present also the
performance of ADS in all the examples. In order to have fair comparisons,
the time to solution for the hybridization AMG solver includes the formation
time of the Schur complement S, the computation time to construct the
rescaling matrix D, the solve time for the problem with the modified matrix
DTSD by CG preconditioned by BoomerAMG, and the recovery time of the
original unknown u. The time to solution for ADS is simply the solve time
for the original problem with A by the CG preconditioned by ADS. For the
tables in the present section, #proc refers to the number of processors, while
#iter refers to the number of PCG iterations.

4.1 Weak Scaling

We first test the weak scaling of the hybridization AMG solver. The problem
setting is as follows. We solve problem (3) obtained by RTk discretization on
uniform tetrahedral mesh in 3D. Starting from some initial tetrahedral mesh,
we refine the mesh uniformly. The problem size increases by about 8 times
after one such refinement. At the same time, the number of processors for
solving the refined problem is increased 8 times so that the problem size per
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processor is kept roughly the same. Both the lowest order Raviart-Thomas

Fig. 1 Initial mesh for the RT2 weak scaling test case. Blue region indicates Ωi

elements RT0 and a higher order elements, RT2, are considered. We solve
a heterogeneous coefficient problem on the unit cube, i.e. Ω = [0, 1]3. The
boundary conditions are u · n = 0 on ∂Ω, and the source function f is the
constant vector [1, 1, 1]T . Let Ωi = [ 14 ,

1
2 ]

3 ∪ [ 12 ,
3
4 ]

3. We consider β being

constant 1 throughout the domain, whereas α =

{
1 in Ω\Ωi

10p in Ωi
and we

choose p = -4, 0, or 4. For RT2 test case, we first partition Ω into 8 x 8 x
4 parallelepipeds. The initial tetrahedral mesh in this case is then obtained
by subdividing each parallelepiped into tetrahedrons, see Fig. 1. The initial
mesh of the RT0 test case is obtained by refining the initial mesh of the RT2

test case 3 times. The PCG iterations are stopped when the l2 norm of the
residual is reduced by a factor of 1010. The time to solution (in seconds) of
both the hybridization AMG and ADS for the RT0 case are shown in Table 1.
Additionally, we also report the number of PCG iterations in the brackets.
We see that the number of iterations of the hybridization solver are very

Table 1 Time to solution (in seconds) in the weak scaling test: RT0 on tetrahedral meshes,

the corresponding number of PCG iterations are the reported in the brackets

#proc Problem size p = -4 p = 0 p = 4

Hybridization-BoomerAMG-CG

3 200,704 0.97 (24) 0.96 (21) 0.93 (21)

24 1,589,248 1.15 (24) 1.15 (23) 1.16 (23)
192 12,648,448 1.45 (27) 1.48 (25) 1.43 (24)
1,536 100,925,440 3.31 (29) 3.03 (28) 3.03 (28)

ADS-CG

3 200,704 2.68 (21) 1.74 (10) 1.79 (11)
24 1,589,248 4.04 (25) 3.53 (13) 3.54 (13)
192 12,648,448 7.10 (27) 5.73 (15) 5.61 (14)

1,536 100,925,440 8.30 (28) 6.28 (15) 6.51 (15)

stable against problem size and the heterogeneity of α. The average time to
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solution of the hybridization approach is about 2 times faster than that of
ADS. The solution time difference between the two solvers is more significant
in the high order discretization case. This is due to the fact that size of the
hybridized system S is much smaller than the size of the original system A.
Indeed, in the case of RT2, the average time to solution of the hybridization
approach is about 8 times faster than that of ADS, see Table 2. In Fig. 2,
we plot the solution time of both solvers where p = 4 in the definition of α.
We can see that the hybridization solver has promising weak scaling over a
range of nearly three decades.

Table 2 Time to solution (in seconds) in the weak scaling test: RT2 on tetrahedral meshes,

the corresponding number of PCG iterations are the reported in the brackets

#proc Problem size p = -4 p = 0 p = 4

Hybridization-BoomerAMG-CG

3 38,400 0.30 (15) 0.31 (16) 0.31 (16)

24 301,056 0.48 (18) 0.50 (21) 0.48 (20)

192 2,383,872 0.75 (28) 0.89 (29) 0.77 (29)
1,536 18,972,672 1.97 (44) 1.95 (47) 2.10 (47)

ADS-CG

3 38,400 4.85 (23) 3.55 (13) 3.80 (14)
24 301,056 7.24 (29) 5.47 (18) 5.73 (20)

192 2,383,872 11.56 (37) 8.89 (25) 9.56 (28)

1,536 18,972,672 24.28 (53) 16.51 (37) 16.37 (39)

4.2 Strong Scaling

In the second example, we investigate the strong scaling of the hybridization
AMG solver. The problem considered in this section is the crooked pipe
problem, see Kolev and Vassilevski [2012] for a detailed description of the
problem. The mesh for this problem is depicted in Fig. 3. The coefficient α
and β are piecewise constants. More precisely, (α, β) = (1.641, 0.2) in the
red region, and (α, β) = (0.00188, 2000) in the blue region. The difficulties
of this problem are the large jumps of coefficients and the highly stretched
elements in the mesh (see Fig. 3). For this test, the problem is discretized by
RT1. The size of A is 2,805,520, and we solve the problem using 4, 8, 16 ,32
and 64 processors. The PCG iterations are stopped when the l2 norm of the
residual is reduced by a factor of 1014. The number of PCG iterations and
time to solution are reported in Table 3, and we plot the speedup in Fig. 4.
When measuring the speedup, solution times are corrected by the number of
iterations.

Both solvers exhibit good strong scaling. We note that in this example, the
solution time of the hybridization AMG solver is much smaller than the ADS
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(a) RT0

(b) RT2

Fig. 2 Weak scaling comparisons between the hybridization AMG solver (red dotted line)

and ADS (blue solid line)

Fig. 3 The mesh for the Crooked Pipe problem (left). A dense layer of highly stretched

elements (right) has been added to the neighborhood of the material interface in the

exterior subdomain in order to resolve the physical diffusion

solver. The average solve time of the hybridization AMG solver is about 10
times smaller than that of ADS. In particular, the hybridization AMG solver
with 4 processors is still 2 times faster than ADS with 64 processors. The
difference in the computation time for this example is highly noticeable.

Lastly, we report the time spent on different components of the hybridiza-
tion approach in Table 4. We observe that except for solving with S (i.e. setup
and PCG solve), the other components scale fairly well. Also, as we point out
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Table 3 Strong scaling test, original problem size: 2,805,520

Hybridization-BoomerAMG-CG ADS-CG

#proc #iter Time to solution #iter Time to solution

4 25 23.46 32 508.66

8 31 14.21 32 251.37

16 28 6.83 33 130.26
32 28 3.98 34 73.47

64 31 2.92 34 54.58

in Sect. 3, solving with S is the most time consuming part of the hybridiza-
tion AMG code. We remark that during the formation of S, we stored the
inverses of local blocks of Â. So when we recover u by back substitution, only
matrix multiplication is needed. Hence, the recovery of u is extremely cheap
and scalable.

Table 4 Timing of each component of the new solver

#proc Formation of S Computation of D Setup PCG solve Recovery of u

4 7.55 0.22 3.87 11.72 0.092

8 3.95 0.11 2.29 7.81 0.046
16 1.84 0.057 1.4 3.52 0.022

32 1.11 0.034 0.83 2.01 0.012
64 0.68 0.027 0.52 1.7 0.006

Fig. 4 Strong scaling comparison between the hybridization AMG solver (red dotted line)

and ADS (blue solid line). Black dotted line indicates perfect scaling
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Preconditioning for nonsymmetry and
time-dependence

Eleanor McDonald1, Sean Hon2, Jennifer Pestana3 and Andy Wathen4

1 Introduction

Preconditioning, whether by domain decomposition or other methods, is well
understood for symmetric (or Hermitian) matrices at least in the sense that
guaranteed convergence bounds based on eigenvalues alone describe conver-
gence of iterative methods. Establishing spectral properties of preconditioned
operators or matrices is thus all that is required to reliably predict the number
of steps of an appropriate Krylov subspace method—it would be Conjugate
Gradients (cg) [Hestenes and Stiefel, 1952] in the case of positive definite
matrices and minres [Paige and Saunders, 1975] for indefinite matrices—in
the symmetric case. Faster convergence than that predicted by these bounds
occurs in rare cases when only few eigenspaces are important; thus in the
rare cases that the convergence bounds fail to be descriptive, it is because
they overestimate the number of iterations required for convergence—a good
thing! Put another way, we know what we’re trying to achieve in the con-
struction of preconditioners in the case of symmetric coefficient matrices.

By contrast, in the nonsymmetric case, no generally descriptive conver-
gence bounds are known. In specialist situations, the field of values or other
sets can occasionally be usefully employed [Loghin and Wathen, 2004], but
it is known that gmres can converge in any (monotone) specified manner
whatever the eigenvalues for the coefficient matrix; precisely, it is proved in
Greenbaum et al. [1996] (and the results extended in Tebbens and Meurant
[2014]) that given any set of n eigenvalues and any monotonic convergence
curve terminating at or before the nth iteration, then for any b there exists
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an n×n matrix B having those eigenvalues and an initial guess x0 such that
gmres [Saad and Schultz, 1986] for Bx = b with x0 as starting vector will
give that convergence curve. More negative results than this exist (see for
example Tebbens and Meurant [2012]).

Thus, one can for example have an n × n nonsymmetric matrix with all
eigenvalues equal to 1 for which gmres gives no reduction in the norm of
the residual vectors—that is, no convergence—for n − 1 iterations. For any
of the range of other nonsymmetric Krylov subspace methods, convergence
theory is extremely limited. Thus, even though there is often consideration
of eigenvalues when considering possible preconditioners even in the non-
symmetric case, this is not well-founded. It is not however foolish, since poor
convergence can certainly in general be associated with problems with widely
spread eigenvalues!

The important point nevertheless remains that the construction of precon-
ditioners for nonsymmetric problems is of necessity currently heuristic.

In this short paper, we decribe at least one simple and frequently arising
situation—that of nonsymmetric real Toeplitz (constant diagonal) matrices—
where we can guarantee rapid convergence of the appropriate iterative method
by manipulating the problem into a symmetric form without recourse to the
normal equations. This trick can be applied regardless of the nonnormality
of the Toeplitz matrix. We also propose a symmetric and positive definite
preconditioner for this situation which is proved to cluster eigenvalues and is
by consequence guaranteed to ensure convergence in a number of iterations
independent of the matrix dimension. This is described in Section 2 and more
fully in Pestana and Wathen [2015].

We then go on to exploit these observations in considering time-stepping
problems for ordinary differential equations. The result we establish in this
setting is guaranteed convergence of an iterative method for an all-at-once
formulation in a number of iterations independent of the number of time-
steps. This is described in Section 3.

2 Real nonsymmetric Toeplitz matrices

If B is a real Toeplitz matrix then




a0 a−1 . . . a−n+2 a−n+1

a1 a0 a−1 a−n+2

... a1 a0
. . .

...

an−2
. . .

. . . a−1

an−1 an−2 . . . a1 a0




︸ ︷︷ ︸
B




0 0 . . . 0 1
0 0 1 0
... . .

.
1 0

...

0 . .
.
. .
.

0
1 0 . . . 0 0




︸ ︷︷ ︸
Y
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is the real symmetric matrix




a−n+1 a−n+2 . . . a−1 a0
a−n+2 a−1 a0 a1

... . .
.

a0 a1
...

a−1 . .
.

. .
.

an−2

a0 a1 . . . an−2 an−1




︸ ︷︷ ︸
B̂

.

Thus the simple trick of reversing the order of the unknowns which is effected
by multiplication with Y yields a matrix for which we can get theoretical a
priori convergence bounds for minres based only on eigenvalues. We com-
ment that the (Hankel) matrix B̂ is most likely indefinite, but it is clearly
symmetric. Premultiplication by Y leads to similar conclusions: see Pestana
and Wathen [2015].

It is quite likely that minres applied to any linear system involving B̂
would converge slowly, but fortunately it is well-known that Toeplitz matrices
are well preconditioned by related circulant matrices in many cases (see Chan
[1988],Strang [1986],Tyrtyshnikov [1996],Tyrtyshnikov et al. [1997]). Any cir-
culant matrix C ∈ Rn×n is diagonalised as C = U⋆ΛU by a Fast Fourier
Transform (FFT) [Cooley and Tukey, 1965] in O(n log n) operations and so
matrix multiplication by a vector or solution of equations with a circulant
is computationally achieved in O(n log n) operations. For many Toeplitz ma-
trices which have sufficient decay in the entries in the first row and column
moving away from the diagonal it is known that

C−1B = I +R+ E

where R is of small rank and E is of small norm. This implies that the
eigenvalues of the preconditioned matrix C−1B are clustered around 1 except
for a few outliers. Precise statements about the decay of entries are usually
expressed in terms of the smoothness of the generating function associated
with the Toeplitz matrix which relates to the decay of Fourier coefficients
and thus the speed of convergence of Fourier series.

Now, for use with minres a symmetric and positive definite precondi-
tioner is required (see Wathen [2015]). Fortunately via the FFT diagonalisa-
tion this is easily achieved by taking the absolute value

|C| = U⋆|Λ|U (1)

where |Λ| is just the diagonal matrix of absolute values of the eigenvalues
for an appropriate (e.g. Strang or Chan) circulant, C. For a nonsymmetric
Toeplitz matrix with decay of entries as above, there now follows.

Theorem 2.1 [Pestana and Wathen, 2015]
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|C|−1B̂ = J + R̂+ Ê

where J is a real symmetric and orthogonal matrix with eigenvalues ±1, R̂
is of small rank and Ê is of small norm.

The eigenvalues of |C|−1B̂ are thus clustered around ±1 together with a
few outliers and guaranteed rapid convergence follows [Elman et al., 2014,
Chapter 4].

A very simple example demonstrates the point: let

B =




1 0.01
1 1 0.01

. . .
. . .

. . .

1 1 0.01
1 1



∈ Rn×n (2)

with preconditioning via the Strang preconditioner (which simply takes C as
B but with an additional 1 in the nth entry of the first row and 0.01 in the
first entry of the nth row). The result of (implicitly) reordering/multiplying
by Y and preconditioning with |C| are shown in theminres iteration counts
in Table 1 for a randomly generated right hand side vector. Convergence is
accepted when the preconditioned residual vector has norm less than 10−10

for the results shown. The eigenvalues of the preconditioned matrix are shown
in Table 2.

Table 1 Condition numbers κ(B) for the Toeplitz matrix B described in (2) and iteration
counts for MINRES applied to the symmetrized matrix B̂ with preconditioner |C|.

n κ(B) Iterations

10 14 6
100 207 6

1000 2.6×106 6

Table 2 Eigenvalues of the Toeplitz matrix as described in (2) preconditioned with ab-

solute value circulant (to 4 decimal places). Repeated eigenvalues are shown in brackets
with the number of repeated eigenvalues indicated.

n Eigenvalues of |C|−1B̂

10 {−9.9107,−1.0002, (−1× 2),−0.9640, 0.9893, (1× 4)}
100 {−2.2803,−1.0007, (−1× 47),−0.2536, 0.9919, (1× 49)}
1000 {−2.1626,−1.0008, (−1× 497),−1.8309e-5, 0.9929, (1× 499)}
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In fact for this example one can prove these and simpler results via consid-
eration of low rank updates and the degree of the minimal polynomial so it
is also possible to prove that gmres will terminate in just a few iterations.

Table 3 Preconditioned MINRES convergence for dense nonsymmetric Toeplitz matrices

of Wiener class with absolute value circulant preconditioner.

n eigenvalue inclusion iterations

10 [−1.018,−0.710] ∪ [0.981, 1.804] 10
100 [−1.092,−0.856] ∪ [0.912, 1.160] 14

1000 [−1.154,−0.708] ∪ [0.864, 1.381] 20
10000 [−1.078,−0.980] ∪ [0.922, 1.017] 12

For a dense Toeplitz with sufficient decay of entries in the first row and
column this is not the case however, so the results presented in Table 3 for
random nonsymmetric Toeplitz matrices of so-called Wiener class (see e.g.
[Ng, 2004, page 51]) are not explained by any other means as far as we know,
but are a demonstration of the theory presented here. The matrices for these
numerical experiments were generated by initially selecting independently
the entries of two n-vectors, r and c with r1 = c1 from a normal distribution
with mean zero and variance 1 (using the randn command in Matlab), then
setting ri ← ri/(i

2), ci ← ci/(i
2) and using these vectors as the first row and

column of the nonsymmetric Toeplitz matrix, B.

3 Preconditioning for time-dependence

3.1 Theta method

Here, we consider only a scalar linear ordinary differential equation,

dy

dt
= ay + f, y(0) = y0

on the time interval [0, T ]. For the solution of systems of ODE and PDE
problems via the method of lines, see McDonald et al.. Likewise to begin
with for simplicity we consider only the simple two-level θ-method, which
gives,

yn+1 − yn

τ
= θayn+1 + (1− θ)ayn + fn, y0 = y0,

where τ is the constant time step with Nτ = T . The discrete equations to be
solved are
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(1− aθτ)yn+1 = (1 + a(1− θ)τ)yn + τfn, n = 0, 1, 2, . . . , N − 1, (3)

with y0 = y0.
The usual approach would be to solve the equations (3) sequentially for

n = 0, 1, 2, . . . which is exactly forward substitution for the all-at-once system

B




y1

y2

y3

...
yN




︸ ︷︷ ︸
y

=




τf1 + (1 + a(1− θ)τ)y0

τf2

τf3

...
fN




︸ ︷︷ ︸
f

where

B =




1− aθτ
−1− a(1− θ)τ 1− aθτ

−1− a(1− θ)τ 1− aθτ
. . .

. . .

−1− a(1− θ)τ 1− aθτ



.

(4)
However, we can note that the coefficient matrix B, in the all-at-once sys-
tem is real Toeplitz, hence solution using the idea in the section above is
possible. minres for B̂y = BY y = f, x = Y y converges in 4 iterations in-
dependently of N as can be seen from the results in Tables 4 and 5 below.
The parameter values for the presented results are a = −0.3, τ = 0.2, θ = 0.8;
similar behaviour has been observed for many other sets of parameter values.
The eigenvalues of the preconditioned matrix for this problem are shown in
Table 5.

Table 4 Condition numbers κ(B) for a time-dependent linear ODE using the θ-method,

i.e. for B given by (4) and MINRES iteration counts with absolute value Strang circulant
preconditioner described by (1) applied to the symmetrized matrix B̂.

N κ(B) Iterations

10 10.474 4
100 30.852 4

1000 33.887 4

For such a bidiagonal Toeplitz matrix, with Strang circulant precondition-
ing, one can show that the minimal polynomial is quadratic, hence this is a
rare situation in which it is possible to deduce that gmres must terminate
with the solution after 2 iterations.
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Table 5 Eigenvalues of the preconditioned system (to 4 decimal places). Repeated eigen-

values are shown in brackets with the number of repeated eigenvalues indicated.

N Eigenvalues of |C|−1B̂

10 {−0.7206, (−1× 4), (1× 4), 3.1155}
100 {−0.4975, (−1× 49), (1× 49), 2.0157}
1000 {−0.4966, (−1× 499), (1× 499), 2.0139}

Theorem 3.1 Let α and β 6= 0 ∈ C. If

B =




α
β α
. . .

. . .

β α
β α



∈ Cn×n

is preconditioned by

C =




α β
β α
. . .

. . .

β α
β α



,

the minimal polynomial of the preconditioned system T = C−1B is quadratic
provided that both B and C are nonsingular.

Proof. A simple calculation gives

T = C−1B =




1 −αn−1β
detC

1 αn−2β2

detC
. . .

...

1 (−1)n−1αβn−1

detC
αn

detC



,

where

detC =

{
αn + βn when n is odd

αn − βn when n is even
.

We can now easily show that T satisfies

(T − I)(T − αn

detC
I) = 0.
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Since (T − I) 6= 0 and (T − αn

detC I) 6= 0, (T − I)(T − αn

detC I) is the minimal
polynomial of the preconditioned system T .

Since the minimal polynomial for the preconditioned coefficient matrix is
in this case quadratic we must therefore have that the Krylov subspace is of
dimension 2 and so because of its minimisation property, gmres termination
must occur within 2 iterations.

3.2 Multi-step method

In order to examine a slightly more complex system where the minimal poly-
nomial is not as trivial as with the theta method above, we examine also a
2-step BDF time stepping method. We now require two initial conditions y−1

and y0. For the BDF2 method we have

yn+1 − 4
3y

n + 1
3y

n−1

τ
= 2

3ay
n+1 + 2

3f
n+1, y0 = y0, y−1 = y−1

where τ is the constant time step with Nτ = T . The discrete equations to be
solved are

(1− 2
3aτ)y

n+1 = 4
3y

n − 1
3y

n−1 + 2
3τf

n+1, n = 0, 1, 2, . . . , N − 1

with y0 = y0 and y−1 = y−1. The corresponding all-at-once system is

B




y1

y2

y3

...
yN




︸ ︷︷ ︸
y

=




2
3τf

1 + 4
3y

0 − 1
3y

−1

2
3τf

2 − 1
3y

0

2
3τf

3

...
2
3τf

N




︸ ︷︷ ︸
f

where

B =




1− 2
3aτ
− 4

3 1− 2
3aτ

1
3 − 4

3 1− 2
3aτ

. . .
. . .

. . .
1
3 − 4

3 1− 2
3aτ



. (5)

The coefficient matrix B in (5) has an additional subdiagonal but is still
Toeplitz and the method above therefore still applies. Applying minres to
solve the equation B̂y = BY y = f, x = Y y with a random starting vector, we
see convergence in 6 iterations independently of N as can be seen from the
results in Table 6. The parameter values for the presented results are again
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chosen as a = −0.3 and τ = 0.2 with zero forcing but the behaviour does not
change for many other choices of a and τ ; this apparent insensitivity is just
an observation, for which we do not have a mathematical explanation. As
we have used implicit time-stepping we have no restrictions on the value of
τ to maintain stability and, as Theorem 3.1 seems to indicate, it is only the
lower diagonal Toeplitz structure of B which ensures the number of unique
eigenvalues of C−1B so it is not surprising that other parameter values be-
haviour in the same manner for the symmetrized system. The eigenvalues of
the preconditioned matrix in this case are shown in Table 7.

Table 6 Condition numbers κ(B) for a time-dependent linear ODE using the BDF2

method, i.e. for B given by (5) and MINRES iteration counts with absolute value Strang
circulant preconditioner described by (1) applied to the symmetrized matrix B̂.

N κ(B) Iterations

10 29.33 6
100 67.49 6

1000 67.67 6

Table 7 Eigenvalues of the preconditioned system (to 4 decimal places). Repeated eigen-

values are shown in brackets with the number of repeated eigenvalues indicated.

N Eigenvalues of |C|−1B̂

10 {−1.0442, (−1× 3),−0.6781, 0.9219, (1× 3), 3.3921}
100 {−1.0610, (−1× 48),−0.4410, 0.9424, (1× 48), 2.2736}
1000 {−1.0610, (−1× 498),−0.4401, 0.9425, (1× 498), 2.2720}

This approach for time-dependent problems may not seem of any advan-
tage for such a simple problems as considered here because minres requires
matrix vector multiplication with B (and Y ) as well as solution of a system
with |C| at each iteration. Its potential for time-dependent PDEs is however
more intriguing (see McDonald et al.).

4 Conclusions

Preconditioning for nonsymmetric linear systems is generally heuristic with
no guarantee of the speed of convergence from a priori spectral estimation.
This is in stark contrast to the case of real symmetric or complex Hermi-
tian matrices. We have shown that for nonsymmetric real Toeplitz matrices
the use of a simple trick gives symmetry so that convergence estimates for
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minres which are based only on eigenvalues rigorously apply. Further, we
propose the use of an absolute value circulant matrix as preconditioner: the
action of this preconditioner is effected in O(n log n) operations via use of
the FFT as originally suggested in Strang [1986]. These constructions ap-
ply independently of nonnormality and rapid, n-independent convergence is
guaranteed and hence observed.

It is further observed how this preconditioning can be applied in the con-
text of time-stepping problems and that convergence is achieved in a small
number of iterations independent of the number of time-steps.
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Algebraic Adaptive
Multipreconditioning applied to
Restricted Additive Schwarz

Nicole Spillane1

In 2006 the Multipreconditioned Conjugate Gradient (MPCG) algorithm was
introduced by Bridson and Greif [4]. It is an iterative linear solver, adapted
from the Preconditioned Conjugate Gradient (PCG) algorithm [22], which
can be used in cases where several preconditioners are available or the usual
preconditioner is a sum of operators. In [4] it was already pointed out that Do-
main Decomposition algorithms are ideal candidates to benefit from MPCG.
This was further studied in [13] which considers Additive Schwarz precon-
ditioners in the Multipreconditioned GMRES (MPGMRES) [14] setting. In
1997, Rixen had proposed in his thesis [21] the Simultaneous FETI algorithm
which turns out to be MPCG applied to FETI. The algorithm is more ex-
tensively studied in [12] where its interpretation as an MPCG solver is made
explicit.

The idea behind MPCG is that if at a given iteration N preconditioners
are applied to the residual, then the space spanned by all of these directions
is a better minimization space than the one spanned by their sum. This can
significantly reduce the number of iterations needed to achieve convergence,
as we will observe in Section 3, but comes at the cost of loosing the short
recurrence property in CG. This means that at each iteration the new search
directions must be orthogonalized against all previous ones. For this reason,
in [25] it was proposed to make MPCG into an Adaptive MPCG (AMPCG)
algorithm where, at a given iteration, only the contributions that will acceler-
ate convergence are kept, and all others are added into a global contribution
(as they would be in classical PCG). This works very well for FETI and BDD
but the theory in that article does not apply to Additive Schwarz. Indeed,
the assumption is made that the smallest eigenvalue of the (globally) pre-
conditioned operator is known. The test (called the τ -test), which chooses
at each iteration which contributions should be kept, heavily relies on it.
More precisely, the quantity that is examined by the τ -test can be related

CMAP, École Polytechnique, Route de Saclay, 91128 Palaiseau, France.

nicole.spillane@cmap.polytechnique.fr
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to a Rayleigh quotient, and the vectors that are selected to form the next
minimization space correspond to large frequencies of the (globally) precon-
ditioned operator. These are exactly the ones that are known to slow down
convergence of BDD and FETI. Moreover, they are generated by the first few
iterations of PCG [30]. These two reasons make BDD and FETI ideal for the
AMPCG framework.

The question posed by the present work is whether an AMPCG algorithm
can be developed for Additive Schwarz type preconditioners. The goal is to
design an adaptive algorithm that is robust at a minimal cost. One great
feature of Additive Schwarz is that it is algebraic (all the components in the
preconditioner can be computed from the knowledge of the matrix A), and
we will aim to preserve this property. The algorithms will be presented in an
abstract framework. Since the short recurrence property is lost anyway in the
MPCG setting, we will consider the more efficient [11] Restricted Additive
Schwarz preconditioner (RAS) [6] in our numerical experiments, instead of its
symmetric counterpart the Additive Schwarz preconditioner (see [29]). RAS
is a non symmetric preconditioner but, provided that full recurrence is used,
conjugate gradient based algorithms apply and still have nice properties (in
particular the global minimization property). We will detail this in the next
section where we briefly introduce the problem at hand, the Restricted Ad-
ditive Schwarz preconditioner, and the MPCG solver. Then in Section 2, we
propose two ways to make MPCG adaptive. Finally, Section 3 presents some
numerical experiments on matrices arising from the finite element discretiza-
tion of two dimensional elasticity problems. Three types of difficulties will be
considered: heterogeneous coefficients, automatic (irregular) partitions into
subdomains and almost incompressible behaviour.

These are sources of notoriously hard problems that have been, and are
still, at the heart of much effort in the domain decomposition community, in
particular by means of choosing an adequate coarse spaces (see [23, 20, 26,
10, 3, 24, 27, 15, 19, 5, 8, 18] and many more).

1 Preliminaries

Throughout this work, we consider the problem of solving the linear system

Ax∗ = b,

where A ∈ Rn×n is a sparse symmetric positive definite matrix, b ∈ Rn is
a given right hand side, and x∗ ∈ Rn is the unknown. We consider Conju-
gate Gradient type solvers preconditioned by the Restricted Additive Schwarz
(RAS) preconditioner. To construct the RAS preconditioner, a non overlap-
ping partition of the degrees of freedom into N subsets, or subdomains, must
first be chosen and then overlap must be added to each subset to get an
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overlapping partition. Denoting for each s = 1, . . . , N , by R̃s and Rs, the re-
striction operators from J1, nK into the s-th non overlapping and overlapping
subdomains, respectively, the preconditioner is defined as:

H =
N∑

s=1

Hs with Hs = R̃s⊤As−1Rs and As = RsARs⊤.

In Algorithm 1 the MPCG iterations are defined. Each contribution Hs to H
is treated separately. This corresponds to the non adaptive algorithm, i.e.,
the condition in line 8 is not satisfied and N search directions are added to
the minimization space at each iteration (namely the columns in Zi+1). We

have denoted by ∆†
i the pseudo inverse of ∆i to account for the fact that

some search directions may be linearly dependent (see [12, 25]).
Although RAS is a non symmetric preconditioner the following properties

hold:

• ‖x∗ − xi‖A = min
{
‖x∗ − x‖A; x ∈ x0 +

∑i−1
j=0 range(Pj)

}
,

• P⊤
j APi = 0 (i 6= j), r⊤i Pj = 0 (i > j), and r⊤i Hrj = 0 (i > j).

This can be proved easily following similar proofs in [25] and the textbook
[22]. The difference from the symmetric case is that the two last properties
only hold for i > j, and not for every pair i 6= j.

Algorithm 1: Adaptive Multipreconditioned Conjugate Gradient Algo-
rithm for Ax∗ = b. Preconditioners: {Hs}s=1,...,N . Initial guess: x0.

1 r0 = b−Ax0; Z0 =
[
H1r0| . . . |HNr0

]
; P0 = Z0;

2 for i = 0, 1, . . . , convergence do

3 Qi = APi;

4 ∆i = Q⊤
i Pi; γi = Pi

⊤ri; αi = ∆†
iγi;

5 xi+1 = xi +Piαi ;

6 ri+1 = ri −Qiαi ;

7 Zi+1 =
[
H1ri+1| . . . |HNri+1

]
; // Generate N search directions.

8 if Adaptive Algorithm then
9 Reduce number of columns in Zi+1 (see Section 2);

10 end

11 Φi,j = Q⊤
j Zi+1; βi,j = ∆†

jΦi,j for each j = 0, . . . , i;

12 Pi+1 = Zi+1 −
i∑

j=0

Pjβi,j ;

13 end

14 Return xi+1;

Multipreconditioning significantly improves convergence as has already
been observed [4, 13, 12, 25] and as will be illustrated in the numerical result
section. The drawback is that a dense matrix ∆i ∈ RN×N must be factorized
at each iteration and that N search directions per iteration need to be stored.
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In the next section, we will try to remove these limitations by reducing the
number of search directions at every iteration. We aim to do this without
having too strong a negative impact on the convergence.

2 An adaptive algorithm

There is definitely a balance to be found between the number of iterations,
the cost of each iteration, and the memory required for storage. Here, we do
not claim that we have achieved a perfect balance, but we introduce some
ways to influence it. More precisely, we propose two methods of reducing the
number of columns in Zi+1 (or in other words how to fill in line 9 in Algo-
rithm 1). In subsection 2.1, we propose a τ -test that measures the relevance
of every candidate Hsri+1 and only keeps the most relevant contributions. In
Subsection 2.2, we propose to form m coarser subdomains (which are agglom-
erates of the initial N subdomains) and aggregate the N candidates into only
m search directions. Note that there is a definite connection with multigrid
studies from where we have borrowed some vocabulary (see [31, 7, 2] and
many references therein).

2.1 Select search directions with a τ -test

The τ -test in the original AMPCG publication [25] is based on the assumption
that the smallest eigenvalue for the globally preconditioned operator HA is
known [29]. This allows for an error estimate inspired by those in [1], and the
choice of the τ -test is a direct consequence of it. Here, the largest eigenvalue is
known and it is the presence of small eigenvalues that is responsible for slow
convergence. Unfortunately, we have failed to produce an estimate similar to
that in [25] in this case. Note that there is no such estimate in [1] either, and
we believe that this is inherent to the properties of the conjugate gradient
algorithm.

The approach that we propose here to select local contributions is dif-
ferent. It is well known by now (see, e.g., [22]) that, at each iteration, the
approximate solution returned by the conjugate gradient algorithm is the A-
orthogonal projection of the exact solution x∗ onto the minimization space.
Here, the property satisfied by the update between in iteration i+ 1 is

‖x∗ − xi+1‖A = min {‖x∗ − x‖A; x ∈ xi + range(Pi)} ,

where Pi forms a basis of range(Zi) after orthogonalization against previous
search spaces (line 12 in Algorithm 1).
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For this reason, the τ -test that we propose aims at evaluating, for each s =
1, . . . , N , the ratio between the norm of the error projected onto the global
vector Hri+1 and the norm of the error projected onto the local candidate
Hsri+1. More precisely, we compute (with 〈·, ·〉 denoting the ℓ2 inner product)

tsi =
〈ri+1,Hri+1〉2

〈Hri+1,AHri+1〉
× 〈Hsri+1,AHsri+1〉

〈ri+1,Hsri+1〉2
. (1)

This is indeed the announced quantity, since the square of the A-norm of the
A orthogonal projection of x∗ − xi onto any vector v is

‖v(v⊤Av)−1v⊤ A(x∗ − xi)︸ ︷︷ ︸
=ri

‖2A =
〈ri,v〉2
〈v,Av〉 .

Then, given a threshold τ , the number of columns in Zi+1 is reduced by
eliminating all those for which tsi > τ . In order for the global preconditioned

residual
N∑
s=1

Hsri+1 to be included in the search space (as is always the case

in PCG), we add it to Zi+1 in a separate column. This way we obtain a
minimization space range(Pi) of dimension anywhere between 1 and N

An important question is of course how to choose τ . Considering that tsi
measures the (inverse of the) impact of one of N contributions compared to
the impact of the sum of the N contributions, it is quite natural to choose
τ ≈ N . In the next section, we illustrate the behaviour of the adaptive
algorithm with the τ -test for values of τ ranging between N/10 and 10N
with satisfactory results.

In order to determine whether or not tsi ≤ τ (i.e., perform the τ -test)
it is necessary to compute tsi . Here, we will not discuss how to do this at
the smallest cost but it is of course an important consideration (that was
discussed for the AMPCG algorithm applied to BDD in [25]). One note-
worthy observation is that if H were either the Additive Schwarz (AS), or
the Additive Schwarz with Harmonic overlap (ASH [6]) preconditioner (i.e.,

H =
∑N

s=1 R
s⊤As−1Rs or H =

∑N
s=1 R

s⊤As−1R̃s) then all terms involving
Hs⊤AHs would simplify since, obviously, As−1RsARs⊤As−1 = As−1.

Another option is to prescribe a number m of vectors to be selected at
each iteration instead of a threshold τ , and keep the m vectors with smallest
values of tsi . Then, only the second factor in (1) would be required. We leave
a more in depth study of these questions for future work.

2.2 Aggregate search directions

Here, we propose a completely different, and much simpler, way of reducing
the number of vectors in Zi+1. This is to choose a prescribed number m,
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with m ≤ N , of search directions per iteration, and a partition of J1, NK into
m subsets. Then, the columns of Zi+1 that correspond to the same subset
are simply replaced by their sum, leaving m vectors. We refer to this as
aggregation as it is the same as assembling coarse domains from the original
subdomains and computing coarse search directions as sums of the Hs

i+1.
The question of how to choose m is of course important. It can be a fraction
of N or the maximal size of the dense matrix that the user is prepared to
factorize. In the next section, we consider values ranging from N/20 to N .

3 Numerical Results with FreeFem++ [16] and GNU
Octave [9]

In this section, we consider the linear elasticity equations posed in Ω = [0, 1]2

with mixed boundary conditions. We search for u = (u1, u2)
⊤ ∈ H1(Ω)2 such

that




−div(σ(u)) = (0, 0)⊤, in Ω,
u = (1/2(y(1− y)), 0)⊤, on {(x, y) ∈ ∂Ω : x = 0},

u = (−1/2(y(1− y)), 0)⊤, on {(x, y) ∈ ∂Ω : x = 1},
σ(u) · n = 0, on the rest of ∂Ω (n: outward normal).

The stress tensor σ(u) is defined by σij(u) = 2µεij(u)+λδijdiv(u) for i, j =

1, 2 where εij(u) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, δij is the Kronecker symbol and the

Lamé coefficients are functions of Young’s modulus E and Poisson’s ratio ν :
µ = E

2(1+ν) , λ = Eν
(1+ν)(1−2ν) . In all test cases, ν is uniform and equal either

to 0.4 (compressible test case) or 0.49999 (almost incompressible test case)
while E varies between 106 and 1012 in a pattern presented in Figure 1–left.
The geometries of the solutions are also presented in this figure.

The computational domain is discretized into a uniform mesh with mesh
size: h = 1/60, and partitioned into N = 100 subdomains by the automatic
graph partitioner METIS [17]. One layer of overlap is added to each subdo-
main. In the compressible case, the system is discretized by piecewise second
order polynomial (P2) Lagrange finite elements. In the almost incompressible
setting it is known that the locking phenomenon occurs rendering the solution
unreliable. To remedy this, the problem is rewritten in a mixed formulation
with an additional unknown p = div(u), and then discretized. Although the
P2−P0 mixed finite element does not satisfy the discrete inf-sup condition it is
often used in practice, and we choose it here. Finally, the pressure unknowns
are eliminated by static condensation.

In both cases the problem has 28798 degrees of freedom (once degrees
of freedom corresponding to Dirichlet boundary conditions have been elimi-
nated). As an initial guess, we first compute a random vector v and then scale
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it to form x0 = b⊤v
‖v‖2

A
, according to what is proposed in [28]. This guarantees

that ‖x∗ − x0‖A ≤ ‖x∗‖A: the initial error is at most as large as it would be
with a zero initial guess.

In table 1, we report on the number of iterations needed to reduce the
initial error ‖x∗ − x0‖A by a factor 10−7 and on the size of the minimiza-
tion space that was constructed to do this, which is

∑
i

rank(Pi). Note that,

although they are presented in the same table, we cannot compare the com-
pressible and incompressible test cases as they are simply not the same prob-
lem. Figures 2, 3, 4 and 5 show in more detail the convergence behaviour of
each method.

The first point to be made is that the MPCG algorithm does an excellent
job at reducing the number of iterations. This can be observed by looking
at the data for m = 100 = N directions per iteration in Figures 4 and 5.
The iteration counts are reduced from 889 to 60 and from over 999 to 56
compared to the classical PCG iterations (m = 1 direction per iteration).
Secondly the adaptation steps that we introduced seem to do their job since
they ensure fast convergence with smaller minimization spaces. In particular,
all of these adaptive methods converged in less than 512 iterations even for
the incompressible case (for which the usual PCG still has a relative error of
8 · 10−4 after 999 iterations).

With the τ -test, the number of iterations is always reduced by a factor at
least 8 compared to PCG even with the smallest threshold τ = 10 = N/10.
With τ = 10N the number of iterations is almost the same as with the full
MPCG. For these test cases the choice τ = N advocated in Section 2 seems
to be a good compromise.

With the aggregation procedure, convergence is achieved even when the
coarsening is quite aggressive (5 vectors per iteration means that 20 local
contributions have been added together to form the search direction). As
expected, keeping more vectors per iteration yields significantly better results
in terms of iteration count.

Based on these results, it is not possible to compare the two approaches
and future work will definitely be focused on an optimized implementation
and on decreasing the CPU time.

4 Conclusions and Future Work

In this work, we have implemented the MPCG [4, 13] algorithm for Re-
stricted Additive Schwarz. We have observed very good convergence on test
cases with known difficulties (heterogeneities and almost incompressible be-
haviour). This is a confirmation that multipreconditioning is a valuable tool
to improve robustness. The main focus of this article has been to propose
an adaptive version of the algorithm so that, when possible, the cost of each
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Fig. 1 Test case setup (all three configurations are drawn to scale). Left: Young’s modulus

– E = 106 with square inclusions of larger E, up to 1012. Middle: Solution for ν = 0.4.
Right: Solution for ν = 0.49999.
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Fig. 2 Compressible test case – reducing the number of directions with the τ -test – error

norm versus iteration count for different values of τ

iteration and the cost of storage can be reduced while maintaining fast con-
vergence. To this end, we have introduced two methods to reduce the number
of search directions at each iteration: one is based on the so called τ -test, and
the other on adding some local components together. Numerical results have
confirmed that both these approaches behave as expected.

One important feature of the algorithms proposed is that they are com-
pletely algebraic in that they can be applied to any symmetric, positive def-
inite matrix A without any extra knowledge.
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Fig. 3 Incompressible test case – reducing the number of directions with the τ -test – error

norm versus iteration count for different values of τ
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Fig. 4 Compressible test case – reducing the number of directions by aggregating them

into m vectors – error norm versus iteration count for different values of m
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Fig. 5 Incompressible test case – reducing the number of directions by aggregating them
into m vectors – error norm versus iteration count for different values of m

Compressible Incompressible

τ -test (see Fig. 2) Aggregates (see Fig. 4) τ -test (see Fig. 3) Aggregates (see Fig. 5)

τ iter. # vec. m iter. # vec. τ iter. # vec. m iter. # vec.

10 104 6059 1 889 890 10 124 4865 1 > 999 >1000
25 85 5769 5 381 1910 25 99 4889 5 512 2565

50 91 6625 10 277 2780 50 79 4621 10 345 3460
100 82 6339 20 186 3740 100 72 4521 20 194 3900

200 84 6876 40 111 4480 200 68 4593 40 125 5040

400 78 6817 100 60 6100 400 65 4552 100 56 5700
1000 69 6153 1000 68 5156

Table 1 Summary of all numerical results presented. iter.: number of iterations needed

to reduce the initial error by a factor 10−7. # vec.: size of the minimization space. There
are two test cases: Compressible and Incompressible, and for each there are two ways of

reducing the number of search directions at each iteration: with the τ -test (as proposed in

Subsection 2.1) or by aggregating into m directions (as proposed in Subsection 2.2).

An optimized parallel implementation is the subject of ongoing work in
order to compare MPCG and the two AMPCG algorithms in terms of CPU
time. Scalability must also be measured. The author is quite confident that
the best AMPCG algorithm should be a combination of the two adaptive
approaches. Additionally there is no reason why the components that are
added together in the aggregation procedure should not first be weighted by
some optimized coefficients, turning the algorithm into a multilevel one.
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Closed Form Inverse of Local
Multi-Trace Operators

Alan Ayala1, Xavier Claeys1, Victorita Dolean2, and Martin J. Gander3

1 Introduction

Local multi-trace operators arise when one uses a particular integral formu-
lation for a transmission problem. A transmission problem for a second order
elliptic operator is a problem defined on a domain which is decomposed into
non-overlapping subdomains, but instead of imposing the continuity of the
traces of the solution and their normal derivative along the interfaces be-
tween the subdomains, given jumps are imposed along the interfaces. The
solution of a transmission problem is thus naturally discontinuous along the
interfaces, and hence a domain decomposition formulation is imposed by the
problem.

A local multi-trace formulation represents the solution in each subdomain
using an integral formulation, and couples these solutions imposing the given
jumps in the traces of the solution and the normal derivatives along the inter-
faces (hence the name multi-trace). This formulation was introduced in [9] to
tackle transmission problems for the Helmholtz equation, where the material
properties are constant in each subdomain, see also [4, 5], and [6] for associ-
ated boundary integral methods. Multi-trace formulations lead naturally to
block preconditioners, see [10]. In [7], a simple introduction to local multi-
trace formulations is given in the language of domain decomposition, and it
is shown that these block preconditioners are equivalent to the simultaneous
application of a Dirichlet-Neumann and a Neumann-Dirichlet method to the
transmission problem. Block preconditioners based on multi-trace formula-
tions have also the potential to lead to nil-potent iterations, a more recent
area of research in domain decomposition [1], and it was shown that for two
subdomains, they correspond to optimal Schwarz methods, see [3].

Universié Pierre et Marie Curie, and INRIA Paris, France claeys@ann.jussieu.fr · Uni-
versity of Strathclyde, Glasgow, United Kingdom Victorita.Dolean@strath.ac.uk · Uni-

versity of Geneva, Switzerland martin.gander@unige.ch
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Fig. 1 Geometrical configuration we consider in the analysis

We are interested here in the inverse of local multi-trace operators. We
exhibit a closed form of this inverse for a model problem with three subdo-
mains in the special case where the coefficients are homogeneous. An essential
ingredient to obtain this closed form inverse are several remarkable identities
which were recently discovered, see [3]. We illustrate our findings with a nu-
merical experiment that shows that discretizing the closed form inverse gives
indeed and approximate inverse of the discretized local multi-trace operator.

2 Local Multi-Trace Formulation

We start by introducing the local multi-trace formulation for a model prob-
lem. Consider a partition of the space Rd = Ω0∪Ω1∪Ω2 as shown in Figure 1.
We assume that Ωj , j = 0, 1, 2 are Lipschitz domains such that Ωj ∩Ωk = ∅
for j 6= k. Denoting by Γj := ∂Ωj , we assume in addition that Γ1 ∩ Γ2 = ∅
and Γ0 = Γ1 ∪ Γ2. Let nj be the unit outer normal for Ωj on its boundary
Γj . For a sufficiently regular function v we denote by v|+Γj

the trace of v and

by ∂nj
v|+Γj

the trace of nj · ∇v on Γj taken from inside of Ωj . Similarly we

define v|−Γj
and ∂nj

v|−Γj
but with traces from outside of Ωj .

The elliptic transmission problem for which we want to study the local
multi-trace formulation and its inverse is: find u ∈ H1(Rd) such that

−∆u+ a2ju = 0 in Ωj , j = 0, 1, 2,
[u]Γ1

= g1, [u]Γ2
= g2,

[∂nu]Γ1 = h1, [∂nu]Γ2 = h2,
(1)

where aj > 0 for j = 0, 1, 2, gj ∈ H+1/2(Γj) and hj ∈ H−1/2(Γj) are given
data of the transmission problem, and we used the classical jump notation
for the Dirichlet and Neumann traces of the solution across the interfaces
Γj , j = 1, 2, i.e. [u]Γj

:= u|+Γj
− u|−Γj

and [∂nu]Γj
:= ∂nj

u|+Γj
− ∂nj

u|−Γj
.
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Following [10], this problem can be rewritten as a boundary integral
local multi-trace formulation, using the Calderón projector: let H(Γj) :=
H1/2(Γj) × H−1/2(Γj); then for (g, h) ∈ H(Γj), the Calderón projector
Pj : H(Γj) → H(Γj) interior to Ωj associated to the operator −∆ + a2j is
defined by

Pj(g, h) := (v|+Γj
, ∂nj

v|+Γj
) where v satisfies

−∆v + a2jv = 0 in Ωj and in Rd \Ωj ,
[v]Γj = g and [∂nv]Γj = h, and
lim sup|x|→∞ |v(x)| < +∞,

and Pj is known to be a continuous map, see [12]. The decomposition Γ0 =
Γ1 ∪ Γ2 induces a natural decomposition of P0 in the following manner: for
any U ∈ H(Γ0) set ρj(U) := U |Γj

∈ H(Γj), j = 1, 2. In addition, for any
V ∈ H(Γj), j = 1, 2, define ρ∗j (V ) ∈ H(Γ0) by ρ∗j (V ) = V on Γj and ρ∗j (V ) = 0
on Γ0 \ Γj . Then the projector P0 can be decomposed as

P0 =

[
P̃1 R1,2/2

R2,1/2 P̃2

]
, where

{
P̃j := ρj · P0 · ρ∗j ,
Rj,k/2 := ρj · P0 · ρ∗k.

The operators P̃j : H(Γj) → H(Γj) and Rj,k : H(Γk) → H(Γj) are continuous.
Following this decomposition, we identify H(Γ0) with H(Γ1)×H(Γ2). We also
introduce the sign switching operator X(v, q) := (v,−q), and a relaxation
parameter σ ∈ C\{0}. The local multi-trace formulation of problem (1) is

then: find (U1, U
(0)
1 , U

(0)
2 , U2) ∈ H(Γ1)

2 ×H(Γ2)
2 such that




(1 + σ)Id− P1 −σX 0 0

−σX (1 + σ)Id− P̃1 −R1,2/2 0

0 −R2,1/2 (1 + σ)Id− P̃2 −σX
0 0 −σX (1 + σ)Id− P2


·




U1

U
(0)
1

U
(0)
2

U2


 = F,

(2)
where F ∈ H(Γ1)

2 × H(Γ2)
2 is some right-hand side depending on gj , hj , σ

whose precise expression is not important for our present study, where we
want to obtain an explicit expression for the operator in (2) and its inverse
for the special case

a0 = a1 = a2. (3)

To simplify the calculations when working with the entries of the operator in
(2), we set Aj := −Id + 2Pj and Ãj := −Id + 2P̃j . The following remarkable

identities were established in [3, §4.4] for the special case (3): P2
j = Pj , P̃2

j =

P̃j , P̃1R1,2 = P̃2R2,1 = 0, XPjX = Id− P̃j , and finally R1,2R2,1 = R2,1R1,2 =
0. These five properties can be reformulated in terms of the operators Aj ,
namely
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i) A2
j = Ã2

j = Id,

ii) Ã1R1,2 = −R1,2 and Ã2R2,1 = −R2,1,

iii) X ·Aj ·X = −Ãj ,
iv) R1,2R2,1 = R2,1R1,2 = 0,

v) R1,2Ã2 = R1,2 and R2,1Ã1 = R2,1.

(4)

Let us introduce auxiliary operators A, Π : H(Γ1)
2 ×H(Γ2)

2 defined by

A :=




A1 0 0 0

0 Ã1 R1,2 0

0 R2,1 Ã2 0
0 0 0 A2


 , Π :=




0 X 0 0
X 0 0 0
0 0 0 X
0 0 X 0


 . (5)

According to property i) in (4), we have (Id + A)2/4 = (Id + A)/2, which
implies the well known Calderón identity from the boundary integral equation
literature, i.e.

A2 = Id, (6)

see for example [11, §4.4]. The local multi-trace operator on the left-hand
side of Equation (2) can then be rewritten as

MTFloc := −1

2
A− σΠ + (σ +

1

2
)Id. (7)

In (2), the terms associated with the relaxation parameter σ, namely Id −
Π, enforce the transmission conditions of problem (1). For σ = 0, we have
MTFloc =

1
2 (Id−A), which is a projector, and MTFloc is thus not invertible.

For σ 6= 0 however, MTFloc was proved to be invertible in [2, Cor. 6.3]. The
goal of the present contribution is to derive an explicit formula for the inverse
of MTFloc, and we will thus assume σ 6= 0.

3 Inverse of the Local Multi-Trace Operator

We now derive a closed form inverse of the local multi-trace operator in (7)
for the special case (3). Using that Π2 = Id and (6), we obtain

[−A/2− σΠ + (σ + 1/2)Id ] [−A/2− σΠ − (σ + 1/2)Id ]

= (A/2 + σΠ)2 − (σ + 1/2)2 Id

= (σ2 + 1/4− σ2 − σ − 1/4)Id + σ(AΠ +ΠA)/2

= −σId + σ(AΠ +ΠA)/2.

(8)

Inspired by the calculations in [3, §4.4] as well as [2, Prop. 6.1], we examine
more closely AΠ +ΠA. We start by comparing AΠ and ΠA:
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AΠ =




0 A1X 0 0

Ã1X 0 0 R1,2X

R2,1X 0 0 Ã2X
0 0 A2X 0


 , ΠA =




0 XÃ1 XR1,2 0
XA1 0 0 0
0 0 0 XA2

0 XR2,1 XÃ2 0


 . (9)

According to Property iii) in (4), we have XÃj+AjX = 0 and XAj+ÃjX = 0,
and thus from (9) we obtain

ΠA+ AΠ =




0 0 XR1,2 0
0 0 0 R1,2X

R2,1X 0 0 0
0 XR2,1 0 0


 .

Computing the square of this operator, and taking into account Property iv)
from (4), we obtain

(ΠA+ AΠ)2 =




XR1,2R2,1X 0 0 0
0 R1,2R2,1 0 0
0 0 R2,1R1,2 0
0 0 0 XR2,1R1,2X


 = 0.

From this we conclude that (−Id+(AΠ+ΠA)/2)−1 = −Id− (AΠ+ΠA)/2.
Coming back to (8), we obtain a first expression for the inverse of the local
multi-trace operator, namely

[−A/2− σΠ + (σ + 1/2)Id ]−1

= σ−1[A/2 + σΠ + (σ + 1/2)Id ] [Id + (AΠ +ΠA)/2]
= σ−1[ 1

2 (1 + σ)A+ (σ + 1/4)Π + (σ + 1/2)(Id + (AΠ +ΠA)/2)]
+ σ−1[ σ

2ΠAΠ + 1
4AΠA].

(10)

The only terms that are not explicitly known yet in (10) are the last two,
ΠAΠ and AΠA. Combining (9) with Definition (5), direct calculation yields

ΠAΠ =




−A1 0 0 XR1,2X

0 −Ã1 0 0

0 0 −Ã2 0
XR2,1X 0 0 −A2


 ,

and similarly, we also obtain

AΠA =




0 −X XR1,2 0
−X 0 0 −R1,2X

−R2,1X 0 0 −X
0 XR2,1 −X 0


 .

We have now derived an explicit expression for each term in (10), which
leads to a close form matrix expression for the inverse of the local multi-trace

Closed Form Inverse of Local Multi-Trace Operators 101



Fig. 2 3D geometry for the numerical experiment

operator, namely

MTF−1
loc = (1 +

1

2σ
)Id +

1

σ




1
2A1 σX σ+1

2 XR1,2
σ
2XR1,2X

σX 1
2 Ã1

σ+1
2 R1,2

σ
2R1,2X

σ
2R2,1X

σ+1
2 R2,1

1
2 Ã2 σX

σ
2XR2,1X

σ+1
2 XR2,1 σX 1

2A2


 .

(11)
The expression MTFloc·MTF−1

loc = Id should not be mistaken for the Calderón
identity (6). The primary difference is that (11) involves coupling terms be-
tween Ω1 and Ω2, whereas in (6), all three subdomains are decoupled.

4 Numerical Experiment

We now illustrate the closed form inversion formula (11) for the local multi-
trace formulation by a numerical experiment. We consider a three dimensional
version of the geometrical setting described at the beginning in Figure 1.
Here Ω1 := B(0, 0.5) is the open ball centered at 0 with radius 0.5, Ω2 :=
R3\[−1,+1]3, and Ω0 := R3 \Ω1 ∪Ω2, see Figure 2.

For our numerical results, we discretize both MTFloc given by (7) leading
to a matrix we denote by [MTFloc], and MTF−1

loc given by (11) leading to a
matrix denoted by [MTF−1

loc]. Our discretization using the code bemtool1 is
based on a Galerkin method where both Dirichlet and Neumann traces are
approximated by means of continuous piece-wise linear functions on the same
mesh. We use a triangulation with a mesh width h = 0.35, and generated the
mesh using Gmsh, see [8].

1 available on https://github.com/xclaeys/bemtool under Lesser Gnu Public License.
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Fig. 3 Eigenvalues of the matrix M−1
h · [MTFloc] · M−1

h · [MTF−1
loc] for σ = − 1

2
, with a

zoom below around 1.

Let Mh be the mass matrix associated with the duality pairing used to
write (2) in variational form. We represent the spectrum of the matrix M−1

h ·
[MTFloc]·M−1

h ·[MTF−1
loc] in Figure 3. We see that the eigenvalues are clustered

around 1, which agrees well with our analysis at the continuous level.

5 Conclusions

We have shown in this paper that it is possible for the local multi-trace oper-
ator of a model transmission problem to obtain a closed form for the inverse.
This would therefore be an ideal preconditioner for local multi-trace formu-
lations. We are currently investigating if such closed form inverses are also
possible for more general situations, where the coefficients are only constant
in each subdomain, and in the presence of more subdomains. The closed form
inverse seems to be inherent to the formulation, and not dependent on the
specific form of the partial differential equation.

Acknowledgement This work received support from the ANR research
Grant ANR-15-CE23-0017-01.
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Schwarz preconditioning for high order
edge element discretizations of the
time-harmonic Maxwell’s equations

M. Bonazzoli1, V. Dolean1,2, R. Pasquetti1, and F. Rapetti1

Abstract We focus on high order edge element approximations of waveguide
problems. For the associated linear systems, we analyze the impact of two
Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the
Optimized Restricted Additive Schwarz (ORAS), on the convergence of the
iterative solver.

1 Introduction

High order discretizations of PDEs for wave propagation can provide a highly
accurate solution with very low dispersion and dissipation errors. The result-
ing linear systems can however be ill conditioned, so that preconditioning
becomes mandatory. Moreover, the time-harmonic Maxwell’s equations with
high frequency are known to be difficult to solve by classical iterative meth-
ods, like the Helmholtz equation [3]. Domain decomposition methods are
currently the most promising techniques for this class of problems (see [1, 2]).

In order to simulate propagation in waveguide structures, we consider the
second order time-harmonic Maxwell’s equation:

∇×
(
1

µ
∇×E

)
+ (iωσ − ω2ε)E = −iωJ, (1)

in the domain D ⊂ R3 contained between two infinite parallel metallic plates
y = 0 and y = Y . The wave propagates in the x-direction and all physical

1 Laboratoire J.A. Dieudonné, University of Nice Sophia Antipolis, Parc Valrose, 06108

Nice Cedex 02, France, e-mail: marcella.bonazzoli@unice.fr,victorita.dolean@unice.

fr,richard.pasquetti@unice.fr,francesca.rapetti@unice.fr
2 Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK,

e-mail: victorita.dolean@strath.ac.uk
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parameters (magnetic permeability µ, electrical conductivity σ, and electric
permittivity ε) are invariant in the z-direction. Equation (1) assumes that
the electric field E(x, t) = Re(E(x)eiωt) has harmonic dependence on time
enforced by the imposed current source J (x, t) = Re(J(x)eiωt), ω being the
angular frequency. We work in a bounded section Ω = (0, X) × (0, Y ) of D
and solve the boundary value problem given by equation (1), where we set
J = 0, with metallic boundary conditions on the waveguide walls:

E× n = 0, on Γw = {y = 0, y = Y },

and impedance boundary conditions at the waveguide entrance and exit:

(∇×E)× n+ iκn× (E× n) = gin, on Γin = {x = 0},
(∇×E)× n+ iκn× (E× n) = gout, on Γout = {x = X},

κ = ω
√
εµ being the wavenumber and n = (nx, ny, 0) the outward normal to

Γ = ∂Ω. The assumptions on Ω and on the physical parameters distribution
are such that E = (Ex, Ey, 0), which yields ∇×E = (0, 0, ∂xEy − ∂yEx).

The variational formulation of the problem is: find E ∈ V such that

∫

Ω

[
µϑE · v + (∇×E) · (∇× v)

]
+

∫

Γin∪Γout

iκ(E× n) · (v × n)

=

∫

Γin

gin · v +

∫

Γout

gout · v, ∀v ∈ V,

with V = {v ∈ H(curl, Ω),v × n = 0 on Γw}, where H(curl, Ω) is the space
of square integrable functions whose curl is also square integrable, ϑ = iωσ−
ω2ε, and µ is supposed constant. To write a finite element discretization of
this problem we introduce a triangulation Th of Ω and a finite dimensional
subspace Vh ⊂ H(curl, Ω). The simplest possible conformal discretization for
the spaceH(curl, Ω) is given by the low order Nédélec edge finite elements [6]:
the local basis functions are associated with the oriented edges E = {vi, vj}
of a given triangle T of Th and they are given by

wE = λi∇λj − λj∇λi,

where the λℓ are the barycentric coordinates of a point w.r.t. the node vℓ.

2 High order edge finite elements

We adopt here the high order extension of Nédélec elements presented in
[7] and [8]. The definition of the basis functions is rather simple since it
only involves the barycentric coordinates of the simplex. Given a multi-index
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k = (k1, k2, k3) of weight k = k1 + k2 + k3 (where k1, k2, k3 are non negative
integers), we denote by λk the product λk1

1 λk2
2 λk3

3 . The basis functions of
polynomial degree r = k + 1 over the triangle T are defined as

we = λkwE , (2)

for all edges E of the triangle T , and for all multi-indices k of weight k.
Notice that these high order elements still yield a conformal discretization of
H(curl, Ω). Indeed, they are products between Nédélec elements, which are
curl-conforming, and the continuous functions λk.

Fig. 1: The small triangles (shaded regions) and their small edges in the
principal lattice of degree r = 3 (left) and r = 5 (right).

An interesting point of the proposed construction is the possible geomet-
rical localization of the basis functions: the couples {k, E} appearing in (2)
are in one-to-one correspondence with small edges e in the principal lattice
of degree r of T (see Fig. 1). More precisely, the small edge e = {k, E} is the
small edge parallel to E that belongs to the small triangle of barycentre G of

coordinates λi(G) = 1/3+ki

k+1 , i = 1, 2, 3. Thanks to the definition of the basis
the circulation of each basis function along a small edge is a constant that
does not depend on the triangle T of the mesh.

Even if the described basis functions are very easy to generate, they don’t
really form a basis as they are not linearly independent. Indeed, for each small
triangle which is not homothetic to the big one (the white ones in Fig. 1) one
can check that the sum of the basis functions associated with its small edges
is zero. Hence a redundant function should be eliminated for each ‘reversed’
small triangle.

3 Schwarz preconditioning

As shown numerically in [7], the matrix of the linear system resulting from the
described high order discretization is ill conditioned. Therefore, we use and
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compare two domain decomposition preconditioners, the Optimized Additive
Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS)

M−1
OAS =

Nsub∑

s=1

RT
s A

−1
s Rs, M−1

ORAS =

Nsub∑

s=1

R̃T
s A

−1
s Rs,

where Nsub is the number of overlapping subdomains Ωs into which the
domain Ω is decomposed. The matrices As are the local matrices of the
subproblems with impedance boundary conditions (∇×E)×n+iκn×(E×n)
as transmission conditions between subdomains.

In order to describe the matrices Rs, R̃s, let N be the set of degrees of
freedom and N =

⋃Nsub

s=1 Ns its decomposition into the subsets corresponding
to different subdomains. The matrix Rs is a #Ns × #N boolean matrix,
which is the restriction matrix from Ω to the subdomain Ωs. Its (i, j) entry
is equal to 1 if the i-th degree of freedom in Ωs is the j-th one in the whole
Ω. Notice that RT

s is then the extension matrix from the subdomain Ωs to

Ω. The matrix R̃s is a #Ns ×#N restriction matrix, like Rs, but with some
of the unit entries associated with the overlap replaced by zeros: this would
correspond to a decomposition into non overlapping subdomains Ω̃s ⊂ Ωs

(completely non overlapping, not even on their border!) (see [4]). This way∑Nsub

s=1 R̃T
s Rs = I, that is the matrices R̃s give a discrete partition of unity

(which is made only of 1 and 0).

4 Numerical results

We present the results obtained for a waveguide with X = 0.0502m,
Y = 0.00254m, with the physical parameters: ε = ε0 = 8.85 · 10−12 Fm−1,
µ = µ0 = 1.26 · 10−6 Hm−1 and σ = 0.15 Sm−1. We consider three angular
frequencies ω1 = 16GHz, ω2 = 32GHz, and ω3 = 64GHz, which correspond
to wavenumbers κ1 = 153.43m−1, κ2 = 106.86m−1, κ3 = 213.72m−1, vary-
ing the mesh size h according to the relation h2 · κ3 = 2 [5].

We solve the linear system with GMRES (with a tolerance of 10−6), start-
ing with a random initial guess, which ensures, unlike a zero initial guess, that
all frequencies are present in the error. We compare the ORAS and OAS pre-
conditioners, taking a stripwise subdomains decomposition, along the wave
propagation, as shown in Fig. 2. Indeed, this is a preliminary testing of the
discretization method and the preconditioner on a simple geometry which is
the two-dimensional rectangular waveguide propagating only one mode; in
this case, it is not necessary to consider more complicated or general decom-
positions.

In our tests we vary the polynomial degree r = k+1, the angular frequency
ω and so the wavenumber κ, the number of subdomains Nsub, and finally the
overlap size δovr. Here, δovr = h, 2h, 4h means that we consider an overlap
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1

Ω
2

Ω
3

Ω

Fig. 2: The stripwise decomposition of the domain.

Table 1: Influence of k (ω = ω2, Nsub = 2, δovr = 2h).

k Ndofs NiterNp Niter max|λ− 1| #{λ : |λ− 1| > 1} #{λ : |λ− 1| = 1}
0 282 179 5(10) 1.04e−1(1.38e+1) 0(4) 0(12)

1 884 559 6(15) 1.05e−1(1.63e+1) 0(8) 0(40)

2 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
3 3048 1946 6(21) 1.05e−1(8.36e+2) 0(16) 0(144)

4 4610 2950 6(26) 1.05e−1(1.57e+3) 0(20) 0(220)

Table 2: Influence of ω (k = 2, Nsub = 2, δovr = 2h).

κ Ndofs NiterNp Niter max|λ− 1| #{λ : |λ− 1| > 1} #{λ : |λ− 1| = 1}
153.43 339 232 5(11) 2.46e−1(1.33e+1) 0(6) 0(45)

106.86 1806 1138 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
213.72 7335 4068 9(24) 3.03e−1(2.73e+1) 0(18) 0(123)

Table 3: Influence of Nsub (k = 2, ω = ω2, δovr = 2h).

Nsub Niter max|λ− 1| #{λ : |λ− 1| > 1} #{λ : |λ− 1| = 1}
2 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4 10(27) 5.33e−1(1.96e+1) 0(38) 0(252)

8 19(49) 7.73e−1(1.96e+1) 0(87) 0(588)

Table 4: Influence of δovr (k = 2, ω = ω2, Nsub = 2).

δovr Niter max|λ− 1| #{λ : |λ− 1| > 1} #{λ : |λ− 1| = 1}
1h 10(20) 1.95e+1(1.96e+1) 3(12) 0(39)

2h 6(17) 1.05e−1(1.96e+1) 0(12) 0(84)
4h 5(14) 1.06e−1(1.96e+1) 0(12) 0(174)
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of 1, 2, 4 mesh triangles along the horizontal direction. Tables 1–4 show the
total number of degrees of freedom Ndofs, the number of iterations Niter for
convergence of GMRES preconditioned with ORAS(OAS) (NiterNp refers to
GMRES without any preconditioner), the greatest distance in the complex
plane between (1, 0) and the eigenvalues of the preconditioned matrix, the
number of eigenvalues that have distance greater than 1, and the number of
eigenvalues that have distance equal to 1 (up to a tolerance of 10−10). Indeed,
if A is the system matrix and M is the domain decomposition preconditioner,
then I −M−1A is the iteration matrix of the domain decomposition method
used as an iterative solver. So, here we see if the eigenvalues of the precon-
ditioned matrix M−1A are contained in the unitary disk centered at (1, 0).
Notice that the matrix of the system doesn’t change when Nsub or δovr vary,
so in Tables 3–4 we don’t report Ndofs = 1806 and NiterNp = 1138 again. In
Figs. 3 and 4 we show for certain values of the parameters the whole spec-
trum of the matrix preconditioned with ORAS and OAS respectively (notice
that many eigenvalues are multiple).
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(a) k = 2, ω2, Nsub = 2, δovr = 2h
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(b) k = 2, ω3, Nsub = 2, δovr = 2h
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(c) k = 2, ω2, Nsub = 4, δovr = 2h
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(d) k = 2, ω2, Nsub = 8, δovr = 2h

Fig. 3: Spectrum in the complex plane of the ORAS-preconditioned matrix.
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(a) k = 2, ω2, Nsub = 2, δovr = 2h
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(d) k = 2, ω2, Nsub = 8, δovr = 2h

Fig. 4: Spectrum in the complex plane of the OAS-preconditioned matrix.

We can see that the non preconditioned GMRES is very slow, and the
ORAS preconditioning gives much faster convergence than the OAS precon-
ditioning. Moreover, convergence becomes slower when k, ω or Nsub increase,
or when the overlap size decreases; actually, when varying k, the number of
iterations for convergence using the ORAS preconditioner is equal to 5 for
k = 0 and then it stays equal to 6 for k > 0.

Notice also that for 2 subdomains the spectrum is well clustered inside
the unitary disk with the ORAS preconditioner, except for the case with
δovr = h, in which 3 eigenvalues are outside with distances from (1, 0) equal
to 19.5, 19.4, 14.4. Then, for 4 and 8 subdomains the spectrum is not so well
clustered. With the OAS preconditioner there are always eigenvalues outside
the unitary disk. For all the considered cases, the less clustered the spectrum,
the slower the convergence.
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5 Conclusion

Numerical experiments have shown that Schwarz preconditioning improves
significantly the GMRES convergence for different values of physical and
numerical parameters, and that the ORAS preconditioner always performs
much better than the OAS preconditioner. The only advantage of the OAS
method is to preserve the symmetry of the preconditioner. Finally, it has
been pointed out that the spectrum of the preconditioned matrix reflects the
convergence qualities, which improve when the eigenvalues are well clustered
inside the unitary disk centered at (1, 0).

Acknowledgement This work was financed by the French National Re-
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MONU-0012.
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On Nilpotent Subdomain Iterations

Faycal Chaouqui1, Martin J. Gander1, and Kévin Santugini-Repiquet2

1 Introduction and model problem

Subdomain iterations which lead to a nilpotent iteration operator converge in a finite
number of steps, and thus are equivalent to direct solvers. Such methods have led
to very powerful new algorithms over the last few years, like the sweeping precon-
ditioner of Engquist and Ying [4, 5], or the source transfer domain decomposition
method of Chen and Xiang [1, 2]. Their underlying mathematical structure are op-
timal Schwarz methods, see [14, 6, 7] and references therein1.

We study here under which conditions the classical Neumann-Neumann,Dirichlet-
Neumann and optimal Schwarz method can be nilpotent for the model problem

ηu− ∂xxu= f in Ω := (0,1), u(0) = u(1) = 0, (1)

and a decomposition of the domain intoJ subdomains,Ω j := (x j−1,x j), with
0 = x0 < x1 < .. . < xJ = 1 and subdomain lengthℓ j := x j − x j−1. For two sub-
domains, we show that they all can be made nilpotent. For three subdomains,
Neumann-Neumann can not be made nilpotent any more, but Dirichlet-Neumann
can. For four subdomains, also Dirichlet-Neumann can not be made nilpotent any
more for general decompositions, but for decompositions with subdomains of equal
size, Dirichlet-Neumann can be made nilpotent for an arbitrary number of subdo-
mains. Optimal Schwarz methods are always nilpotent for an arbitrary number of
subdomains, even unequal ones. Our results indicate that for more general problems
and more than two subdomains, only the optimal Schwarz method will be nilpotent.

1 Université de Genève, Section de mathématiques, e-mail:{Faycal.Chaouqui}{Martin.
Gander}@unige.ch ·2 Université Bordeaux, IMB, CNRS UMR5251, MC2, INRIA Bordeaux
- Sud-Ouest, e-mail:Kevin.Santugini@math.u-bordeaux1.fr

1 Optimal here is not in the sense of scalable, but really optimal: faster convergence is not possible
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2 The Neumann-Neumann algorithm

For two subdomains,J = 2, the Neumann-Neumann algorithm applied to (1) is




ηu(n)j − ∂xxu
(n)
j = f in Ω j ,

u(n)j (x1) = h(n),





ηψ (n)
j − ∂xxψ

(n)
j = 0 in Ω j ,

∂n j ψ
(n)
j (x1) = ∂n1u(n)1 (x1)+ ∂n2u

(n)
2 (x1),

h(n+1) := h(n)−θ(ψ(n)
1 (x1)+ψ(n)

2 (x1)),
(2)

with h(0) an initial guess,θ a relaxation parameter, and in each iterationu(n)1 (0) =

u(n)2 (1) = 0 andψ(n)
1 (0) = ψ(n)

2 (1) = 0.
Since the problem is linear, it suffices to consider the homogeneous case of equa-

tion (1) and analyze the convergence of (2) to the zero solution. Forη > 0 andf = 0,
the differential equations in (2) can readily be solved2, and we obtain for the relax-
ation after a short calculation the relation

h(n+1) = (1−θ(2+ϕ (η )))h(n), ϕ (t) :=
tanh(

√
tℓ1)

tanh(
√

tℓ2)
+

tanh(
√

tℓ2)

tanh(
√

tℓ1)
, t > 0. (3)

Proposition 1. For two subdomains, the Neumann-Neumann algorithm(2) is con-
vergent iff0< θ < θ∗

η , θ∗
η := 2

2+ϕ (η ) . Moreover, convergence is reached after two

iterations forθ :=
θ∗

η
2 , which in the symmetric case (i.e. x1 =

1
2) becomesθ := 1

4,
i.e. the method is then nilpotent.

Proof. The convergence factor of the Neumann-Neumann algorithm (2) isρθ,η :=
|1−θ(2+ϕ (η ))|, and thus the algorithm is convergent iffρθ,η < 1, which is equiv-

alent to requiring that 0< θ < θ∗
η . Moreover,ρθ,η vanishes whenθ :=

θ∗
η
2 , which

makes the algorithm nilpotent.

Proposition 2. For three subdomains, it is not possible to make the Neumann-
Neumann algorithm nilpotent in general.

Proof. We consider the analogous definition of the Neumann-Neumann algorithm
from (2) for three equal subdomains, i.e.x0 = 0, x1 =

1
3, x2 =

2
3, x3 = 1, and obtain

after a short calculation as in Proposition 1 with explicit subdomain solutions
(

h(n+1)
1

h(n+1)
2

)
=

(
1−θ1(4+ 1

s2 ) − θ1
cs2

− θ2
cs2

1−θ2(4+ 1
s2 )

)(
h(n)1

h(n)2

)
, (4)

wheres := sinh(
√η/3) and c := cosh(

√η/3). Convergence in a finite number
of iterations is possible iff the spectral radius of the iteration matrix in (4) vanishes,
which means that the characteristic polynomial must be a monomial of degree 2. The
fact that the other coefficients must vanish implies that the relaxation parametersθ1

andθ2 must satisfy the system of equations

2 all our results remain valid also forη = 0 by taking limits
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(4+
1
s2 )θ1+(4+

1
s2 )θ2 = 2 and (4+

1
s2 )

2θ1θ2 = α , (5)

whereα :=
(4+ 1

s2
)2

(4+ 1
s2
)2−( 1

s2c
)2

> 1. Now (5) has no real solution, since the associated

characteristic equationλ 2−2λ +α = 0 does not admit one. It is thus not possible
in general to obtain a nilpotent iteration for the Neumann-Neumann algorithm with
three subdomains.

We will see in the numerical section that also for more than three subdomains, it is
not possible in general to make the Neumann-Neumann algorithm nilpotent, and we
will even get divergent iterations.

3 The Dirichlet-Neumann algorithm

The Dirichlet-Neumann algorithm applied to (1) for two subdomains is

{
ηu(n)1 − ∂xxu

(n)
1 = f in Ω1,

u(n)1 (x1) = h(n),

{
ηu(n)2 − ∂xxu

(n)
2 = f in Ω2,

∂xu
(n)
2 (x1) = ∂xu

(n)
1 (x1),

h(n+1) := (1−θ)h(n)+θu(n)2 (x1),

(6)

with h(0) an initial guess,θ a relaxation parameter, andu(n)1 (0) = u(n)2 (1) = 0. As for
the Neumann-Neumann algorithm, we study the homogeneous part of eq. (1), and
obtain after a short calculation using the explicitly available subdomain solutions

h(n+1) = (1−θ(1+ψ(η )))h(n), ψ(t) :=
tanh(

√
tℓ2)

tanh(
√

tℓ1)
, t > 0. (7)

Proposition 3. The Dirichlet-Neumann algorithm(6) is convergent for two subdo-
mains iff0 < θ < θ∗

η , θ∗
η := 2

1+ψ(η ) . Moreover, convergence is reached after two

iterations forθ :=
θ∗

η
2 , which in the symmetric case (i.e. x1 =

1
2) becomesθ := 1

2,
i.e. the algorithm is then nilpotent.

Proof. The proof is similar to the proof of Proposition 1.

Proposition 4. For three subdomains, the Dirichlet-Neumann algorithm converges
in three iterations if either

(θ∗
1 ,θ

∗
2 ) =

(
1−

√
1−α

1+
c1s2
s1c2

, 1+
√

1−α
1+

s2s3
c2c3

)
or (θ∗

1 ,θ
∗
2 ) =

(
1+

√
1−α

1+
c1s2
s1c2

, 1−
√

1−α
1+

s2s3
c2c3

)
, (8)

where si := sinh(
√

η ℓi), ci := cosh(
√

η ℓi), i = 1, . . . ,3, andα :=
(1+

c1s2
s1c2

)(1+
s2s3
c2c3

)

1+
c1s2
s1c2

+
s2s3
c2c3

+
c1s3
s1c3

.
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Proof. With the analogously to (6) defined Dirichlet-Neumann algorithm for three
subdomains, and solving the subdomain problems explicitly, we obtain after a short
calculation

(
h(n+1)

1

h(n+1)
2

)
=

(
1−θ1(1+

c1s2
s1c2

) θ1
c2

−θ2
c1s3

s1c2c3
1−θ2(1+

s2s3
c2c3

)

)(
h(n)1

h(n)2

)
, (9)

and the matrix is nilpotent iff its spectral radius vanishes, i.e.

θ1(1+
c1s2

s1c2
)+θ2(1+

s2s3

c2c3
) = 2, (1+

c1s2

s1c2
)(1+

s2s3

c2c3
)θ1θ2 = α . (10)

This system admits the real solutions given in (8), since 0< α < 1.

Proposition 5. For four subdomains, convergence of the Dirichlet-Neumann algo-
rithm in a finite number of iterations can not always be achieved.

Proof. We focus for simplicity on the caseη = 0 and obtain for the analogously to
(6) defined Dirichlet-Neumann algorithm for four subdomains after a short calcula-
tion




h(n+1)
1

h(n+1)
2

h(n+1)
3


=




1−
(
ℓ2
ℓ1
+1
)

θ1 θ1 0

− θ2ℓ3
ℓ1

1−θ2 θ2

− θ3ℓ4
ℓ1

0 1−θ3







h(n)1

h(n)2

h(n)3


 . (11)

For nilpotence, the spectral radius of (11) must vanish, which means that the char-
acteristic polynomial must be a monomial of degree 3. The fact that the other coef-
ficients must vanish implies after a short calculation thatθ1, θ2 andθ3 must satisfy
the system of equations(1+ ℓ2

ℓ1
)θ1+θ2+θ3 = 3, (1+ ℓ2+ℓ3

ℓ1
)θ1θ2+(1+ ℓ2

ℓ1
)θ1θ3+

θ2θ3 = 3, (1+ ℓ2+ℓ3+ℓ4
ℓ1

)θ1θ2θ3 = 1. Substituting the first equation into the second

one we obtainℓ1+ℓ2+ℓ3
ℓ1

θ1θ2+θ3(3−θ3) = 3 =⇒ (1−ℓ4)
ℓ1

θ1θ2+θ3(3−θ3) = 3, and

replacingθ1θ2 by ℓ1
θ3

yields 1− ℓ4+θ2
3 (3−θ3) = 3θ3 =⇒ (θ3−1)3 =−ℓ4 =⇒

θ∗
3 = 1− 3

√
ℓ4. We therefore get

(1+
ℓ2

ℓ1
)θ1+θ2 = 3−θ∗

3 , (1+
ℓ2

ℓ1
)θ1θ2 = (1+

ℓ2

ℓ1
)
ℓ1

θ∗
3
. (12)

The system (12) has real solutions if and only if the discriminant is non negative,

∆ :=
(
−3ℓ4−4ℓ3+3ℓ2/3

4

)(
3
√
ℓ4−1

)−1
≥ 0, (13)

which is equivalent to−3ℓ4− 4ℓ3 + 3ℓ2/3
4 ≤ 0, and hence if this condition is not

satisfied, the algorithm can not be made nilpotent.

We will see in Section 5 that for subdomains of equal size, Dirichlet-Neumann can
be made nilpotent also for a larger number of subdomains.
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4 The Optimal Schwarz algorithm

A non-overlapping Schwarz algorithm for (1) with two subdomains is

{
ηu(n+1)

1 − ∂xxu
(n+1)
1 = f in Ω1,

(∂x+ p+1 )u
(n+1)
1 (x1) = (∂x+ p+1 )u

(n)
2 (x1),

{
ηu(n+1)

2 − ∂xxu
(n+1)
2 = f in Ω2,

(∂x− p−2 )u
(n+1)
2 (x1) = (∂x− p−2 )u

(n)
1 (x1),

(14)
with p+1 , p

−
2 > 0 andu(n)1 (0) = u(n)2 (1) = 0. A direct computations shows that an

optimal Schwarz method converging in two iterations is obtained for an arbitrary
initial guess ifp+1 =

√η coth(
√η ℓ2) andp−2 =

√η coth(
√η ℓ1), and we even have

Proposition 6. For J subdomains, letℓ+j := xJ−x j , j = 1. . . ,J−1 andℓ−j := x j−1−
x0, j = 2, . . . ,J. Then setting p−j :=

√η coth(
√η ℓ−j ) and p+j :=

√η coth(
√η ℓ+j )

in an analogously to(14) defined algorithm with J≥ 2 subdomains, an optimal
Schwarz method converging in J iterations is obtained.

Proof. By linearity, we again study convergence to the zero solution. Letu(n)j be the
approximate solution in eachΩ j at iterationn. First we prove that if

∂xu
(n)
j + p+j u(n)j = 0 atx= x j =⇒ ∂xu

(n)
j + p+j−1u

(n)
j = 0 atx= x j−1,

∂xu
(n)
j − p−j u(n)j = 0 onx= x j−1 =⇒ ∂xu

(n)
j − p−j+1u

(n)
j = 0 onx= x j .

(15)

To see this, suppose that∂xu
(n)
j + p+j u(n)j = 0 on x = x j , and letv be defined by

v(x) := u(n)j (x j−1)
sinh(

√η (xJ−x))
sinh(

√η ℓ+j−1)
. Then∂xv+ p+j v= 0 atx= x j , and by construction

v(x j−1) = u(n)j (x j−1). Hencev satisfies

(η − ∂xx)(u
(n)
j − v) = 0 in (x j−1,x j),

(∂x+ p+j )(u
(n)
j − v) = 0 atx= x j , u(n)j − v= 0 atx= x j−1.

(16)

Therefore, by uniqueness of the solution we must haveu(n)j = v on (x j−1,x j) and

thus∂xu
(n)
j + p+j−1u

(n)
j at x= x j−1, as it holds forv. The proof for the second line in

(15) is similar.
Now since∂xu

(1)
1 − p−2 u(1)1 = 0, we have from the transmission condition∂xu

(2)
2 −

p−2 u(2)2 = ∂xu
(1)
1 − p−2 u(1)1 = 0, which gives∂xu

(2)
2 − p−3 u(2)2 = 0, and using the trans-

mission condition again we get∂xu
(3)
3 − p−3 u(3)3 = ∂xu

(2)
2 − p−3 u(2)2 = 0, and so on,

until ∂xu
(J)
J − p−J u(J)J = 0 and a similar argument holds forp+j . Hence, afterJ itera-

tions the interior iteratesu(J)j satisfy

(η − ∂xx)(u
(J)
j ) = 0 in (x j−1,x j),

(∂x+ p+j )u
(J)
j = 0 atx= x j , (∂x− p−j )u

(J)
j = 0 atx= x j−1,

(17)
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and on the domains on the left and right, we get

(η − ∂xx)(u
(J)
1 ) = 0 in (x0,x1),

(∂x+ p+1 )u
(J)
1 = 0 atx= x1,

u(J)1 = 0 atx= x0.

(η − ∂xx)(u
(J)
J ) = 0 in (xJ−1,xJ),

(∂x− p−J )u
(J)
J = 0 atx= xJ−1.

u(J)J = 0 atx= xJ,

(18)

Hence,u(J)j = 0, for all j = 1, . . . ,J, which concludes the proof.

One can show that this result still holds in higher dimensions for a decomposition
into strips, provided one uses the then non-local Dirichlet to Neumann operators in
the transmission conditions, see [14]. One can however also obtain a nilpotent itera-
tion with less restrictions, which also holds for higher dimensions just by replacing
the transmission parameters below by the Dirichlet to Neumann operators again.

Proposition 7. For J subdomains and1 < d < J,3 choosing p−j for j = 2, . . . ,d
and p+j for j = d, . . .J− 1 as in Proposition 6, optimal Schwarz will converge in
2J∗−1 iterations where J∗ := max(d,J−d+1), independently of the choice of the
remaining p−j , p

+
j .

Proof. Following the proof of Proposition 6, afterj∗ :=max(d,J−d+1) iterations,

theu( j∗)
d satisfy

(η − ∂xx)(u
( j∗)
d ) = 0 in (xd−1,xd),

(∂x− p−d )u
( j∗)
d = 0 atx= xd−1, (∂x+ p+d )u

( j∗)
d = 0 atx= xd.

(19)

Henceu( j∗)
d vanishes in(xd−1,xd) and it follows thatu( j∗+ j−d)

j = 0 for j = d+

1, . . .J, andu( j∗+ j)
d− j = 0 for j = 1, . . .d− 1. Thus optimal Schwarz will converge

after j∗ +max(d−1,J−d) = 2 max(d,J−d+1)−1 iterations, which concludes
the proof.

5 Numerical experiments

We discretize our model problem (1) using finite differences with a mesh size∆x=
10−5 and chose the right hand side such that the exact solution is sin(πx) for the
parameterη = 1. We decompose the domain intoJ= 2,3, . . . ,10 equal subdomains,
and start the iterations with a random initial guess. For each algorithm, we use the
best possible relaxation parameters, i.e. the ones that minimize the spectral radius of
the iteration operator, and we plot the error versus iteration on a semi-log scale. In
Figure 1 we see on the left that Neumann-Neumann is nilpotent for 2 subdomains,

3 Even the cased = 1 andd = J can be handled by changing one of the Robin conditions into a
Dirichlet one
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Fig. 1 Error versus number of iterations for Neumann-Neumann (left), Dirichlet-Neumann (mid-
dle), and optimal Schwarz (right) for different numbers of subdomainsJ = 2,3, . . . ,10 using the
best possible relaxation parameters at the interfaces.

as shown in Proposition 1. For 3, 4 and 5 subdomains, Neumann-Neumann still
converges, but is not nilpotent, see Proposition 2, and for more than 5 subdomains,
the iterations even diverge. One can show that the convergence factor of Neumann-
Neumann for this model problem with optimized relaxation parameters behaves like
O( 1

ℓ2 ) whereℓ is the subdomain size, so divergence will always set in at some point.
For Dirichlet-Neumann in the middle of Figure 1, we see nilpotence for allJ in this
special case of equal sized subdomains, but this would not be the case for general
decompositions, see Proposition 5. The optimal Schwarz method on the right of
Figure 1 always converges inJ iterations, as expected from Proposition 6.

6 Conclusion

We showed for a one dimensional model problem that the Neumann-Neumann
method can only be nilpotent for a decomposition into two general subdomains;
the Dirichlet-Neumann method can be nilpotent also for a decomposition into 3
general subdomains, but not any more for a decomposition into four general sub-
domains. We expect that for subdomains of equal size, Dirichlet-Neumann can
be made nilpotent for an arbitrary number of subdomains. The optimal Schwarz
method is nilpotent for a decomposition into an arbitrary number of subdomains,
also of unequal size and in higher spatial dimensions, and this even if one does
not use systematically the Dirichlet to Neumann operators, see our new result in
Proposition 7. Our negative results for Neumann-Neumann and Dirichlet-Neumann
methods in one spatial dimension imply that these algorithms can not be nilpotent in
higher spatial dimensions either. For the Dirichlet-Neumann method and equal sub-
domains, our result indicates that nilpotence is also possible in higher dimensions
for a strip decomposition, provided that the relaxation parameters become non-local
operators. Optimal Schwarz methods are nilpotent in higher dimensions without
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any restrictions. Such nilpotent iterations have led to some of the best solvers for
Helmholtz problems recently, see [11, 12, 4, 5, 1, 2, 15], and have been important
in the development of optimized Schwarz methods [13, 3, 6, 7]. Well chosen coarse
corrections can make a domain decomposition method also nilpotent, see the very
recent discoveries in [8, 9, 10].
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A Direct Elliptic Solver Based on
Hierarchically Low-rank Schur
Complements

Gustavo Chávez, George Turkiyyah, and David Keyes

1 Introduction

Cyclic reduction was conceived in 1965 for the solution of tridiagonal lin-
ear systems, such as the one-dimensional Poisson equation [12]. Generalized
to higher dimensions by recursive blocking, it is known as block cyclic re-
duction (BCR) [5]. It can be used for general (block) Toeplitz and (block)
tridiagonal linear systems; however, it is not competitive for large problems,
because its arithmetic complexity grows superlinearly. Cyclic reduction can
be thought of as a direct Gaussian elimination that recursively computes the
Schur complement of half of the system. The complexity of Schur comple-
ment computations is dominated by the inverse. By considering a tridiagonal
system and an even/odd ordering, cyclic reduction decouples the system such
that the inverse of a large block is the block-wise inverse of a collection of
independent smaller blocks. This addresses the most expensive step of the
Schur complement computation in terms of operation complexity and does
so in a way that launches concurrent subproblems. Its concurrency feature, in
the form of recursive bisection, makes it interesting for parallel environments,
provided that its arithmetic complexity can be improved.

We address the time and memory complexity growth of the traditional
cyclic reduction algorithm by approximating dense blocks as they arise with
hierarchical matrices (H-Matrices). The effectiveness of the block approxi-
mation relies on the rank structure of the original matrix. Many relevant
operators are known to have blocks of low rank off the diagonal. This philos-
ophy follows recent work discussed below, but to our knowledge this is the
first demonstration of the utility of complexity-reducing hierarchical substi-
tution in the context of cyclic reduction.

{gustavo.chavezchavez,george.turkiyyah,david.keyes}@kaust.edu.sa, Extreme Com-
puting Research Center, King Abdullah University of Science and Technology, Thuwal

23955, Saudi Arabia.
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The synergy of cyclic reduction and hierarchical matrices leads to a par-
allel fast direct solver of log-linear arithmetic complexity, O(N log2 N), with
controllable accuracy. The algorithm is purely algebraic, depending only on a
block tridiagonal structure. We call it Accelerated Cyclic Reduction (ACR).
Using a well-known implementation of H-LU [9], we demonstrate the range of
applicability of ACR over a set of model problems including the convection-
diffusion equation with recirculating flow and the wave Helmholtz equation,
problems that cannot be tackled with the traditional FFT enabled version
of cyclic reduction, FACR [18]. We show that ACR is competitive in time
to solution as compared with a global H-LU factorization that does not ex-
ploit the cyclic reduction structure. The fact that ACR is completely alge-
braic expands its range of applicability to problems with arbitrary coefficient
structure within the block tridiagonal sparsity structure, subject to their
amenability to rank compression. This gives the method robustness in some
applications that are difficult for multigrid. The concurrency and flexibility
to tune the accuracy of individual matrix block approximations makes it in-
teresting for emerging many-core architectures. Finally, as with other direct
solvers, there are complexity-accuracy tradeoffs that would naturally lead to
the development of a new scalable preconditioner based on ACR.

2 Related Work

Exploiting underlying low-rank structure is a trending strategy for improving
the performance of sparse direct solvers.

Nested dissection based clustering of an H-Matrix is known as
H-Cholesky by Ibragimov et al. [13] and H-LU by Grasedyck et al. [9], the
main idea being to introduce H-Matrix approximation on Schur complements
based on domain decomposition. This is accomplished by a nested dissection
ordering of the unknowns, and the advantage is that large blocks of zeros
are preserved after factorization. The non-zero blocks are replaced with low-
rank approximations, and an LU factorization is performed, using hierarchical
matrix arithmetics. Recently, Kriemann et al. [14] demonstrated that H-
LU implemented with a task-based scheduling based on a directed acyclic
graph is well suited for modern many-core systems when compared with the
conventional recursive algorithm. A similar line of work by Xia et al. [21] also
proposes the construction of a rank-structured Cholesky factorization via
the HSS hierarchical format [6]. Figure 1 illustrates the differences between
nested dissection ordering and the even/odd (or red/black) ordering of cyclic
reduction.

Multifrontal factorization, with low-rank approximations of frontal
matrices, as in the work of Xia et al. [19] also relies on nested dissection
as the permutation strategy, but it uses the multifrontal method as a solver.
Frontal matrices are approximated with the HSS format, while the solver
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relies on the corresponding HSS algorithms for elimination [20]. A similar
line of work is the generalization of this method to 3D problems and general
meshes by Schmitz et al. [17, 16]. More recently, Ghysels et al. [8] introduced
a method based on a fast ULV decomposition and randomized sampling of
HSS matrices in a many-core environment, where HSS approximations are
used to approximate fronts of large enough size, as the complexity constant
in building an HSS approximation is only convenient for large matrices.

This strategy is not limited to any specific hierarchical format. Aminfar et
al. [3] proposed the use of the HODLR matrix format [1], also in the context
of the multifrontal method. The well known solver MUMPS now also ex-
ploits the low-rank property of frontal matrices to accelerate its multifrontal
implementation, as described in [2].

Consider a 2D domain
Nested dissection
clusters contiguous

unknowns

Cyclic reduction
clusters staggered

unknowns

Fig. 1 The nested dissection ordering recursively clusters contiguous unknowns by bi-
section, whereas the red/black ordering recursively clusters staggered unknowns, allowing

isolation of a new readily manipulated diagonal block.

3 Accelerated Cyclic Reduction

Consider the two-dimensional linear variable-coefficient Poisson equation (1)
and its corresponding block tridiagonal matrix structure resulting from a
second order finite difference discretization, as shown in (2):

−∇ · κ(x)∇u = f(x), (1)

A = tridiag(Ei, Di, Fi) =




D1 F1

E2 D2 F2

. . .
. . .

. . .
En−1 Dn−1 Fn−1

En Dn



. (2)

We leverage the fact that for arbitrary κ(x), the tridiagonal blocks Di

are exactly representable by rank 1 H-Matrix since the off-diagonal blocks
have only one entry regardless of their coefficient, and the blocks Ei and Fi
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are diagonal. As cyclic reduction progresses, the resulting blocks will have
a bounded increase in the numerical ranks of their off-diagonal blocks. This
numerical off-diagonal rank may be tuned to accommodate for a specified
accuracy. We choose the H-Matrix format proposed in [10] by Hackbusch,
although ACR is not limited to a specific hierarchical format. In terms of ad-
missibility condition, we choose weak admissibility, as the sparsity structure
is known beforehand and it proved effective in our numerical experiments.

Approximating each block as an H-Matrix, we use the corresponding hi-
erarchical arithmetic operations as cyclic reduction progresses, instead of the
conventional linear algebra arithmetic operations. The following table sum-
marizes the complexity estimates in terms of time and memory while dealing
with a n×n block in a typical dense format and as a block-wise approximation
with a rank-r H-Matrix.

Inverse Storage
Dense Block O(n3) O(n2)

H Block O(r2n log2 n) O(rn log n)

The following table summarizes the complexity estimates of the methods
discussed so far in a two-dimensional square mesh where N is the total num-
ber of unknowns, neglecting the dependence upon rank. The derivation of
the complexity estimates for H-LU can be found in [4].

Operations Memory
BCR O(N2) O(N1.5)

H-LU O(N log2 N) O(N logN)

ACR O(N log2 N) O(N logN)

With block-wise approximations in place, block cyclic reduction becomes
ACR. BCR consists of two phases: reduction and back-substitution. The re-
duction phase is equivalent to block Gaussian elimination without pivoting
on a permuted system (PAPT )(Pu) = Pf . Permutation decouples the sys-
tem, and the computation of the Schur complement reduces the problem size
by half. This process is recursive and finishes when a single block is reached,
although the recursion can be stopped when the system is small enough to
be solved directly.

As an illustration, consider a system of n = 8 points per dimension, which
translates into a N × N sparse matrix, with N = n2. The first step is to
permute the system, which with an even/odd ordering becomes:




D0 F0

D2 E2 F2

D4 E4 F4

D6 E6 F6

E1 F1 D1

E3 F3 D3

E5 F5 D5

E7 D7







u0

u2

u4

u6

u1

u3

u5

u7




=




f0
f2
f4
f6
f1
f3
f5
f7




. (3)
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Consider the above 2 × 2 partitioned system (3) as H. The upper-left
block is block-diagonal, which means that its inverse can be computed as
the inverse of each individual block (D0, D2, D4, and D6), in parallel and
with hierarchical matrix arithmetics. The Schur complement of the upper-left
partition may then be computed as follows:

[
H11 H12

H21 H22

] [
ueven

uodd

]
=

[
feven
fodd

]
. (4)

(H22 −H21H
−1
11 H12)uodd = f (1), f (1) = fodd −H21H

−1
11 feven. (5)

Superscripts indicates algorithmic steps. A key property of the Schur com-
plement of a block tridiagonal matrix is that it yields another block tridiag-
onal matrix, as can been seen in the resulting permuted matrix system (5):




D
(1)
0 F

(1)
0

D
(1)
2 E

(1)
2 F

(1)
2

E
(1)
1 F

(1)
1 D

(1)
1

E
(1)
3 D

(1)
3







u
(1)
0

u
(1)
2

u
(1)
1

u
(1)
3


 =




f
(1)
0

f
(1)
2

f
(1)
1

f
(1)
3


 . (6)

One step further, the computation of the Schur complement of the per-
muted system (6), results in:



D

(2)
0 F

(2)
0

E
(2)
1 D

(2)
1






u
(2)
0

u
(2)
1


 =



f
(2)
0

f
(2)
1


 . (7)

A last round of permutation and Schur complement computation leads

to the D
(3)
0 block, which is the last step of the reduction phase of Cyclic

Reduction. A back-substitution phase to recover the solution also consists
of log n steps. Each step involves matrix-vector products involving the off-
diagonal blocks E(i) and F (i) and the inverses of the diagonal D(i) blocks
computed during the elimination phase. These matrix-vector operations are
done efficiently with hierarchical matrix arithmetics.

4 Numerical Results in 2D

We select two test cases to provide a baseline of performance and robust-
ness as compared with the H-LU implementation in HLIBpro [11], and with
the AMG implementation in Hypre [15]. Tests are performed in the shared
memory environment of a 36-core Intel Haswell processor.

The first test is the wave Helmholtz equation.
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∇2u+ k2u = f(x), x ∈ Ω = [0, 1]2 u(x) = 0, x ∈ Γ

f(x) = 100e−100((x−0.5)2+(y−0.5)2).
(8)

For large values of kh, where h is the mesh spacing, discretization leads to
an indefinite matrix. Performance over a range of k is shown in Figure 2, for
h = 2−10. We compare ACR and H-LU with AMG as a direct solver and as a
preconditioner in combination with GMRES. For small α AMG outperforms
the direct methods, but AMG loses robustness with rising indefiniteness.

The second test is convection-diffusion equation with recirculating flow.

−∇2u+ αb(x) · ∇u = f(x), x ∈ Ω = [0, 1]2 u(x) = 0, x ∈ Γ

b(x) =

(
sin(4πx) sin(4πy)

cos(4πx) cos(4πy)

)
f(x) = 100e−100((x−0.5)2+(y−0.5)2).

(9)

Discretization of this equation, again with h = 2−10, leads to a nonsym-
metric matrix, whose eigenvalues go complex (with central differencing) when
the cell Peclet number exceeds 2. Direct algebraic methods are unaffected.

We progressively increase the convection dominance with α. For small α
AMG outperforms the direct methods, but AMG is not robust with respect
to the rising skew-symmetry. ACR maintains its performance for any α, as
shown in Figure 3.
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Fig. 2 Runtime versus wavenumber for fixed
mesh size in the Wave Helmhotz equation.

AMG is the method of choice for small k, but

loses robustness with indefiniteness.
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Fig. 3 Runtime versus velocity magnitude in
convection-diffusion. AMG is the method of

choice in the diffusion dominated limit, but

loses robustness with skew-symmetry.

5 Extensions

The discretization of 3D elliptic operators also leads to a block tridiagonal
structure, with the difference that each block is of size n2×n2, instead of n×n,
as in the 2D discretization. A similar reduction strategy in the outermost
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dimension is possible, and leads to a solver with log-linear complexity in N
and similar parallel structure, except that ranks grow.

The controllable accuracy feature of hierarchical matrices suggests the
possibility of using ACR as a preconditioner, with rank becoming a tuning
parameter balancing the cost per and the number of iterations, while pre-
serving the rich concurrency features of the method.

6 Concluding Remarks

We present a fast direct solver, ACR, for structured sparse linear systems that
arise from the discretization of 2D elliptic operators. The solver approximates
every block using anH-Matrix, resulting in a log-linear arithmetic complexity
of O(N log2 N) with memory requirements of O(N logN).

Robustness and applicability are demonstrated on model scalar problems
and contrasted with established solvers based on the H-LU factorization and
algebraic multigrid. Multigrid maintains superiority in scalar problems with
sufficient definiteness and symmetry, whereas hierarchical matrix-based re-
placements of direct methods tackle some problems where these properties
are lacking. Although being of the same asymptotic complexity as H-LU,
ACR has fundamentally different algorithmic roots which produce a novel
alternative for a relevant class of problems with competitive performance,
and concurrency that grows with the problem size.

In [7] we expand on the consideration of cyclic reduction as a fast direct
solver solver for 3D elliptic operators.
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Optimized Schwarz Methods for
Heterogeneous Helmholtz and
Maxwell’s Equations

Victorita Dolean1, Martin J. Gander2, Erwin Veneros3, Hui Zhang4

1 Introduction

The Helmholtz equation is very difficult to solve by iterative methods [15],
and the time harmonic Maxwell’s equations inherit these difficulties. Opti-
mized Schwarz methods are among the most promising iterative techniques.
For the Helmholtz equation, they have their roots in the seminal work of
Deprés [5, 6], which led to the development of optimized transmission condi-
tions [4, 17, 19, 16, 2], and these techniques were independently rediscovered
for the sweeping preconditioner [14] and the source transfer domain decom-
position method [3]. For the time harmonic Maxwell’s equations, optimized
transmission conditions were developed and tested for problems without con-
ductivity in [1, 9, 20, 21, 13], and with conductivity in [7, 8]. Particular
Galerkin discretizations of transmission conditions were studied in [11, 10],
and for scattering applications, see [20, 21].

In [12, 18], it was discovered that heterogeneous media can actually im-
prove the convergence of optimized Schwarz methods, provided that the co-
efficient jumps are aligned with the interfaces, and the jumps are taken into
account in an appropriate way in the transmission conditions. Similar results
were found for Maxwell’s equations in [22] and [23]; it is even possible to
obtain convergence independently of the mesh size in certain situations. We
present and study here transmission conditions for the Helmholtz equation
with heterogeneous media, and establish a relation to the results of [22, 23]
written for Maxwell’s equations. We then study improved convergence behav-
ior for specific choices of the discretization parameters related to the pollution
effect.
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2 Victorita Dolean, Martin J. Gander, Erwin Veneros, Hui Zhang

2 Optimized Schwarz Methods for Helmholtz and
Maxwell’s Equations

We consider the two dimensional Helmholtz equation in discontinuous media
with piece-wise constant density ρ and wave-speed c. The Helmholtz equation
in Ω = R2 is defined by

∇(
1

ρ
∇ · u) + ω2

c2ρ
u = f, in Ω, (1)

with

ρ =:

{
ρ1 in Ω1,
ρ2 in Ω2,

c :=

{
c1 in Ω1,
c2 in Ω2,

where Ω1 = R− × R, Ω2 = R+ × R and the Sommerfeld radiation condition
is imposed at infinity,

lim
|x|→∞

√
|x|

(
∂|x|u+ iωu

)
= 0, (2)

for every possible direction x
|x| .

We can naturally define a Schwarz algorithm for equation (1) with Robin
transmission conditions at the interface aligned with the discontinuity be-
tween the coefficients, and parameters s1, s2 ∈ C,

∇( 1
ρ1
∇ · un

1 ) +
ω2

c21ρ1
un
1 = f, in Ω1,

( 1
ρ1
∂n1

+ 1
ρ2
s2)u

n
1 = ( 1

ρ2
∂n1

+ 1
ρ2
s2)u

n−1
2 , on Γ,

∇( 1
ρ2
∇ · un

2 ) +
ω2

c22ρ1
un
2 = f, in Ω2,

( 1
ρ2
∂n2 +

1
ρ1
s1)u

n
2 = ( 1

ρ1
∂n2 +

1
ρ1
s1)u

n−1
1 , on Γ.

(3)

Proposition 1. The convergence factor of algorithm (3) is given by

ρopt(k, ρ1, ρ2, ω, c1, c2, s1, s2) =

∣∣∣∣∣
(λ1 − s1)(λ2 − s2)

(λ1 + s2
ρ1

ρ2
)(λ2 + s1

ρ2

ρ1
)

∣∣∣∣∣

1/2

, (4)

with λj =
√

k2 − ω2
j , ωj =

ω
cj

for j = 1, 2.

The proof of Proposition 1 is based in Fourier analysis, see [24] for details.
In order to obtain an efficient algorithm, we have to choose s1 and s2 such

that ρopt becomes as small as possible for all relevant numerical frequencies
k ∈ K := [kmin, kmax], where kmin is the lowest relevant frequency (kmin

depends on the geometry of the media) and kmax = cmax

h is the highest
numerical frequency supported by the numerical grid with mesh size h.

In what follows, we only consider s1 = P1(1 + i) and s2 = P2(1 + i), a
choice that has been justified in [19], and thus study the min-max problem
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ρ∗opt = min
P1,P2>0

max
k∈K

|ρopt(k, ρ1, ρ2, ω, c1, c2, P1(1 + i), P2(1 + i))|. (5)

Similarly we can define a Schwarz algorithm for the time-harmonic Maxwell
equations in a given domain Ω = R3

−iωεE+∇×H = J, iωµH+∇×E = 0, (6)

with the Silver Müller radiation condition

lim
r→∞

r(H× er +
1

Zj
E) = 0, (7)

where r := |x| and er = x/r for any vector x ∈ R3.
We also consider the heterogeneous case where the domain Ω consists of

two non-overlapping subdomains Ω1 := R− × R2 and Ω2 := R+ × R2 with
interface Γ , with piece-wise constant parameters εj and µj in Ωj , j = 1, 2.
A general Schwarz algorithm for this configuration is

−iωε1E
1,n+∇×H1,n= J, iωµ1H

1,n +∇×E1,n = 0 in Ω1,
(Bn1+S1Bn2)(E

1,n,H1,n) = (Bn1+S1Bn2)(E
2,n−1,H2,n−1) on Γ ,

−iωε2E
2,n+∇×H2,n= J, iωµ2H

2,n +∇×E2,n = 0 in Ω2,
(Bn2

+S2Bn1
)(E2,n,H2,n) = (Bn2

+S2Bn1
)(E1,n−1,H1,n−1) on Γ ,

(8)

where Sj , j = 1, 2 are tangential, possibly pseudo-differential operators, and

Bnj
(Ej,n,Hj,n) =

Ej,n

Zj
× nj + nj × (Hj,n × nj)

are the characteristic conditions, with Zj =
√

µj/ǫj , j = 1, 2. Different
choices of Sj , j = 1, 2 lead to different Schwarz methods, see [9].

Remark 1. A direct computation shows that algorithms (3) and (8) have the
same convergence factor, when setting ρj := µj and cj :=

1√
εjµj

for j = 1, 2.

Hence we can use all the results presented in [22] for Maxwell’s equations
for the case of the Helmholtz equation (3). We thus focus in the remainder
on the Helmholtz case, but keep in mind that all results we will obtain hold
mutatis mutandis also for the Maxwell case.

Using Remark 1, we obtain from [22] and [23]

Corollary 1. The solution of (5) for c1 6= c2 is asymptotically

ρ∗opt =





1−O(h1/4) if ρ1 = ρ2,√
ρmin

ρmax
+O(h1/2) if 1√

2
≤ ρ1

ρ2
≤

√
2,

4

√
1
2 +O(h1/2) if ρ1

ρ2
< 1√

2
or ρ1

ρ2
>

√
2.

(9)

If ρ1 6= ρ2 and c1 = c2, we obtain after excluding the resonance frequency [9]

Optimized Schwarz Methods for Heterogeneous Helmholtz and Maxwell’s Equations 131



ρ∗opt =
√

ρmin

ρmax
+O(h1/2), (10)

with ρmin = min{ρ1, ρ2} and ρmax = max{ρ1, ρ2}.
The detailed proof of Corollary 1 and the values of Pj can be found in [24].
We see from Corollary 1 that in most of the cases the optimized convergence
factor ρ∗opt has an asymptotic behavior independent of the mesh size h.

3 Scaling Results when Controlling the Pollution Effect

The core of our study is the asymptotic analysis of algorithms (3) and (8)
when the mesh size h is related to the wave number ω to control the pollution
effect. We will focus on the first case of Corollary 1, because this is the only
case where the convergence can deteriorate in the mesh size h, see the first
line in (9). We will consider three particular relationships between ω and h:
ωh = Cω, Cω a constant, where the pollution effect is not controlled, ω2h =
Cω where the pollution effect is provably controlled, and finally ω3/2h = Cω

which is widely believed to suffice to control the pollution effect.

Theorem 1. Let ρ1 = ρ2, c1 6= c2 and ωh = Cω. If |ρopt| defined in (4) is
maximal for the frequencies k = ω1, k = ω2 and k = kmax, and sj = (1+i)Pj,
then the solution of the min-max problem (5) is

P ∗
1 =

p1
h
, P ∗

2 =
p2
h
, ρ∗opt =

(
p21(2p

2
2 − 2p2cr + c2r)

p22(2p
2
1 + 2p1cr + c2r)

) 1
4

, (11)

where {p1, p2} is solution of the system of equations

p2
1(2p

2
2−2p2cr+c2r)

p2
2(2p

2
1+2p1cr+c2r)

=
ρ2p2

2(2p
2
1−2p1cr+c2r)

p2
1(2p

2
2+2p2cr+c2r)

,

p2
1(2p

2
2−2p2cr+c2r)

p2
2(2p

2
1+2p1cr+c2r)

=
ρ2(2p2

2−2p2cmax2+c2max2
)(2p2

1−2p1cmax1+c2max1
)

(2p2
2+2p2cmax2

+c2max2
)(2p2

1+2p1cmax1
+c2max1

)
,

cr := rh :=
√

|ω2
1 − ω2

2 |h, cmax1
:=

√
c2max − C2

ω/c
2
1, cmax2

:=
√

c2max − C2
ω/c

2
2.

Proof. Evaluating |ρopt|4 from (4) at sj :=
pj

h (1 + i) for k = ω1, k = ω2 and
k = kmax yields

R1 =
(h2r2−2p2hr+2p2

2)p
2
1

p2
2(h

2r2+2p1hr+2p2
1)
, R2 =

ρ2p2
2(h

2r2−2p1hr+2p2
1)

(2p2
2+2p2hr+h2r2)p2

1
,

R3 =

(
h2(

c2max
h2 − C2

ω
c22h2 )−2p2h

√
c2max
h2 − C2

ω
c22h2 +2p2

2

)

(
h2(

c2max
h2 − C2

ω
c22h2 )−2p1h

√
c2max
h2 − C2

ω
c22h2 +2p2

1

)

(
h2(

c2max
h2 − C2

ω
c21h2 )−2p1h

√
c2max
h2 − C2

ω
c21h2 +2p2

1

)

(
h2(

c2max
h2 − C2

ω
c21h2 )−2p2h

√
c2max
h2 − C2

ω
c21h2 +2p2

2

) .

Replacing rh by cr, cmax1
=

√
c2max − C2

ω/c
2
1 and cmax2

=
√

c2max − C2
ω/c

2
2,

the expressions can be simplified to
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R1 =
p21(2p

2
2 − 2p2cr + c2r)

p22(2p
2
1 + 2p1cr + c2r)

, R2 =
ρ2p22(2p

2
1 − 2p1cr + c2r)

p21(2p
2
2 + 2p2cr + c2r)

,

R3 =
(2p22 − 2p2cmax2

+ c2max2
)(2p21 − 2p1cmax1

+ c2max1
)

(2p22 + 2p2cmax2
+ c2max2

)(2p21 + 2p1cmax1
+ c2max1

)
.

Equioscillation between R1, R2 and R3 then gives the result.

Remark 2. Note that Theorem 1 gives a closed form solution of the min-max
problem (5), not just an asymptotic one.

For the special case of equal transmission conditions, we have

Corollary 2. Under the same assumptions as in Theorem 1, if sj = (1+i)Pj

with P1 = P2, then the solution of the min-max problem (5) is given by

P ∗
1 = P ∗

2 =
p

h
, ρ∗opt =

(
(2p2 − 2pcr + c2r)

(2p2 + 2pcr + c2r)

) 1
4

,

with p the solution of the equation

(2p2 − 2pcr + c2r)

(2p2 + 2pcr + c2r)
=

(2p2 − 2pcmax2
+ c2max2

)(2p2 − 2pcmax1
+ c2max1

)

(2p2 + 2pcmax2 + c2max2
)(2p2 + 2pcmax1

+ c2max1
)
.

Proof. The proof follows along the same lines as the proof of Theorem 1.

Theorem 2. Let ρ1 = ρ2, c1 6= c2 and ω2h = Cω. If |ρopt| defined in (4) is
maximal for the frequencies k = ω1, k = ω2, k = km := cm

h3/4 and k = kmax,
and sj = (1 + i)Pj, P1 = p1

h and P2 = p2√
h
, then the asymptotic solution of

the min-max problem (5) for h small is given by

P ∗
1 =

c
3/4
maxc

1/4
r

21/4h7/8
, P ∗

2 =
1

2

c
1/4
maxc

3/4
r

23/4h5/8
, ρ∗opt = 1− r1/4

21/4c
1/4
max

h1/8 +O(h1/4).

Interchanging the role of P1 and P2 leads to the same result.

Proof. The proof is based again on equioscillation.

Theorem 3. Let ρ1 = ρ2, c1 6= c2 and ω3/2h = Cω. If the frequencies k = ω1,
k = ω2, k = km := cm

h5/6 and k = kmax are the local maxima of the convergence
factor ρopt from (4), and if s1 = (1 + i)P1, s2 = (1 + i)P2, with P1 = p1

h11/12

and P2 = p2

h3/4 , then the asymptotic solution of the min-max problem (5) for
h small is given by

P ∗
1 =

c
3/4
maxc

1/4
r

21/4h11/12
, P ∗

2 =
1

2

c
1/4
maxc

3/4
r

23/4h3/4
, ρ∗opt = 1− r1/4

21/4c
1/4
max

h1/12 +O(h1/6).

Interchanging the role of P1 and P2 leads to the same result.
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ω = Cω ω2h = Cω ω3/2h = Cω ωh = Cω

ρ1 = ρ2, c1 6= c2
1−O(h1/4)

(Corollary 1)

1−O(h1/8)

(Theorem 2)

1−O(h1/12)

(Theorem 3)

< 1

(Theorem 1)

ρ1 6= ρ2, c1 6= c2
max{ 4

√
1
2
,
√

ρmin
ρmax

}
(Corollary 1)

max{ 4

√
1
2
,
√

ρmin
ρmax

}
(Remark 3)

max{ 4

√
1
2
,
√

ρmin
ρmax

}
(Remark 3)

< 1
(Remark 3)

ρ1 6= ρ2, c1 = c2

√
ρmin
ρmax

(Corollary 1)

√
ρmin
ρmax

(Remark 3)

√
ρmin
ρmax

(Remark 3)

< 1
(Remark 3)

Table 1 Comparison of the convergence factors with different relationships between ω

and h.

Proof. The proof is similar to the proof of Theorem 2.

One can justify the choice of the frequencies k = ω1, k = ω2, k = km and
k = kmax as the correct candidates for the |ρopt| using asymptotic analysis,
but this exceeds the space available, see [24] for more details.

Remark 3. One can obtain similar results also for the cases ρ1 6= ρ2 but this
will only reduce the order of the second asymptotic term, as in Theorems 2
and 3. For the relationship ωh = Cω one can also obtain a similar result to
Theorem 1.

We give a summary of all these results in Table 1.

4 Conclusions

We studied the performance of optimized Schwarz methods for Helmholtz
and Maxwell’s equations for heterogeneous media. Using Fourier analysis, we
showed that the convergence factor of the optimized Schwarz methods for the
Helmholtz equation and the Maxwell’s equations are the same, and it suffices
therefore to study the algorithms only for the Helmholtz equation. We then
studied in detail the performance for three different choices of the relationship
between the wave number and the mesh size to control the pollution effect,
and showed that increasing the resolution improves the performance of the
optimized Schwarz methods. It was not possible to show all the proofs in
detail in this short manuscript, but more information can be found in the
PhD thesis [24].
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On the Origins of Linear and Non-Linear
Preconditioning

Martin J.Gander1

1 Linear Preconditioning

On December 26, 1823, Gauss sent a letter to his friend Gerling [10] to explain how
he computed an approximate least squares solution based on angle measurements
between the locations Berger Warte, Johannisberg, Taufstein and Milseburg. The
system is symmetric, see Figure 1; it comes from the normal equations, and Gauss
explains (translation by Forsythe [6]):

“In order to eliminate indirectly, I note that, if 3 of the quantitiesa, b, c, d are set to 0, the
fourth gets the largest value whend is chosen as the fourth. Naturally, every quantity must
be determined from its own equation, and henced from the fourth. I therefore setd =−201
and substitute this value. The absolute terms then become:+5232,−6352,+1074,+46;
the other terms remain the same.”

Fig. 1 Letter of Gauss from 1823 explaining what is now known as the Gauss-Seidel method.

1 Université de Genève, Section de mathématiques, e-mail:martin.gander@unige.ch
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With the new right hand side, Gauss then chooses again the variable to update which
gives the largest value, and we recognize the well known Gauss-Seidel method, with
the extra feature that at each step a particular variable is chosen to be updated, in-
stead of just cycling through all the variables. Note also that the matrix is singular,
but consistent (summing all equations gives zero, as indicated by Gauss’ comment
’Summe=0’ in Figure 1), and the method gives one particular solution. Gauss con-
cludes his letter with the statement in Figure 2 (translation by Forsythe [6]):

Fig. 2 Gauss explains how relaxing these relaxations are.

“Almost every evening I make a new edition of the tableau, wherever there is easy im-
provement. Against the monotony of the surveying business, this is always a pleasant en-
tertainment; one can also see immediately whether anything doubtful has crept in, what
still remains to be desired, etc. I recommend this method to you for imitation. You will
hardly ever again eliminate directly, at least not when you have more than 2 unknowns. The
indirect procedure can be done while half asleep, or while thinking about other things.”

A general description of the method was then given by Seidel in [17], who also
proved convergence of the method for the case of the normal equations, proposed to
do the relaxations cyclically, and also to distribute them to two computers (humans)
to do parallel computing1.

In 1845, Jacobi presented in [12] the variant of Gauss’ method now known as
the Jacobi method, where one simultaneously relaxes all the variables. He acknowl-
edges the computations that were performed by his friend Dr. Seidel. Realizing that
the method can be slow or even fail if the system is not diagonally dominant enough,
Jacobi then presents the groundbreaking idea of preconditioning using Jacobi rota-
tions, see Figure 3:

“As an example we use the method for the equations from Theoria motus p. 219. The orig-
inal equations are (see Figure 3). If we remove the coefficient 6 in front ofq in the first
equation, the angle of rotation isα = 22030′, and the new equations are...”

After preconditioning, it takes then only three Jacobi iterations to obtain three accu-
rate digits!

In modern notation, a stationary iterative method for the linear system

Au = f (1)

1 “ ... sich unter zwei Rechner so vertheilen lässt ...”
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Fig. 3 Jacobi’s idea of preconditioning the linear system using Jacobi rotations.

is obtained from a splitting of the matrixA= M−N, followed by the iteration

Mun+1 = Nun+ f. (2)

For Jacobi, we would haveM = diag(A), for Gauss-SeidelM = tril(A), a Schwarz
domain decomposition method with minimal overlap would haveM block diago-
nal, and for multigrid,M represents a V-cycle or W-cycle. Rewriting the stationary
iterative method (2) as

un+1 = M−1Nun+M−1f = (I −M−1A)un+M−1f,

we see that the method converges fast if the spectral radiusρ(I −M−1A) is small,
and it is cheap, if systems withM can easily be solved.

In 1951, Stiefel and Rosser2 gave both a presentation at a symposium on simul-
taneous linear equations and the determination of eigenvalues at the National Bu-
reau of Standards (UCLA), and realized that they presented the same method. The
method of Forsythe, Hestenes and Rosser appeared in a short note in [7], and the
method of Stiefel in a comprehensive and elegant exposition on iterative methods
in [18]. Hestenes, who was also present at the symposium, and Stiefel then wrote
together during Stiefel’s stay at the National Bureau of Standards the famous 1952
conjugate gradient paper [11]3. Independently in 1952, Lanczos had also invented
essentially the same method [15], based on his earlier work on eigenvalues problems
[14], where he already pointed out that solving linear systems with this method was
just a special case.

2 Rosser was working with Forsythe and Hestenes at that time
3 “An iterative algorithm is given for solving a systemAx= k of n linear equations inn unknowns.
The solution is given inn steps.”
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So what is this famous conjugate gradient (CG) method ? To solve approximately
Au= f, A symmetric and positive definite, CG finds at stepnusing the Krylov space4

Kn(A,r0) := {r0,Ar0, . . . ,An−1r0}, r0 := f−Au0

an approximate solutionun ∈ u0+Kn(A,r0) which satisfies

||u−un||A −→ min, ||u||2A := uTAu.

Using Chebyshev polynomials, one can prove the following convergence estimate
for CG:

Theorem 1. With κ (A) := λmax(A)
λmin(A)

the condition number of A, the iterateun of CG
satisfies the convergence estimate

||u−un||A ≤ 2

(√
κ (A)−1√
κ (A)+1

)n

||u−u0||A.

We see that the conjugate gradient method converges very fast, if the condition
numberκ (A) is not very large.

The success of CG motivated researchers to design similar methods searching in
a Krylov space for solutions when the system matrix is not symmetric and positive
definite. There are two classes of such methods: the first class are the Minimum
Residual methods (MR) which search forun ∈ u0+Kn(A,r0) such that

||f−Aun||2 −→ min.

MINRES (Paige, Saunders 1975) is such an algorithm, designed for symmetric sys-
tems which are not positive definite. GMRES (Saad, Schultz 1986) does the same
for arbitrary systems, and QMR (Freund, Nachtigal 1991) tries to solve the mini-
mization problem approximately. The second class of methods is based on orthogo-
nalization (OR): they search forun ∈ u0+Kn(A,r0) such that

f−Aun ⊥ Kn(A,r0).

SymmLQ (Paige, Saunders 1975) does this for symmetric indefinite systems, FOM
(Saad 1981) for general systems, and BiCGstab (Van Der Vorst 1992) does it ap-
proximately. All these methods converge well, if the spectrum of the matrixA is
clustered around 1 provided the matrices are normal (AAT = ATA).

If the spectrum ofA is not clustered around 1, the old idea of Jacobi can be used:
find a preconditioner, a matrixM, such that the preconditioned system

M−1Au = M−1f

4 The name is going back to Krylov [13] studying the solution of systems of second order ordinary
differential equations, and the now called Krylov space only appears implicitly there
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has a spectrum which clusters much better around 1 than the spectrum of the matrix
A itself. For CG, using Theorem 1 one can even say more specifically thatM should
make the condition numberκ (M−1A) much smaller thanκ (A). In all cases however
it should be inexpensive to applyM−1.

It is sometimes possible to directly design preconditioners with good proper-
ties: excellent examples in domain decomposition are the additive Schwarz method
(Dryja and Widlund 1987), FETI (Farhat and Roux 1991) and Balancing Domain
Decomposition (Mandel and Brezina 1993), but it takes a lot of experience and in-
tuition to do so.

A systematic approach for constructing preconditioners is to recall what we have
seen for stationary iterative methods: we neededM such that the spectral radius
ρ(I −M−1A) is small, and it is inexpensive to applyM−1. The last point is identical
with preconditioning, and note that

ρ(I −M−1A) small ⇐⇒ the spectrum ofM−1A is close to one!

It is therefore natural to first design a goodM for a stationary iterative method, and
then use it as a preconditioner for a Krylov method.

Theorem 2. Using an MR Krylov method with preconditioner M never gives worse
(and usually much better) residual reduction than just using the stationary iteration.

Proof. The stationary iterative method computes

un = (I −M−1A)un−1+M−1f = un−1+ rn−1
stat ,

where we introducedrn
stat :=M−1f−M−1Aun. Multiplying this equation by−M−1A

and addingM−1f on both sides then gives

rn
stat = (I −M−1A)rn−1

stat = (I −M−1A)nr0. (3)

The preconditioned Krylov method will use the Krylov space

Kn(M
−1A,r0) := {r0,M−1Ar0, . . . ,(M−1A)n−1r0}

to search forun ∈ u0+Kn(M−1A,r0), i.e. it will determine coefficientsαi s.t.

un = u0+
n

∑
i=1

αi(M
−1A)i−1r0.

Multiplying this equation by−M−1A and addingM−1f on both sides then gives

rn
kry = pn(M−1A)r0, (4)

pn a polynomial of degreen with pn(0) = 1. Since the MR Krylov method finds
the polynomial which minimizes the residual in norm, it is at least as good as the
specific polynomial(I −M−1A)n chosen by the stationary iterative method in (3).
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The classical alternating and parallel Schwarz methods are such stationary it-
erative methods, and also RAS [3] and optimized Schwarz methods [8], and the
Dirichlet-Neumann and Neumann-Neumann methods [16]. They all are convergent
as stationary iterative methods, while for example additive Schwarz is not [5, 9].

2 Non-Linear Preconditioning

In contrast to linear preconditioning, non-linear preconditioning is a much less ex-
plored area of research. In the context of domain decomposition, a seminal contri-
bution for non-linear preconditioning was made by Cai, Keyes and Young at DD13
[2], namely the Additive Schwarz Preconditioned Inexact Newton method (ASPIN),
see also Cai and Keyes [1]. The idea is:

“The nonlinear system is transformed into a new nonlinear system, which has the same so-
lution as the original system. For certain applications the nonlinearities of the new function
are more balanced and, as a result, the inexact Newton method converges more rapidly.”

Instead of solvingF(u) = 0, one solves insteadG(F(u)) = 0 where according to
the authors the functionG should have the properties: 1) ifG(v) = 0 then v =
0, 2) G ≈ F−1 in some sense, 3)G(F(v)) is easy to compute, and 4) applying
Newton,(G(F(v)))′w should also be easy to compute. The authors then define the
ASPIN preconditioner as follows: forF : Rm → Rm, defineJ (overlapping) subsets
Ω j for the indices{1,2, . . . ,m}, such that

⋃
j Ω j = {1,2, . . . ,m}, and corresponding

restriction matricesRj , e.g.Ω1 = {1,2,3} =⇒ R1 = [I 0]3×m, I the 3×3 identity
matrix. Define the solution operatorTj : Rm → R|Ω j | such that

RjF(v−RT
j Tj(v)) = 0. (5)

Then ASPIN solves using inexact Newton

J

∑
j=1

RT
j Tj(u) = 0. (6)

It is not easy to understand where this transformation comes from5. Let us first look
at a fixed point iteration like Gauss-Seidel or Jacobi for this nonlinear problem. If
we denote the unknowns corresponding to the subsetsΩ j by u j , the corresponding
block Jacobi fixed point iteration would be to solve forn= 0,1,2, . . .

F1(un+1
1 ,un

2, . . . ,u
n
J) = 0

F2(un
1,u

n+1
2 , . . . ,un

J) = 0
...

FJ(un
1,u

n
2, . . . ,u

n+1
J ) = 0

=⇒

un+1
1 = G1(un

2, . . . ,u
n
J)

un+1
2 = G2(un

1,u
n
3, . . . ,u

n
J)

...
un+1

J = GJ(un
1,u

n
2, . . . ,u

n
J−1)

(7)

5 “ASPIN may look a bit complicated ...” (Cai, Keyes 2002).
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where we denoted the solutions of the non-linear equationFj by G j . At the fixed
point, which solvesF(u) = 0, we must haveu = G(u), and thus instead of solving
F(u) = 0 using Newton’s method, one can instead solveu−G(u) = 0 using New-
ton’s method. This gives us a very general idea of non-linear preconditioning: one
first designs a fixed point iteration (like the stationary iterative method in the linear
case); but then one does not use this method directly, one applies Newton’s method
to the equation at the fixed point (like one applies a Krylov method to the fixed point
of the stationary iterative method).

Theorem 3. ASPIN in the case of no algebraic overlap (which means minimal ge-
ometric overlap of one mesh size) is identical to solving with an inexact Newton
method the non-linear block Jacobi iteration equations at the fixed point.

Proof. The definition of the solution operator in (5) shows that we can use it to
replaceG j in (7), namely

un+1
j = Rjun−Tj(un).

Now in the case of no algebraic overlap (minimal geometric overlap), the sum in
(6) just composes the operatorsTj in a large vector, there is never actually a sum
computed, and thus (6) represents precisely (7) at the fixed point, i.e.

0= u−G(u) = u−
J

∑
j=1

RT
j (Rju−Tj(u)) =

J

∑
j=1

RT
j Tj(u),

where we used thatu−∑J
j=1RT

j Rju = 0 in the case of zero algebraic overlap.

Remark 1.In the case of more overlap, ASPIN has the same problem as the additive
Schwarz method in the overlap, it is inconsistent and can only be used as a precondi-
tioner [5, 9], where a Krylov method must correct this inconsistency. In the case of
ASPIN, Newton must to the same; ASPIN then does not correspond to a consistent
fixed point iteration in the case of more than minimal overlap.

3 Conclusion

We have explained how first stationary iterative methods were invented for linear
systems of equations by Gauss and Jacobi, and how Jacobi had already the idea
of preconditioning in 1845. With the invention of Krylov methods, stationary it-
erations have lost their importance as solvers, but good splittings from stationary
iterative methods found great use as preconditioners for Krylov methods. In the
case of non-linear problems, one can follow the same principle: one first conceives
a fixed point iteration for the non-linear problem, like a non-linear iterative domain
decomposition method, or the full approximation scheme from multigrid. One then
however does not use this fixed point iteration as a solver, one solves instead the
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equations at the fixed point:this is the meaning of non-linear preconditioning. This
observation allowed the authors in [4] to devise a new non-linear preconditioner
called RASPEN, which avoids the problem ASPIN has in the overlap, and also
introduces the coarse grid correction in a consistent way by using the full approx-
imation scheme from multigrid. It is also shown in [4] that one can actually use
the exact Jacobian, since the non-linear subdomain solvers provide this information
already, and extensive numerical experiments in [4] show that RASPEN performs
significantly better as non-linear preconditioner than ASPIN.
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Time Parallelization for Nonlinear
Problems Based on Diagonalization

Martin J. Gander1 and Laurence Halpern2

1 Introduction

Over the last decade, an intensive research effort has been devoted to inves-
tigate the time direction in evolution problems for parallelization. This is be-
cause modern supercomputers have now so many processors that often space
parallelization strategies for evolution problems saturate before all available
processors can be used. In the relatively recent field of time parallelization,
there are four main algorithmic techniques that have been investigated: meth-
ods based on multiple shooting [3], like the parareal algorithm [22] for which
a detailed convergence analysis can be found in [17] for the linear case and
in [8] for the nonlinear case; methods based on space-time decomposition,
like classical Schwarz waveform relaxation [2, 16, 18] and optimized variants
[11, 9, 10, 1], and Dirichlet-Neumann and Neumann-Neumann waveform re-
laxation [24, 21, 14]; space-time multigrid methods [19, 20, 5, 15]; and direct
time parallelization methods like tensor product methods [23], RIDC [4], and
ParaExp [7]; for an up to date overview and a historical perspective of these
approaches, see [6].

We have recently proposed and analyzed a new approach to make the
tensor product time parallelization technique from [23] robust. For linear
problems of diffusion type, we have derived in [13] asymptotic estimates of
the best choice of the main parameter in these methods, balancing truncation
error and roundoff error, and the study for wave equations is in preparation
[12]. These methods are however only applicable to linear problems. We pro-
pose here a new idea which permits these techniques also to be used for
nonlinear problems.

University of Geneva, Geneva, Switzerland martin.gander@unige.ch · University Paris 13,
Paris, France halpern@math.univ-paris13.fr
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2 Scalar Model Problem

We start with the nonlinear scalar model problem

ut = f(u), u(0) = u0. (1)

Discretization using a backward Euler method with variable time step leads
to

un − un−1

∆tn
= f(un), (2)

and writing this system over several time steps, we obtain

Bu :=




1
∆t1

− 1
∆t2

1
∆t2
. . .

. . .
1

∆tn
1

∆tn







u1

u2

...
un


 =




f(u1) +
1

∆t1
u0

f(u2)
...

f(un)


 =: f(u). (3)

Parallelization in time based on diagonalization uses the assumption that B
can be diagonalized, B = SΛS−1, which is possible if all the time steps are
different. One then diagonalizes the system (3) in time,

Λû := S−1BSS−1u = S−1f(u). (4)

If the right-hand side is linear, f(u) = au, we get with e1 := (1, 0, . . . , 0)T

S−1f (u) = S−1(au+
u0

∆t1
e1) = aû+

u0

∆t1
S−1e1,

and the system is indeed diagonalized in time, and all time steps can be
solved in parallel by a diagonal solve,

(Λ − aI)û =
u0

∆t1
S−1e1.

The solution is then obtained by simply applying S,

u = Sû.

Since our problem is nonlinear however, it is not possible to directly diago-
nalize (4).

Since the discretized system (3) is nonlinear, we will have to apply an
iterative method to solve it, e.g. we can apply Newton’s method to

F(u) := Bu− f(u) = 0.

This leads with some initial guess u0 to the iteration
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um = um−1 − (F ′(um−1))−1F(um−1).

Now the Jacobian is

F ′(u) = B − diag(f ′(u1), f
′(u2), . . . , f

′(un)) =: B −D(u).

The Newton iteration can thus be rewritten as

(B −D(um−1))um = (B −D(um−1))um−1 − (Bum−1 − f(um−1))

= f(um−1)−D(um−1)um−1, (5)

and for a given iteration step m− 1, um−1 is known. Denoting by B̃m−1 :=

B − D(um−1) and f̃
m−1

:= f(um−1) − D(um−1)um−1, we have to solve at
each iteration step of Newton the evolution problem

B̃m−1um = f̃
m−1

.

This can be done by diagonalization now, since it is a linear problem: having
B̃m−1 = S̃Λ̃S̃−1, we can solve

Λ̃ûm := S̃−1B̃m−1S̃S̃−1um = S̃−1f̃
m−1

for all ûm
j , j = 1, 2, . . . , n in parallel.

A major disadvantage that is brought in by the nonlinear term is that one
has to compute a factorization of the time stepping matrix B̃m−1 at each
Newton iteration. This could be avoided if we do not use the exact Jacobian
at each Newton iteration, but an approximation which uses for example a
scalar approximation of the diagonal matrix by averaging,

D(u) ≈ 1

n

n∑

j=1

f ′(uj)I.

Now we can use the old factorization of the time stepping matrix B and solve
in parallel at each quasi Newton step

(Λ− 1

n

n∑

j=1

f ′(um−1
j )I)ûm = S̃−1f (um−1)− 1

n

n∑

j=1

f ′(um−1
j )um−1. (6)

Using this approximate Jacobian, the quasi Newton method will then however
only converge linearly in general, and we will compare in the numerical section
the two approaches to see how much is lost due to this approximation.
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3 A PDE Model Problem

Suppose we want to solve the time dependent semi-linear heat equation

ut = ∆u+ f(u), u(0, x) = u0(x), (7)

with homogeneous Dirichlet boundary conditions. Using a standard five point
finite difference discretization in space over a rectangular grid of size J =
J1J2, we obtain the discrete problem

un − un−1

∆tn
= ∆hun + f(un), (8)

where now un and un−1 are vectors in RJ . As in the scalar case, we need to
introduce an iteration to solve this nonlinear problem, but here the system
has to be treated also by tensor products to separate space and time. Let
It be the N × N identity matrix associated with the time domain and Ix
be the J × J identity matrix associated with the spatial domain. Setting
u := (u1, . . . ,uN ), f(u) := (f(u1) +

1
∆t1

u0, f(u2), · · · , f(uN )), and using
the Kronecker symbol, we can rewrite (8) as one large nonlinear system,

(B ⊗ Ix)u = (It ⊗∆h)u+ f (u). (9)

To solve (9) with an iterative method, one could for example apply Newton’s
method to solve

F(u) := (B ⊗ Ix − It ⊗∆h)u− f(u) = 0.

To obtain the Jacobian needed, we define the diagonal matrix function

J(u) :=




Js(u1)
. . .

Js(uN )


 , (10)

where Js(un) := diag(f ′(u1
n), · · · , f ′(uJ

n)) ∈ MJ(R). We can then write the
Jacobian of F in compact form,

F′(u) = B ⊗ Ix − It ⊗∆h − J(u).

Newton’s method corresponds then to computing for m = 1, 2, . . .

(
B ⊗ Ix − It ⊗∆h − J(um−1)

)
(um−um−1) = f(um−1)−(B⊗Ix−It⊗∆h)u

m−1,

and we see that the linear terms cancel, so we can simplify to obtain

(
B ⊗ Ix − It ⊗∆h − J(um−1)

)
um = f(um−1)− J(um−1)um−1. (11)
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In contrast to the scalar case, where one could simply diagonalize at each
Newton iteration a modified time stepping matrix B̃m−1 to keep Newton’s
method without any approximation, this modified B̃m−1 would here also
depend on the space dimension now, and one would have to diagonalize a
B̃m−1 matrix at each spatial discretization point, which becomes prohibitive.
So we perform a similar approximation as in the scalar case: we define

J̃(u) :=
1

N

N∑

n=1

Js(un),

and obtain with this approximation the quasi-Newton algorithm

(
B ⊗ Ix − It ⊗ (∆h + J̃(um−1))

)
um = f(um−1)− (It ⊗ J̃(um−1))um−1.

(12)
Now we can use the factorization B = SΛS−1, and defining

f̃
m−1

:= f (um−1)− (It ⊗ J̃(um−1))um−1,

the quasi-Newton step (12) over all time steps can be parallelized in time by
solving

(Λ⊗ Ix − It ⊗ (∆h + J̃(um−1)))ûm = (S−1 ⊗ Ix)f̃
m−1

, (13)

followed by computing um = (S ⊗ Ix)û
m.

4 Numerical Experiments

We first show a numerical experiment for the scalar model problem (1) where
we chose either f(u) = −u2 or f(u) =

√
u. We solve these problems on the

time interval (0, T ) using N time steps on a geometrically stretched grid [13]

∆tn :=
(1 + ε)n

∑N
n=1(1 + ε)n

T,

with T = 1, N = 10, and initial condition u(0) = 1. We show in Figure 1
on the left how the time parallel Newton method (5) and the Quasi-Newton
method (6) converge for ε = 0.05. Although the approximation leads only
to linear convergence, the first few steps lead already to a high accuracy
approximation, like for the true Newton method. On the right in Figure 1,
we show how the accuracy at the end of the time interval is influenced by
the stretching of the time grid determined by ε. For a highly anisotropic time
grid, ε close to 1, the truncation error is bigger than for a time grid with equal
time steps [13]. When ε becomes too small however, then roundoff errors due
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Fig. 1 Left: Quadratic and linear convergence of the time parallel Newton and Quasi-
Newton methods for two scalar model problems. Right: accuracy for different choices of
the time grid stretching ε.

to the diagonalization process lead to large errors, and an optimal choice has
been determined asymptotically for linear problems in [13]. We can see on
the right in Figure 1 that there is also an optimal choice in the nonlinear
case, and it seems to be very similar for the two examples we considered.

We next test the algorithm for the PDE model problem (7) using the same
two nonlinear functions as for the scalar model problem, homogeneous bound-
ary conditions and initial condition u(0, x) = 1. We discretize the Laplacian
using a five point finite difference stencil with mesh size h = 1/20 and use
the same time grid as for the scalar model problem. We show in Figure 2 on
the left how the Newton method (11) which can only be time parallelized at
the cost of many time stepping matrix factorizations, and the Quasi-Newton
method (13) that is easily time parallelized converge. Again the approxima-
tion still leads to a rapidly converging method. On the right in Figure 2, we
show how the accuracy at the end of the time interval is influenced by the
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Fig. 2 Left: linear convergence of the time parallel Quasi-Newton method for two PDE
model problems. Right: accuracy for different choices of the time grid stretching ε.
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stretching of the time grid in the PDE case, and again we see that there is
an optimal choice for the stretching parameter.

5 Conclusion

We have introduced a new method which allows us to use diagonalization
for time parallelization also for nonlinear problems. We have shown two vari-
ants for nonlinear scalar problems, and one for a nonlinear PDE. Numerical
experiments show that the methods converge rapidly, and there is also an
optimal choice of the geometric time grid stretching, like in the original algo-
rithm for linear problems [13, 12]. The geometric stretching is only one way
to make diagonalization possible: random or adaptive time steps could also
be used, but they must be determined for the entire time window before its
parallel solve, and they must all be different, otherwise the diagonalization is
not possible. In an adaptive setting, one could adaptively determine a macro
time step with a larger tolerance as time window, before parallelizing its solve
with smaller geometric or random time steps. We are currently investigating
such variants, and also the generalization to nonlinear hyperbolic problems.

References

[1] D. Bennequin, M. J. Gander, and L. Halpern. A homographic best
approximation problem with application to optimized Schwarz waveform
relaxation. Math. of Comp., 78(265):185–223, 2009.

[2] M. Bjørhus. On Domain Decomposition, Subdomain Iteration and Wave-
form Relaxation. PhD thesis, University of Trondheim, Norway, 1995.

[3] P. Chartier and B. Philippe. A parallel shooting technique for solving
dissipative ODEs. Computing, 51:209–236, 1993.

[4] A. J. Christlieb, C. B. Macdonald, and B. W. Ong. Parallel high-order
integrators. SIAM J. Sci. Comput., 32(2):818–835, 2010.

[5] M. Emmett and M. L. Minion. Toward an efficient parallel in time
method for partial differential equations. Comm. App. Math. and Comp.
Sci, 7(1):105–132, 2012.

[6] M. J. Gander. 50 years of time parallel time integration. In Multi-
ple Shooting and Time Domain Decomposition Methods, pages 69–113.
Springer, 2015.
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The effect of irregular interfaces on the BDDC
method for the Navier-Stokes equations

Martin Hanek1, Jakub Šı́stek2,3 and Pavel Burda1

1 Introduction

The Balancing Domain Decomposition based on Constraints (BDDC) was intro-
duced by Dohrmann [2003] as an efficient method to solve large systems of linear
equations arising from the finite element method on parallel computers. Dohrmann
[2003] applied BDDC to elliptic problems, namely Poisson equation and linear elas-
ticity. Li and Widlund [2006] extended the method to the Stokes equations. How-
ever, the approach requires a discontinuous approximation of the pressure. An at-
tempt to apply the BDDC method in connection to a continuous approximation of
the pressure was presented by Šı́stek et al. [2011] employing Taylor-Hood finite el-
ements. Another construction of the BDDC preconditioner for the Stokes problem
with a continuous approximation of the pressure was proposed by Li and Tu [2013].

Hanek et al. [2015] combined the approach to building the interface problem by
Šı́stek et al. [2011] with the extension of BDDC to nonsymmetric problems from
Yano [2009]. The algorithm has been applied to linear systems obtained by Picard
linearisation of the Navier-Stokes equations. One step of BDDC is applied as a
preconditioner for the BiCGstab method. These generalizations have been imple-
mented to our open-source parallel multilevel BDDC solver BDDCML described
by Sousedı́k et al. [2013].

The main focus of this study is an investigation of the robustness of the algorithm
of Hanek et al. [2015] with respect to interface irregularities and element aspect
ratios. The motivation comes from simulations of hydrostatic bearings, where very
bad element aspect ratios appear. A benchmark problem of a narrowing channel is
proposed in two dimensions (2D) and three dimensions (3D), and numerical results
for this problem are presented.

Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo náměstı́ 13,
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Czech Republic, sistek@math.cas.cz · School of Mathematics, The University of Manchester,
Manchester, M13 9PL, United Kingdom
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2 BDDC for Navier-Stokes equations

In this section, we briefly recall our approach to using BDDC for steady Navier-
Stokes problems. Details of the method can be found in Hanek et al. [2015].

A steady flow of an incompressible fluid in a two-dimensional (2-D) or three-
dimensional (3-D) domain Ω is governed by the Navier-Stokes equations without
body forces

(u ·∇)u−ν∆u+∇p = 0 in Ω , (1)
∇ ·u = 0 in Ω , (2)

where u is an unknown velocity vector, p is an unknown pressure normalised
by (constant) density, and ν is a given kinematic viscosity. In addition, the usual
‘no-slip’ boundary conditions u = g on ΓD and ‘do-nothing’ boundary conditions
−ν(∇u)n+ pn = 0 on ΓN are considered.

Applying the finite element method leads to a nonlinear system of algebraic equa-
tions (see e.g. Elman et al. [2005]). For its linearisation, we use the Picard iteration
and get the system [

νA+N(uk) BT

B 0

][
uk+1

pk+1

]
=

[
f
g

]
, (3)

where uk+1 is the vector of unknown coefficients of velocity in the (k+ 1)-th iter-
ation, pk+1 is the vector of unknown coefficients of the pressure, A is the matrix of
diffusion, N(uk) is the matrix of the advection where we substitute velocity from the
previous step, B is the matrix from the continuity equation, and f and g are discrete
right-hand side vectors arising from the Dirichlet boundary conditions. This already
linear nonsymmetric system is solved by means of iterative substructuring.

To this end, we decompose Ω into NS nonoverlapping subdomains. Degrees of
freedom shared by several subdomains form the interface, whereas the rest are in
the interior of subdomains. Importantly, for the Taylor–Hood elements employed in
this work, parts of both velocity and pressure unknowns form the interface, denoted
uΓ and pΓ , respectively (superscript k+1 will be omitted).

By eliminating interior unknown coefficients for velocity and pressure on each
subdomain, the local Schur complement Si can be formed. Finally, a global Schur
complement can be assembled as S = ∑NS

i=1 RΓ T
i SiRΓ

i , where RΓ
i is the 0–1 matrix

selecting the interface unknowns of the i-th subdomain from the global vector of
interface unknowns. We then solve the problem

S
[

uΓ
pΓ

]
= g, (4)

where g is the reduced right-hand side vector. In our implementation, Schur comple-
ments are not actually constructed. Instead, only their actions on vectors are evalu-
ated within each iteration of a Krylov method.
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Problem (4) is solved by the BiCGstab method and one step of BDDC is used
as a preconditioner. As usual, a coarse correction is combined with independent
subdomain corrections in each action of the preconditioner. The main difference of
the employed approach from the standard BDDC preconditioner as introduced by
Dohrmann [2003] is the need of the adjoint coarse basis functions for mapping fine
residuals to the coarse problem, following Yano [2009]. This involves solving two
saddle-point systems in the set-up phase of the preconditioner,

[
Si CT

i
Ci 0

][
Ψi
Λi

]
=

[
0
I

]
,

[
ST

i CT
i

Ci 0

][
Ψ ∗

i
Λ T

i

]
=

[
0
I

]
,

where Ci is the matrix defining the local coarse degrees of freedom, which has as
many rows as coarse degrees of freedom located in the subdomain. Finally, Ψi and
Ψ ∗

i are the matrices of standard and adjoint coarse basis functions.
As coarse degrees of freedom, we consider components of the velocity and the

pressure at several corners selected according to Šı́stek et al. [2012], and arithmetic
averages over edges and faces of subdomains. Constraints on their continuity in the
coarse space are enforced component-wise on the velocities as well as on the pres-
sure. The averaging at the interface unknowns applies diagonal matrix of weights to
satisfy the partition of unity. The weights correspond to the inverse of the number
of subdomains containing an interface unknown in this work.

3 Mesh partitioning

We compare two approaches to partitioning the computational domain and the mesh
into subdomains. A standard approach is based on a conversion of the computational
mesh into a graph. In the so-called dual graph, the finite elements represent vertices
of the graph and if two elements share an edge (in 2D) or a face (in 3D), the corre-
sponding graph vertices are connected by a graph edge. The task of partitioning a
mesh is translated into a problem of dividing a graph into subgraphs, with the goal
that the subgraphs contain approximately the same number of vertices and the num-
ber of edges connecting the subgraphs is minimized. We make use of the METIS
library (version 4.0) for this purpose.

Graph partitioning provides an automated way for dividing the computational
mesh into subdomains of well-balanced sizes even for complex geometries and
meshes. However, information about the geometry of the interface is lost during
the conversion into a graph, and the resulting interface can be very irregular. This is
a known issue studied mathematically for elliptic problems e.g. by Klawonn et al.
[2008].

Another, somewhat opposite, strategy is based on the geometry of the do-
main. The domain can be enclosed into its cuboidal bounding box [xmin,xmax]×
[ymin,ymax]× [zmin,zmax]. Two subdomains are created by bisecting the box into
halves, with the cutting plane perpendicular to the longest edge. In the recursive
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bisection (RCB) algorithm, the longest subdomain edge is found as the maximum
over subdomains, and one of the adjacent subdomains is bisected. This process is
repeated until the given number of subdomains is reached.

This algorithm does not work well for complex unstructured meshes, since the
strategy ignores numbers of elements in each block, and it can even create ‘empty
subdomains’ with no elements. Nevertheless, for simple cuboidal domains, it is
straightforward to produce a partition avoiding irregular interfaces. For a suitable
number of subdomains and regular meshes, subdomain sizes are well-balanced in
addition. In the rest of the paper, we refer to this strategy as the geometric partitioner.

Many geometries, including those of the hydrostatic bearings we aim at, are not
completely general and can be decomposed into several cuboidal blocks in the first
stage. In the second stage, each of these blocks can be partitioned as above.

4 Numerical results

Our computations aim at the influence of interface irregularities on the BDDC solver
for Navier-Stokes equations. In particular, we investigate the effect of the aspect
ratio of the finite elements at the interface on convergence. This is motivated by our
target application—simulations of oil flow in hydrostatic bearings with very narrow
throttling gaps. In order to study this phenomenon, a benchmark problem suitable
for such a study is proposed and the partitioning strategies described in Section 3
are compared.

The computations are performed by a parallel finite element package written in
C++ and described by Šı́stek and Cirak [2015], with the BDDCML library being
used for solving the arising systems of linear equations. The Picard iteration is ter-
minated based on the change of subsequent solutions when

∥∥uk −uk−1
∥∥

2 ≤ 10−5

or after performing 100 iterations. The BiCGstab method is stopped based on the
relative residual if

∥∥rk
∥∥

2 /‖g‖2 ≤ 10−6, with the limit of 1000 iterations.
As a measure of convergence, we monitor the number of BiCGstab iterations

needed in one Picard iteration. Two matrix-vector multiplications are needed in each
iteration of BiCGstab, and after each of them, the terminal condition is evaluated.
Correspondingly, inspired by the Matlab bicgstab function, termination after the
first matrix-vector multiplication is reported by a half iteration in the BiCGstab iter-
ation counts. Numbers of iterations are presented as minimum, maximum, and mean
over all nonlinear iterations for a given case.

The benchmark problem consists of a sequence of simple channels in 2D (Fig. 1)
and 3D (Fig. 2). The dimension of the channels along one or two (in 3D) coordinates
is gradually decreased, with the initial dimensions 10×1×1 along the x, y, and z
axes.

The computational mesh is based on rectangular (in 2D) or cuboidal (in 3D)
finite elements uniformly distributed along each direction. The number of elements
is 100×10×10 along the x, y and z coordinates. In total, the 3-D problem contains
10 000 elements, 88 641 nodes, and 278 144 unknowns.
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Fig. 1 The narrowing channel 2-D benchmark; original channel (left) and narrowing along the
y-axis (right).

Fig. 2 The narrowing channel 3-D benchmark; original channel (left), narrowing along the y-axis
(centre), and narrowing along both y and z-axes (right).

Fig. 3 Detail of the interface between two subdomains in 2D for graph (left) and geometric (right)
partitioner.

The aspect ratio of elementsA= hmax/hmin is defined as the ratio of the longest
edge of the element hmax to its shortest counterpart hmin. TheA = 1 corresponds
to square (or cubic) elements. We test the sequence of narrowing channels forA ∈
{1,2,4,10,20,40,100}.

The velocity at the inlet starts from g = (1,0,0)T for x = 0, the velocity at the
walls is fixed to g = 0, and the face of the channel for x = 10 corresponds to ΓN .
We have considered two scenarios for the inflow velocity during the narrowing. The
first is simply keeping the magnitude of the velocity fixed throughout the sequence.
In the second scenario, the magnitude of the velocity is increased proportionally to
the decrease of the height, so that the Reynolds number, defined as Re = |u|D

ν , is
kept constant for the decreasing channel height D. However, results for both sce-
narios of the inlet boundary condition have been almost identical, and we present
only the results for fixed Reynolds number for brevity. We use ν = 1 for our com-
putations. The channel is divided into 4 subdomains by the graph and the geometric
partitioners described in Section 3.

First we look at the two-dimensional problem. For the graph partitioner, the inter-
face contains both long and short edges of elements. On the other hand, the interface
is composed solely from short edges for the geometric partitioner (see Fig. 3). Cor-
responding results are in Table 1.

For the 3-D case, we consider two kinds of problems. First we decrease only
the y-dimension of the channel, while in the second case, we shrink both y and z
dimensions of the cross-section (see Fig. 2). The graph partitioner produces rough
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Fig. 4 Detail of the interface between two subdomains for narrowing along the y-coordinate in 3D
for graph (left) and geometric (right) partitioner.

Fig. 5 Solution in the initial 3-D channel geometry; magnitude of velocity (left) and pressure in
the plane of symmetry (right).

partitioner graph geometric

A 1 2 4 10 20 40 100 1 2 4 10 20 40 100

Picard its. 4 4 5 5 7 6 40 3 4 5 5 6 6 5

BiCGstab its.
min 9 10.5 13.5 13.5 15 16.5 17.5 4.5 4.5 4.5 4 3 3 3
max 9.5 10.5 13.5 15 16 17.5 19.5 4.5 4.5 4.5 4 3 3 3
mean 9.4 10.5 13.5 14.2 15.2 16.7 18.1 4.5 4.5 4.5 4 3 3 3

Table 1 Numbers of iterations for graph and geometric partitioners for 2-D narrowing channel.

interface in both cases, while the geometric partitioner leads to rectangular faces
at the interface in the first case (see Fig. 4) and square faces in the second case.
Resulting numbers of iterations are presented in Tables 2 and 3. Numbers in italic
are runs that did not converge due to reaching the maximal number of iterations
or time restrictions. A solution of the problem for the initial channel geometry is
presented in Fig. 5.

From Tables 1, 2, and 3 we can conclude thatA of faces at the interface has a re-
markable influence on the number of BiCGstab iterations in each Picard iteration.

Using the graph partitioner results in a rough interface combining long and short
edges. This has a large impact on the efficiency of the BDDC preconditioner and
the number of linear iterations increases significantly.

Employing the geometric partitioner leads to straight cuts between subdomains
aligned with layers of elements. In 2D, this is sufficient to achieve convergence of
the linear solver independent ofA. In 3D, the situation is more subtle. For the case
of narrowing the channel only along the y-axis, the aspect ratio of the rectangular
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partitioner graph geometric

A 1 2 4 10 20 40 100 1 2 4 10 20 40 100

Picard its. 4 5 5 42 5 100 100 4 5 5 5 5 5 99

BiCGstab its.
min 17.5 20 25.5 44.5 84.5 145 400 5.5 6.5 7.5 11.5 16 19.5 19.5
max 18.5 20.5 25.5 51 113.5 858 1000 5.5 6.5 7.5 12 17.5 19.5 21
mean 18.3 20.4 25.5 46.2 93.9 209 761 5.5 6.5 7.5 11.9 17.2 19.5 19.5

Table 2 Numbers of iterations for graph and geometric partitioners for 3-D channel narrowed
along the y-coordinate.

partitioner graph geometric

A 1 2 4 10 20 40 100 1 2 4 10 20 40 100

Picard its. 4 4 4 5 8 19 28 4 4 4 5 5 5 4

BiCGstab its.
min 17.5 19.5 27.5 36 51 80 197 5.5 5.5 6 5 4.5 4.5 4.5
max 18.5 20.5 28 41.5 53 92.5 1000 5.5 6 6 5.5 5 5 4.5
mean 18.3 19.8 27.9 39.5 51.8 87.7 590 5.5 5.9 6 5.1 4.9 4.6 4.5

Table 3 Numbers of iterations for graph and geometric partitioners for 3-D channel narrowed
along both y and z-coordinates.

element faces at the interface also worsens during contracting the channel. This is
translated into a slight growth of the number of BiCGstab iterations in Table 2 even
in this case, although the convergence is much more favourable than for the graph
partitioner. If we narrow the channel along both y and z coordinates, the shape of
the element faces at the interface does not deteriorate from squares, and we observe
fast convergence independent ofA in Table 3.

5 Conclusion

We have investigated the influence of an irregular interface on the performance of
the BDDC method for Navier-Stokes equations. A benchmark problem of a nar-
rowing channel in 2D and 3D has been proposed to evaluate the impact of aspect
ratios of finite elements on the convergence of iterative solvers for the arising sys-
tem of equations. A simple partitioning strategy based on an application of a regular
geometric division of simple sub-blocks of the computational mesh has been pre-
sented. This approach was applied to the benchmark channel problems. The number
of BiCGstab iterations required when using the geometric partitioner has been com-
pared to the number of iterations required when using a graph partitioner. This rather
simple idea has dramatically improved convergence of our BDDCML solver. Our
next aim is to apply the idea to real geometries of hydrostatic bearings with block
structured meshes. The preliminary results in this direction are very promising.
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B. Sousedı́k, J. Šı́stek, and J. Mandel. Adaptive-Multilevel BDDC and its parallel
implementation. Computing, 95(12):1087–1119, 2013.

M. Yano. Massively parallel solver for the high-order Galerkin least-squares
method. Master’s thesis, Massachusests Institute of Technology, 2009.

160 Martin Hanek, Jakub Šístek, Pavel Burda



BDDC and FETI-DP methods with
enriched coarse spaces for elliptic
problems with oscillatory and high
contrast coefficients

Hyea Hyun Kim1, Eric T. Chung2, and Junxian Wang2,3

1 Introduction

BDDC (Balancing Domain Decomposition by Constraints) and FETI-DP
(Dual-Primal Finite Element Tearing and Interconnecting) algorithms with
adaptively enriched coarse spaces are developed and analyzed for second
order elliptic problems with high contrast and random coefficients. Among
many approaches to form adaptive coarse spaces, we consider an approach
using eigenvectors of generalized eigenvalues problems defined on each subdo-
main interface, see Mandel and Soused́ık [2007], Galvis and Efendiev [2010],
Spillane et al. [2011, 2013], Klawonn et al. [2015].

The main contribution of the current work is to extend the methods in
Dohrmann and Pechstein [2013], Klawonn et al. [2014] to three-dimensional
problems. In three dimensions, there are three types of equivalence classes on
the subdomain interfaces, i.e., faces, edges, and vertices. A face is shared by
two subdomains. An edge is shared by more than two subdomains. Vertices
are end points of edges. In addition to the generalized eigenvalue problems
on faces, which are already considered in Dohrmann and Pechstein [2013],
Klawonn et al. [2014] for two-dimensional problems, generalized eigenvalues
problems on edges are proposed.

Equipped with the coarse space formed by using the selected eigenvec-
tors, the condition numbers of the resulting algorithms are determined by
the user defined tolerance value λTOL that is used to select the eigenvectors.
An estimate of condition numbers is obtained as CλTOL, where the constant
C is independent of coefficients and any mesh parameters. We note that a

1Department of Applied Mathematics and Institute of Natural Sciences, Kyung Hee Uni-
versity, Korea hhkim@khu.ac.kr ·
2Department of Mathematics, The Chinese University of Hong Kong, Hong Kong SAR
tschung@math.cuhk.edu.hk ·
3School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hu-
nan 411105, China wangjunxian@xtu.edu.cn
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full version of the current paper was submitted to a journal. We also note
that an adaptive BDDC algorithm for three-dimensional problems was con-
sidered and numerically tested in Mandel et al. [2012] for difficult engineering
applications.

This paper is organized as follows. A brief description of BDDC and FETI-
DP algorithms is given in Section 2. Adaptive selection of coarse spaces is
presented in Section 3 and the estimate of condition numbers of the both
algorithms is provided in Section 4.

2 BDDC and FETI-DP algorithms

To present BDDC and FETI-DP algorithms, we introduce a finite element
space X̂ for a given domain Ω, where the model elliptic problem is defined
as

−∇ · (ρ(x)∇u(x)) = f(x) (1)

with a boundary condition on u(x) and with ρ(x) highly varying and random.
The domain is then partitioned into non-overlapping subdomains {Ωi} and

Xi are the restrictions of X̂ to Ωi. The subdomain interfaces are assumed
to be aligned to the given triangles in X . In three dimensions, the subdo-
main interfaces consist of faces, edges, and vertices. We introduce Wi as the
restriction of Xi to the subdomain interface unknowns, W and X as the
product of the local finite element spaces Wi and Xi, respectively. We note
that functions in W or X are decoupled across the subdomain interfaces.
We then select some primal unknowns among the decoupled unknowns on
the interfaces and enforce continuity on them and denote the corresponding
spaces W̃ and X̃.

The preconditioners in BDDC and FETI-DP algorithms will be developed
based on the partially coupled space W̃ and appropriate scaling matrices.
We refer to Dohrmann [2003], Farhat et al. [2001], Li and Widlund [2006]
for general introduction of these algorithms. The unknowns at subdomain
vertices will first be included in the set of primal unknowns. Additional set of
primal unknowns will be selected by solving generalized eigenvalue problems
on faces and edges. In the BDDC algorithm, they are enforced just like un-
knowns at subdomain vertices after a change of basis, while in the FETI-DP
algorithm they are enforced by using a projection, see Klawonn et al. [2015].

We next define the matrices Ki and Si. The matrices Ki are obtained from
the Galerkin approximation of

a(u, v) =

∫

Ωi

ρ(x)∇u · ∇v dx

by using finite element spaces Xi and Si are the Schur complements of Ki,
that are obtained after eliminating unknowns interior to Ωi. Let R̃i : W̃ → Wi
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be the restriction into ∂Ωi \ ∂Ω and let S̃ be the partially coupled matrix
defined by

S̃ =

N∑

i=1

R̃T
i SiR̃i.

Let R̃ be the restriction from Ŵ to W̃ . The discrete problem of (1) is then
written as

R̃T S̃R̃ = R̃T g̃,

where g̃ is the vector given by the right hand side f(x). The above matrix
equation can be solved iteratively by using preconditioners. The BDDC pre-
conditioner is then given by

M−1
BDDC = R̃T D̃S̃−1D̃T R̃,

where D̃ is a scaling matrix of the form

D̃ =
N∑

i=1

R̃T
i DiR̃i.

Here the matrices Di are defined for unknowns in Wi and they are introduced
to resolve heterogeneity in ρ(x) across the subdomain interface. In more de-

tail, Di consists of blocks D
(i)
F , D

(i)
E , D

(i)
V , where F denotes an equivalence

class shared by two subdomains, i.e., Ωi and its neighboring subdomain Ωj ,
E denotes an equivalence class shared by more than two subdomains, and V
denotes the end points of E, respectively. We note that those blocks should
satisfy the partition of unity for a given F , E, and V , respectively, and call
them faces, edges, and vertices, respectively. We refer to Klawonn and Wid-
lund [2006] for these definitions.

The FETI-DP preconditioner is a dual form of the BDDC preconditioner.
In our case, the unknowns at subdomain vertices are chosen as the initial set
of primal unknowns and the algebraic system of the FETI-DP algorithm is
obtained as

BS̃−1BTλ = d,

where S̃ is the partially coupled matrix at subdomain vertices and B is a
matrix with entries 0, −1, and 1, which is used to enforce continuity at the
decoupled interface unknowns. The above algebraic system is then solved by
an iterative method with the following projected preconditioner

M−1
FETI = (I − P )BDS̃BT

D(I − PT ),

where BD is defined by

BD =
(
BD,∆ 0

)
=

(
B

(1)
D,∆ · · · B(i)

D,∆ 0
)
.
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In the above, B(i)

D,∆ is a scaled matrix of B
(i)
∆ where rows corresponding to

Lagrange multipliers to the unknowns w(i) ∈ Wi are multiplied with a scaling

matrix (D
(j)
C )T when the Lagrange multipliers connect w(i) to w(j) ∈ Wj and

Ωj is the neighboring subdomain sharing the interface C of ∂Ωi. The interface
C can be F , faces, or E, edges. The matrix P is a projection operator related
to the additional primal constraints and it is given by

P = U(UTFDPU)−1UTFDP ,

where FDP = BS̃−1BT and U consists of columns related to the additional
primal constraints on the decoupled interface unknowns.

3 Adaptively enriched coarse spaces

With the standard choice of primal unknowns, values at subdomain vertices,
edge averages, and face averages, the performance of BDDC and FETI-DP
preconditioners can often deteriorate for bad arrangements of the coefficient
ρ(x). The preconditioner can be enriched by using adaptively chosen primal
constraints. The adaptive constraints will be selected by considering gener-
alized eigenvalue problems on each equivalence class. The idea is originated
from the upper bound estimate of BDDC and FETI-DP preconditioners. In
the estimate of condition numbers of BDDC and FETI-DP preconditioners,
the average and jump operators are defined as

ED = R̃R̃T D̃, PD = BT
DB.

When adaptive constraints are introduced, they are enforced strongly just
like unknowns at vertices after a change of basis formulation in the BDDC
algorithm. In contrast, in the FETI-DP algorithm the additional constraints
are enforced weakly by using a projection P . In general,ED+PD = I does not
hold when adaptively enriched constraints are included in the preconditioners.
Thus the analysis of BDDC and FETI-DP algorithms requires the following
estimates, respectively,

〈S̃(I − ED)w̃a, (I − ED)w̃a〉 ≤ C〈S̃w̃a, w̃a〉,

〈S̃PDw̃, PDw̃〉 ≤ C〈S̃w̃, w̃〉.
In the above, w̃a is strongly coupled at the initial set of primal unknowns
and the adaptively enriched primal unknowns after the change of basis while
w̃ is strongly coupled at the initial set of primal unknowns and satisfies the
adaptive constraints across the subdomain interfaces, vT (wi − wj) = 0 with
v a vector of an adaptive constraint.
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For a face F , shared by two subdomains Ωi andΩj , we restrict the operator
I − ED to F ⊂ ∂Ωi and obtain

((I − ED)w̃a)|F = D
(j)
F (w̃

(i)
F,∆ − w̃

(j)
F,∆), (2)

where w̃
(i)
F,∆ denotes the vector of unknowns on F ⊂ ∂Ωi with zero primal

unknowns and the dual unknowns identical to w̃a. Similarly, for an edge
E ⊂ ∂Ωi,

((I − ED)w̃a)|E =
∑

m∈E(i)

D
(m)
E (w̃

(i)
E,∆ − w̃

(m)
E,∆),

where E(i) denotes the set of subdomain indices sharing the edge E with Ωi.

We now introduce a Schur complement matrix S̃
(i)
C of Si, which are obtained

after eliminating unknowns except those interior to C. Here C can be an
equivalence class, F or E. For semi-positive definite matrices A and B, we
introduce a parallel sum defined as, see Anderson and Duffin [1969],

A : B = A(A+B)+B,

where (A + B)+ denotes a pseudo inverse. The parallel sum satisfies the
following properties

A : B = B : A, A : B ≤ A, A : B ≤ B, (3)

and it was first used in forming generalized eigenvalues problems by Dohrmann
and Pechstein [2013]. We note that a similar approach was considered by
Klawonn et al. [2014] in a more general form. Both are limited to the two-
dimensional problems with only face equivalence classes. In this work, gener-
alized eigenvalue problems for edge equivalence classes will be introduced to
extend the previous approaches to three dimensions.

For a face F , the following generalized eigenvalue problem is considered

AF vF = λÃF vF ,

where

AF = (D
(j)
F )TS

(i)
F D

(j)
F + (D

(i)
F )TS

(j)
F D

(i)
F , ÃF = S̃

(i)
F : S̃

(j)
F ,

and S
(i)
F denote block matrix of Si to the unknowns interior to F . The eigen-

values are all positive and we select eigenvectors vF,l, l ∈ N(F ) with associ-
ated eigenvalues λl larger than a given λTOL. The following constraints will
then be enforced on the unknowns in F ,

(AF vF,l)
T (w

(i)
F − w

(j)
F ) = 0, l ∈ N(F ).

After a change of unknowns, the above constraints can be transformed into
explicit unknowns and they are added to the initial set of primal unknowns
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and denoted by w
(i)
F,Π . The remaining unknowns are called dual unknowns

and denoted by w
(i)
F,∆. Using (2), for the two-dimensional case we obtain that

〈S̃(I − ED)w̃a, (I − ED)w̃a〉 ≤ C
∑

F

(〈AF w̃
(i)
F,∆, w̃

(i)
F,∆〉+ 〈AF w̃

(j)
F,∆, w̃

(j)
F,∆〉)

≤ CλTOL

∑

F

(〈ÃF w̃
(i)
F,∆, w̃

(i)
F,∆〉+ 〈ÃF w̃

(j)
F,∆, w̃

(j)
F,∆〉)

≤ CλTOL

∑

F

(〈S(i)wi, wi〉+ 〈S(j)wj , wj〉),

where the estimate on the dual unknowns are bounded by λTOL in the second

inequality, and (3) and the minimum energy property of S̃
(i)
F are used in the

last inequality.
For an edge E, shared by more than two subdomains, we introduce the

following generalized eigenvalue problem,

AEvE = λÃEvE ,

where

AE =
∑

m∈I(E)

∑

l∈I(E)\{m}
(D

(l)
E )TS

(m)
E D

(l)
E , ÃE =

∏

m∈I(E)

S̃
(m)
E ,

and I(E) denotes the set of subdomain indices sharing E in common, and∏
m∈I(E) S̃

(m)
E is the parallel sum applied to those matrices S̃

(m)
E . For a given

λTOL, the eigenvectors with their eigenvalues larger than λTOL will be se-
lected and denoted by vE,l, l ∈ N(E). The following constraints will then be
enforced on the unknowns in E,

(AEvE,l)
T (w

(i)
E − w

(m)
E ) = 0, l ∈ N(E), m ∈ I(E) \ {i}.

Using the adaptively selected primal unknowns on each face F and edge E,
we can obtain the following estimate

〈S̃(I − ED)w̃a, (I − ED)w̃a〉 ≤ CλTOL〈S̃w̃a, w̃a〉,

where C is a constant depending on the maximum number of edges and faces
per subdomain, and the maximum number of subdomains sharing an edge
but is independent of the coefficient ρ(x).
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4 Condition number estimate

Using the adaptively enriched primal constraints described in Section 3, we
can obtain the following bound of the condition numbers for the given λTOL:

Theorem 1. The BDDC algorithm with the change of basis formulation for
the adaptively chosen set of primal unknowns with a given tolerance λTOL

has the following bound of condition numbers,

κ(M−1
BDDC,aR̃

T S̃aR̃) ≤ CλTOL,

and the FETI-DP algorithm with the projector preconditioner M−1
FETI has the

bound
κ(M−1

FETIFDP ) ≤ CλTOL,

where C is a constant depending only on NF (i), NE(i), NI(E), which are the
number of faces per subdomain, the number of edges per subdomain, and the
number of subdomains sharing an edge E, respectively.

In the above MBDDC,a and S̃a denote the BDDC preconditioner and the
partially assembled matrix of Si after the change of unknowns for the adaptive
primal constraints. We refer to Kim et al. [2015] for detailed proofs of the
above theorem. We note that for the FETI-DP algorithm with the projector
preconditioner the approaches in Toselli and Widlund [2005] can be used to
obtain the upper bound estimate

〈S̃PDw̃, PDw̃〉 ≤ CλTOL〈S̃w̃, w̃〉,

where w̃ is strongly coupled at vertices and the adaptive primal constraints
on F and E are enforced on w̃ by using the projection P .
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Adaptive Coarse Spaces for FETI-DP
in Three Dimensions with Applications
to Heterogeneous Diffusion Problems

Axel Klawonn1, Martin Kühn1, and Oliver Rheinbach2

1 Introduction

We consider an adaptive coarse space for FETI-DP or BDDC methods in
three dimensions. We have user-given tolerances for certain eigenvalue prob-
lems which determine the computational overhead needed to obtain fast con-
vergence. Similar adaptive strategies are available for many kinds of domain
decomposition methods; see, e.g., Galvis and Efendiev [2010], Dolean et al.
[2012], Spillane and Rixen [2013], Kim and Chung [2015], Klawonn et al.
[2015], Mandel and Soused́ık [2007], Dohrmann and Pechstein.

We will give numerical results for our algorithm for the diffusion equation
on a bounded polyhedral domain Ω, i.e., for the weak formulation of

−∇ · (ρ∇u) = f in Ω,

u = 0 auf ∂ΩD,

ρ∇u · n = 0 auf ∂ΩN .

(1)

Here, ∂ΩD ⊂ ∂Ω is a subset with positive surface measure where Dirichlet
boundary conditions are prescribed. Furthermore, ∂ΩN := ∂Ω \ ∂ΩD is the
part of the boundary where Neumann boundary conditions are given and n
is the outward pointing unit normal on ∂ΩN . The function ρ = ρ(x) will be
called coefficient (distribution).

1Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany.
e-mail:{axel.klawonn,martin.kuehn}@uni-koeln.de ·2Institut für Numerische Mathe-
matik und Optimierung, Fakultät für Mathematik und Informatik, Technische Uni-

versität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg, Germany. e-mail:
oliver.rheinbach@math.tu-freiberg.de
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2 FETI-DP with Projector Preconditioning and
Balancing

Due to space limitation, we will only provide the most important FETI-DP
operators and the FETI-DP system. For a more detailed description of FETI-
DP; see, e.g., Farhat et al. [2000], Toselli and Widlund [2005]. The FETI-DP
system is given by Fλ = d where

F = BBK
−1
BBB

T
B +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B ,

d = BBK
−1
BBfB +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠ

(( N∑

i=1

R
(i)T
Π f

(i)
Π

)
− K̃ΠBK

−1
BBfB

)
.

Here, S̃ΠΠ defines the primal coarse space which, in our case, will be given by
all vertex variables being primal. We now present Projector Preconditioning
and Balancing in a very short form; for a more detailed description see Kla-
wonn and Rheinbach [2012], and for a semidefinite matrix F , Klawonn et al.
[2016a]. Given a matrix U representing constraints UTBw = 0, we define
P := U(UTFU)+UTF and solve the preconditioned system

M−1
PPFλ := (I − P )M−1

D (I − P )TFλ = (I − P )M−1
D (I − P )T d.

Here, M−1
D is the Dirichlet preconditioner. In our computations, we exclu-

sively use patch-ρ-scaling (see Klawonn and Rheinbach [2007]) but other
scalings are possible. We can also use the balancing preconditioner M−1

BP =
M−1

PP + U(UTFU)+UT instead of M−1
PP .

3 Adaptive Constraints and Condition Number Bound

We now present our adaptive approach that is based on modifications of the
approach in Mandel and Soused́ık [2007]; see also Klawonn et al. [2016b]
and Klawonn et al. [2016a]. In Klawonn et al. [2016b], for two dimensions,
a complete theory including a condition number bound for the coarse space
introduced by Mandel and Soused́ık [2007] was given. However, this coarse
space turns out not to be sufficient in three dimensions. In Klawonn et al.
[2016a], we therefore have added certain edge eigenvalue problems to prove
a condition number bound also in three dimensions and in the numerical
experiments, we have focussed on elasticity. In the present paper, we consider
scalar second-order elliptic problems.

For a given subdomain Ωi, we assume that it shares an edge E and an
adjacent face with Ωj and Ωk, respectively, while it only shares the edge E
with Ωl. More general cases can be treated analogously. In the following we
will use the index s ∈ {j, l} to describe simultaneously eigenvalue problems
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and their operators defined on faces (s = j) and edges (s = l), respectively.
Note that eigenvalue problems on faces are defined on the closure of the face.

Let G be a face or an edge shared by Ωi and Ωs. Then, we define

BGis = [B
(i)
Gis

B
(s)
Gis

] as all the rows of [B(i)B(s)] that contain exactly one
+1 and one −1. In the same manner, we define the scaled matrix BD,Gis =

[B
(i)
D,Gis

B
(s)
D,Gis

] as the submatrix of [B
(i)
D B

(s)
D ]. Furthermore, define Sis :=(

S(i) 0
0 S(s)

)
and PDis := BT

D,Gis
BGis .

The space of functions in Wi ×Ws that are continuous in the primal vari-
ables shared by Ωi and Ωs will be denoted by W̃is. Then, we introduce the
ℓ2-orthogonal projection Πis from Wi × Ws to W̃is as well as a second ℓ2-
orthogonal projection Πis from Wi ×Ws to range(ΠisSisΠis + σ(I −Πis)).
There, σ is a possibly large positive constant, e.g., the maximum of the diag-
onal entries of Sij , to avoid numerical instabilities. Without loss of generality
we can asumme that the projections are symmetric.

Then, we build and solve the generalized eigenvalue problems

ΠisΠisP
T
Dis

SisPDisΠisΠisw
k
is

= µk
is(Πis(ΠisSisΠis + σ(I −Πis))Πis + σ(I −Πis))w

k
is, (2)

for µk
is≥TOL. Let us note that the projections are built such that the right

hand side of the eigenvalue problem (2) is symmetric positive definite; cf.
Mandel and Soused́ık [2007]. For an eigenvalue problem defined on (the
closure of) a face (i.e. s = j), we split the computed constraint columns
uk
ij := BD,GijSijPDijw

k
ij into several edge constraints uk

ij,Em
and a constraint

on the open face uk
ij,F , all extended by zero to the closure of the face. The

splitting avoids coupling of the constraints and preserves a block structure
of the constraint matrix; cf. Mandel et al. [2012]. We then enforce all the
constraints

uk T
ij,Em

BFijwij = 0, m = 1, 2, . . . , uk T
ij,FBFijwij = 0.

For a given edge with corresponding edge eigenvalue problem, we enforce

wk T
il PT

Dil
SilPDil

wil = 0.

For w ∈ Wi ×Ws satisfying the constraints, we have the local estimate

wT
isΠisΠisP

T
Dis

SisPDis
ΠisΠiswis ≤ TOLwT

isΠisΠisSisΠisΠiswis;

cf. Klawonn et al. [2016b]. For w ∈ W̃ we have

(
R(i)w
R(s)w

)
∈ W̃is and there-

fore Πis

(
R(i)w
R(s)w

)
=

(
R(i)w
R(s)w

)
. As argued in Klawonn et al. [2016b] we have

Πis(I − Πis)wis = (I − Πis)wis. This gives PDisΠis(I − Πis)wis = 0 and
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SisΠis(I−Πis)wis = 0. Therefore, for all wis ∈ W̃is with wk T
is PT

Dis
SisPDiswis =

0, µk
is ≥ TOL we obtain

wT
isΠisP

T
Dis

SisPDisΠiswis ≤ TOLwT
isΠisSisΠiswis; (3)

cf. Mandel and Soused́ık [2007].
Let U = (u1, . . . , uk) be the matrix where the adaptive constraints are

stored in its columns. Then, W̃U := {w ∈ W̃ |UTBw = 0} will be the

subspace of W̃ which contains all elements w ∈ W̃ satisfying the adaptively
computed constraints, i.e., Bw ∈ kerUT . We are now ready to give the
following lemma.

Lemma 1. Let NF denote the maximum number of faces of a subdomain,
NE the maximum number of edges of a subdomain, ME the maximum multi-
plicity of an edge and TOL a given tolerance for solving the local generalized
eigenvalue problems. If all vertices are chosen to be primal, for w ∈ W̃U it
holds

|PDw|2
S̃
≤ 4max{NF , NEME}2TOL|w|2

S̃
.

Proof. See Klawonn et al. [2016a].

We can now provide a condition number estimate for the preconditioned
FETI-DP algorithm with all vertex constraints being primal and additional,
adaptively chosen, edge and face constraints.

Theorem 1. Let NF denote the maximum number of faces of a subdomain,
NE the maximum number of edges of a subdomain, ME the maximum multi-
plicity of an edge and TOL a given tolerance for solving the local generalized
eigenvalue problems. If all vertices are chosen to be primal, the condition
number κ(M̂−1F ) of the FETI-DP algorithm with adaptive constraints as

described, e.g., enforced by the projector preconditioner M̂−1 = M−1
PP or the

balancing preconditioner M̂−1 = M−1
BP , satisfies

κ(M̂−1F ) ≤ 4max{NF , NEME}2TOL.

Proof. See Klawonn et al. [2016a].

4 Heuristic Modifications

In this section we introduce two modifications of our algorithm. We will test
the performance of the heuristically reduced coarse spaces along with the
algorithm presented before.

Reducing the number of edge eigenvalue problems Our first mod-
ification consists of discarding edge eigenvalue problems on edges where no
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coefficient jumps occur. Therefore, we traverse the corresponding edge nodes
and check for coefficient jumps. If no jumps occur we will not solve the corre-
sponding edge eigenvalue problem and discard it with all possible constraints.
Let us note that the condition number bound mentioned before might no
longer hold if we use this strategy. However, due to slab techniques, see, e.g.,
Klawonn et al. [2015], the condition number is expected to stay bounded
independently of the coefficients.

Reducing the number of edge constraints The second approach
uses the strategy discussed before and discards additionally edge constraints
from face eigenvalue problems, if there are no coefficient jumps in the neigh-
borhood of the edge.

5 Numerical Results

In this section, we will give numerical results for five different algorithms.
First, we will present results for our new algorithm that is covered by theory
(denoted by ’Alg. Ia’) and two modifications thereof; see also Klawonn et al.
[2016a] where these algorithms were introduced for elasticity. By ’Alg. Ib’
we will denote the modification using only the first strategy presented in
Sect. 4. We will also test a variant using both heuristics of Sect. 4. This
algorithm will be denoted ’Alg. Ic’. The performance of these algorithms will
be compared to the approaches of Mandel et al. [2012]. By ’Alg. III ’ we denote
the ’classic’ approach which discards all edge constraints from face eigenvalue
problems. The coarse space enriched by those edge constraints but without
edge constraints from edge eigenvalue problems will be denoted by ’Alg. II ’.

For all algorithms we will start with an extended first coarse space. Given
the coarse space consisting of primal vertices, we will add some additional
edge nodes. We will set those edge nodes primal that belong to an edge
eigenvalue problem on a short edge, i.e., an edge with only one dual node.
Then, the corresponding edge eigenvalue problem will become superfluous.

We use a singular value decomposition with a drop tolerance of 1e − 6
to orthogonalize all adaptively computed constraints. We use the balancing
preconditioner to enforce the resulting constraints. For simplicity, we assume
ρ(x) to be constant on each finite element and we use ρ-scaling in the form of
patch-ρ-scaling. The coefficient at a node will be set as the maximum coeffi-
cient on the support of the corresponding nodal basis function; cf. Klawonn
and Rheinbach [2007]. In the experiments, we use an irregular partitioning
of the domain using the METIS graph partitioner with options -ncommon=3
and -contig. Let us note that Alg. III might be sufficient if regular decom-
positions are chosen and jumps only appear at subdomain faces; see Mandel
et al. [2012]. We will therefore just test irregular decompositions.

In all tables, “κ” denotes the condition number of the preconditioned
FETI-DP operator, “its” is the number of iterations of the pcg algorithm
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Fig. 1 Composite material (left) and randomly distributed coefficients (right) with irreg-

ular decomposition. High coefficients E2 = 1e+06 are shown in dark purple in the picture;
low coefficients are not shown. Subdomains are shown in different colors in the background
and by half-transparent slices. Visualization for N = 8 and H/h = 5.

and “|U |” denotes the size of the corresponding second coarse space. By “N”
we denote the number of subdomains. For our modified coarse space, we also
give the number of edge eigenvalue problem as “#Eewp“ and in parenthe-
ses the percentage of these in the total number of eigenvalue problems. Our
stopping criterion for the pcg algorithm is a relative reduction of the starting
residual by 10−10, and the maximum number of iterations is set to 500. The
condition numbers κ, which we report in the tables, are estimates from the
Krylov process. We will consider Ω = [0, 1]3, discretized by a structured fine
mesh of cubes, each containing five tetrahedra. We apply Dirichlet boundary
conditions for the face with x = 0 and zero Neumann boundary conditions
elsewhere. Moreover, let f = 0.1 and ρ(x) ∈ {1, 1e+ 6}.

A composite material We consider a soft matrix material with E = 1
and stiff inclusions in the form of 4N2/3 beams with E = 1e+06; see Fig. 1.
In Table 1, we see that Alg. III always leads to high condition numbers and
even to nonconvergence (its = 500) in three of four cases. The use of edge
constraints from face eigenvalue problems (cf. Alg. II) can neither guarantee
small condition numbers but results in convergence within a maximum of
about 90 iterations. Although only Alg. Ia is covered by our theoretical bound,
Alg. Ia, Ib, and Ic can guarantee condition numbers around the size of the
prescribed tolerance and convergence within 30-40 iterations. Here, Alg. Ic
gives the best performance: it uses the smallest coarse space and leads to
convergence in a small number of iterations.

Let us note that the number of edge eigenvalue problems here is larger
than in the case of linear elasticity (cf. Klawonn et al. [2016a]). This is due to
the fact that, in case of elasticity, we have to select additional primal vertices
to remove hinge modes on curved edges. Then, edge eigenvalue problems on
certain short edges become superfluous. Since this is not necessary for the
diffusion equation, and since it also enlarges the primal coarse space, we do
not carry this out here and accept a higher number of eigenvalue problems.

Random coefficients We now perform 100 runs using randomly gen-
erated coefficients (20% high and 80% low) for different numbers of subdo-
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Composite material, irregular partitioning and H/h = 5

Alg. Ia, Ib, and Ic Alg. II Alg. III

N κ its |U | Eevp κ its |U | κ its |U |
43 a) 9.54 36 1784 41 (14.9%) 9.78 37 1765 2.23e+06 500 609

b) 9.78 36 1783 30 (11.3%)
c) 10.68 39 1475 30 (11.3%)

63 a) 11.72 38 6455 166 (15.1%) 5.13e+05 98 6364 3.13e+06 500 2057
b) 11.72 38 6455 134 (12.6%)

c) 11.72 39 5701 134 (12.6%)

83 a) 12.34 39 15292 390 (14.1%) 2.27e+05 62 15120 2.99e+06 500 4921
b) 12.34 39 15292 334 (12.4%)
c) 12.34 40 13682 334 (12.4%)

Table 1 Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for
TOL = 10 for all generalized eigenvalue problems.

Randomly distributed coefficients, irregular partitioning, and H/h = 5.

Alg. Ia, Ib, and Ic Alg. II Alg. III

N κ its |U | #Eevp κ its |U | κ its |U |
43 x a) 8.81 30.64 1913.92 41 (14.9%) 3.92e+05 43.61 1889.83 2.62e+06 500 675.53

b) 8.81 30.64 1913.92 41 (14.9%)
c) 8.81 30.64 1913.72 41 (14.9%)

x̃ a) 8.76 31 1918 41 (14.9%) 2.31e+05 42.5 1893.5 2.57e+06 500 676
b) 8.76 31 1918 41 (14.9%)
c) 8.76 31 1918 41 (14.9%)

σ a) 0.88 1.32 43.57 - 5.12e+05 10.41 43.25 7.42e+05 0 22.05

b) 0.88 1.32 43.57 -
c) 0.88 1.32 43.67 -

53 x a) 9.26 32.19 3992.86 61 (10.3%) 2.29e+05 55.35 3954.5 2.96e+06 500 1357.53
b) 9.26 32.19 3992.86 61 (10.3%)

c) 9.26 32.19 3992.55 61 (10.3%)
x̃ a) 9.20 32 3997.5 61 (10.3%) 2.01e+05 52.5 3955.5 2.79e+06 500 1359.5
b) 9.20 32 3997.5 61 (10.3%)
c) 9.20 32 3996 61 (10.3%)

σ a) 0.86 0.88 69.31 - 2.09e+05 15.05 68.58 7.52e+05 0 33.67
b) 0.86 0.88 69.31 -
c) 0.86 0.90 69.38 -

Table 2 Compressible linear elasticity with E1 = 1, E2 = 1e + 06. Coarse spaces for
TOL = 10 for all generalized eigenvalue problems.

mains; see Table 2. For N ∈ {43, 53}, we see that the classical Alg. III does
not converge in any single run and always leads to a condition number of at
least 1e + 05. Although Alg. II converges in all cases it exhibits a condition
number of 1e + 05 or higher in 71 (N = 43) and 73 (N = 53) runs. The
performance of Alg. Ia, Ib, and Ic is almost identical. For these algorithms,
the condition number is always lower than 15, and convergence is reached
within 35 iterations.
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Newton-Krylov-FETI-DP with
Adaptive Coarse Spaces

Axel Klawonn1, Martin Lanser1, Balthasar Niehoff1, Patrick Radtke1, and
Oliver Rheinbach2

1 Introduction

Newton-Krylov domain decomposition methods are approaches for solving
nonlinear problems arising from the discretization of nonlinear partial dif-
ferential equations. These methods are based on an iterative solution of lin-
earized systems using a domain decomposition preconditioner. In this paper,
we use FETI-DP as an iterative method and compute an adaptive coarse
space, first introduced in [11], to improve the condition number and thus the
convergence of the iterative method. A theory has been developed in [6] for
this coarse space in two dimensions and later, in [4], for three dimensions.
In this paper, several heuristic strategies are introduced to reduce the com-
putational effort for nonlinear problems, where a sequence of related linear
problems have to be solved. These approaches show the potential of reducing
the number of eigenvalue problems necessary for the construction of adaptive
coarse spaces. A different but related approach was presented in [2].

2 Newton-Krylov-FETI-DP

In order to solve a discrete nonlinear equation

K̂(û)− f̂ = 0, (1)

1Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany.
e-mail:{axel.klawonn,martin.lanser,patrick.radtke}@uni-koeln.de ·2Institut für Nu-
merische Mathematik und Optimierung, Fakultät für Mathematik und Informatik, Technis-

che Universität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg, Germany. e-mail:
oliver.rheinbach@math.tu-freiberg.de
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associated with a computational domain Ω, we perform a Newton lineariza-
tion of (1) and compute an update δû by solving the linearized system

DK̂(û) δû = K̂(û)− f̂ . (2)

We always consider an iterative Krylov method such as CG to solve (2) using
a domain decomposition preconditioner. In this paper, we always consider a
FETI-DP (Finite Element Tearing and Interconnecting - Dual-Primal) pre-
conditioner although a BDDC method could also be used. Therefore, we
decompose Ω into nonoverlapping subdomains Ωi, i = 1, . . . , N , and assume
the subdomains to be unions of finite elements. We denote the finite element
space associated with Ω by Ŵ and the local finite element spaces associ-
ated with the subdomains by Wi, i = 1, . . . , N . Let us define local nonlinear
problems in Wi, i = 1, . . . , N , by

K(i)(ui) = fi. (3)

These local problems arise from a finite element discretization on subdo-
mains Ωi, i = 1, . . . , N . The corresponding tangential matrices are defined
as DK(i)(ui). We introduce the block vectors

K(u) :=




K(1)(u1)
...

K(N)(uN )


 , u :=




u1

...
uN


 , f :=




f1
...
fN


 , (4)

and the block tangential matrix

DK(u) =



DK(1)(u1)

. . .

DK(N)(uN )


 . (5)

In FETI-DP type methods, we divide all degrees of freedom into variables
inside subdomains (I), dual interface variables (∆), and primal variables
(Π). Using the partial assembly operator RT , well-known from the standard
(linear) FETI-DP literature [1, 8, 10, 7], we can define the partially assembled

operator K̃(ũ) := RTK(Rũ). Here, we perform a global assembly in all primal
variables Π, but not in the remaining part of the interface. Equivalently, we
partially assemble the right hand side f̃ := RT f and the tangential matrix
DK̃(ũ) := RTDK(ũ)R. We define the space of partially assembled functions

by W̃ ⊂ W := W1 × · · · × WN . Introducing the standard FETI-DP jump
operator B and Lagrange multipliers to enforce the constraint B ũ = 0, the
FETI-DP master system reads

(
DK̃(ũ) BT

B 0

)(
δũ
λ

)
=

(
K̃(ũ)− f̃
0

)
. (6)
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ADAPTIVE-NEWTON-KRYLOV-FETI-DP

Init: ũ(0) ∈ W, continuous

for k = 0, ..., convergence

build: K̃(ũ(k)) and DK̃(ũ(k))
if cond func(k, r(0),...,r(k), its(0),..., its(k − 1))

compute adaptive coarse space using tangent DK̃(ũ(k))
else

recycle adaptive coarse space from step k − 1
end if
solve with preconditioned CG:
M−1

BP B (DK̃(ũ(k)))−1 BT λ = M−1
BP B (DK̃(ũ(k)))−1 (K̃(ũ(k))− f̃)

compute:
δũ(k) = DK̃(ũ(k))−1 (K̃(ũ(k))− f̃ −BTλ) // Compute δũ from λ.
compute: steplength α(k)

update: ũ(k+1) := ũ(k) − α(k) δũ(k)

end

Fig. 1 Algorithmic description of Adaptive-Newton-Krylov-FETI-DP.

At convergence, the solution δũ of (6) is continuous on the interface and
thus can be assembled to the solution δû in (2). We finally obtain a solution
of system (6) by eliminating all variables of δũ and using a preconditioned
Krylov subspace method and solve

M−1
BPF λ := M−1

BP B (DK̃(ũ))−1 BT λ = M−1
BP B (DK̃(ũ))−1 (K̃(ũ)− f̃). (7)

In this paper, we use the balancing preconditioner M−1
BP , see, e.g., [9], for

the Lagrange multipliers, implementing a second, adaptive coarse space com-
puted from eigenvalue problems based on localized tangential matrices; see
Section 3. The preconditioner M−1

BP is defined by M−1
BP = (I − P )M−1(I −

P )+U(UTFU)−1UT , where P = U(UTFU)−1UTF is an F -orthogonal pro-
jection onto rangeU . The columns of U represent additional constraints of
the form UTB ũ = 0. For more details on the balancing preconditioner ap-
plied to FETI-DP methods, we refer to [9]. We denote the resulting algorithm
by Adaptive-Newton-Krylov-FETI-DP; see Fig. 1 for the algorithm.

3 Adaptive coarse space

In the following, we briefly describe an adaptive approach first introduced
in [11]. For other uses of this coarse space and modifications, see, e.g., [12,
13, 6]. A theory is provided in [4, 6]. Due to space limitations, for further
references on other adaptive coarse spaces, see, e.g., [15, 14, 3], and the ref-
erences therein. Let the Schur complements Sl be obtained by eliminating
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the interior degrees of freedom in DK(l)(ul), l = i, j. We define BD,ij as

the matrix with rows of [B
(i)
D B

(j)
D ] which correspond to Lagrange multipliers

connecting degrees of freedom on ∂Ωi ∩ ∂Ωj and by Bij the corresponding
rows in [B(i)B(j)]. We then build a local operator PD,ij = BT

D,ijBij . Let

W̃ij be the subspace of functions in Wi ×Wj which are continuous at those
primal vertices that the two substructures Ωi and Ωj have in common. Let

Πij be the l2-orthogonal projection from Wi × Wj onto W̃ij . Let σ > 0
and Πij be the l2-orthogonal projection that projects orthogonally the ele-
ments of ker(ΠijSijΠij + σ(I − Πij)) onto constants. In our computations
we use σ = max(diag (Sij)). To compute adaptive constraints, for each pair
of substructures (Ωi, Ωj) having an edge in common, we solve the eigenvalue
problem

ΠijΠijP
T
Dij

SijPDijΠijΠijwij,m

=µij,m(Πij(ΠijSijΠij + σ(I −Πij))Πij + σ(I −Πij))wij,m, (8)

for eigenpairs where µij,m≥TOL,m = k, . . . , n. We implement the constraints
wT

ij,mPT
Dij

SijPDijwij = 0 for wij ∈ Wi ×Wj and m = k, . . . , n. The adaptive
constraint vectors are then given by uij,m = BDijSijPDijwij,m. They are
extended by zero on the remaining interface and aggregated in the matrix U .

In our Adaptive-Newton-Krylov-FETI-DP method, we also use heuristic
strategies to decide if the adaptive coarse space can be recycled in a certain
Newton step. Only if some condition cond func(k, r(0), ..., r(k), its(0), ..., its(k−
1)) is fulfilled in the k-th Newton step, we do compute a new adaptive coarse
space. Otherwise, we recycle the coarse space already used in the previous
Newton step. We suppose, that conditions can be provided that depend on
the nonlinear residuals r(l) := K̃(u(l))− f̃ , l = 0, . . . , k, the current iteration
k, or the number of Krylov iterations its(l) in the previous Newton steps
l = 0, . . . k − 1. In the present paper, we propose three different strategies.
Strategy a): cond func := true, Strategy b): cond func := (k == 0), or
Strategy c): cond func := ((its(k−1)/its(c) < 0.75) ∨ (its(c)/its(k−1) <
0.75)). For Strategy a), we can prove a theoretical condition number bound
for each linearization; see [6]. Strategy b) is based on the assumption that
the optimal coarse space mainly depends on a coefficient function ρ. There-
fore, the coarse space computed in the first Newton iteration can be recycled,
since the coefficient function ρ does not change during the iteration. In Strat-
egy c) we compute an adaptive coarse space in the first Newton step. In the
following steps we consider the number of Krylov iterations in the previous
Newton step (its(k−1)) and the last Newton step in which an adaptive coarse
space has been computed (its(c)). We always compute a new coarse space if
its(k−1) and its(c) differ strongly. This strategy is based on the assumption
that the quality of the coarse space in the c-th Newton step is verified by the-
oretical results and thus we can recycle our current coarse space as long as we
have similar iteration counts as in step c. Let us remark that Strategy b) will
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Fig. 2 Decomposition of Ω = [0, 1] × [0, 1] into 3 × 3 subdomains. Each subdomain is
intersected by 3 channels (gray color). All channels are unions of finite elements and the

union of all channels is denoted by ΩC .

not succeed for elastoplasticity problems, see [5], for which we suggest the
use of Strategy a). Alternatively, the knowledge of the plastic zones could
be included into the heuristic function cond func. This is ongoing research
and will be published elsewhere.

4 Numerical Results

As a model problem, we consider the p-Laplace equation with p = 4

−div(ρ |∇u|2∇u) = 1 in Ω
u = 0 on ∂Ω,

(9)

where ρ : Ω → R is a coefficient function given by

ρ(x) =

{
1e6 if x ∈ ΩC

1 elsewhere;
(10)

see Fig. 2 for a definition of ΩC . Let us remark that, given a finite element
basis {ϕ1, . . . , ϕNi} on a subdomain Ωi, we have

K(i)(ui) :=

(∫

Ωi

ρ |∇ui|p−2 ∇uT
i ∇ϕ1dx , ... ,

∫

Ωi

ρ |∇ui|p−2∇uT
i ∇ϕNidx

)T

.

For the tangential matrices DK(i)(ui), we obtain

(DK(i)(ui))j,k :=

∫

Ωi

ρ |∇ui|p−2∇ϕT
j ∇ϕkdx

+ (p− 2)

∫

Ωi

ρ |∇ui|p−4 (∇uT
i ∇ϕj) (∇uT

i ∇ϕk)dx.

This tangential matrix is symmetric positive definite for all nonconstant
functions u. We present numerical results for model problem (9) in Table 1
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TOL=1000
Newton Max. Min. Total Max. Min. Interface Avg. EP

N Strategy It. Krylov It. Krylov It. Krylov It. cond. cond. d.o.f. size U Solves

4

— 20 7 5 132 1.2 1.0 113 — 0
a) 20 7 5 132 1.2 1.0 113 0 20
b) 20 7 5 132 1.2 1.0 113 0 1
c) 20 7 5 132 1.2 1.0 113 0 2

16

— 22 129 25 890 363 714.3 653.7 675 — 0
a) 22 77 8 557 216.6 1.3 675 10.4 22
b) 22 108 6 335 569.0 1.1 675 36.0 1
c) 22 108 8 541 569.0 1.3 675 13.4 4

64

— 24 1 148 111 5 908 674 804.3 2 000.9 3 143 — 0
a) 24 109 8 1 465 243.1 1.3 3 143 65.9 24
b) 24 163 6 777 2 740.5 1.1 3 143 168.0 1
c) 24 113 8 1 483 433.0 1.3 3 143 68.7 5

256

— 26 3 417 352 18 764 696 950.1 5 083.7 13 455 — 0
a) 26 136 8 2 406 247.8 1.3 13 455 325.9 26
b) 26 141 7 1 086 5 413.9 1.3 13 455 720.0 1
c) 26 206 8 2 397 5 413.9 1.3 13 455 389.0 4

Table 1 Numerical results for model problem (9); each subdomain is a union of 2× 28×
28 linear triangular finite elements; tolerance TOL= 1000 for adaptive coarse space; N:
number of subdomains; Strategy: strategy chosen for cond func,“—” denotes the case

without an adaptive coarse space; Max. / Min. Krylov It.: maximal / minimal number
of Krylov subspace iterations during the Newton iteration; Total Krylov It.: total number
of Krylov subspace iterations during the Newton iteration; Max. / Min. cond.: maximal
/ minimal condition number during the Newton iteration; Interface d.o.f.: degrees of

freedom on the interface; Avg. size U: average size of the adaptive coarse spaces during
Newton iteration; EP Solves: Number of Newton steps in which a new adaptive coarse
space is computed.

comparing Newton-Krylov-FETI-DP with Adaptive-Newton-Krylov-FETI-
DP. We always make all subdomain vertex values primal initially. In all
computations we use a moderate tolerance TOL= 1000 to keep our adap-
tive coarse spaces small. All three adaptive strategies reduce the number of
CG iterations drastically in comparison to classical Newton-Krylov-FETI-
DP. Using Strategy a) and computing a new coarse space in each Newton
step, the condition number stays below the theoretical bound C · TOL. The
coarse spaces generated are sufficiently small with a size of less than 5% of
the size of the interface. Using Strategy b), the number of CG iterations is
even lower. This is caused by a comparably large coarse space computed in
the first Newton step. In this approach, the adaptive coarse space has only to
be computed once, which results in a large reduction of local computational
work compared to Strategy a). Unfortunately, the number of CG iterations
in the different Newton steps and the average size of the coarse space strongly
differs from the theoretically verified Strategy a) and thus a control using
tolerance TOL is no longer possible. In contrast, Strategy c) can nearly re-
produce the average size of the coarse space and the number of CG iterations
of Strategy a). Additionally, the number of adaptive coarse space compu-
tations and thus the number of local eigenvalue problems is reduced by a
factor of 5.0 to 6.0. For a graphical comparison of all methods see also Fig. 3.
Especially the similar behavior of Strategies a) and c) can be observed.

182 Axel Klawonn, Martin Lanser, Balthasar Niehoff, Patrick Radtke, Oliver Rheinbach



Fig. 3 Results for 64 subdomains from Table 1 showing the number of Krylov subspace

iterations in each Newton step;NK (blue curve) denotes Newton-Krylov-FETI-DP without
adaptive coarse spaces; NKA Strategy a) / b) / c) (green / yellow / red curve) denotes
Strategy a) / b) / c); the five black circles mark the Newton steps in which Strategy c)
decided to compute a new coarse space and the numbers give the sizes of the coarse spaces.

5 Conclusion

An adaptive Newton-Krylov-FETI-DP approach has been presented, where
the condition numbers of all preconditioned tangential matrices are bounded
by a constant. Additionally, heuristic strategies have been introduced saving
local work by reducing the number of eigenvalue problems. Results for a
p-Laplace model problem with highly heterogeneous coefficient have been
presented, showing the ability of adaptive coarse spaces to save CG iterations.
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New Nonlinear FETI-DP Methods
Based on a Partial Nonlinear
Elimination of Variables

Axel Klawonn1, Martin Lanser1, Oliver Rheinbach2, and Matthias Uran1

1 Introduction

We introduce two new nonlinear FETI-DP (Finite Element Tearing and Inter-
connecting - Dual-Primal) methods based on a partial nonlinear elimination
and provide a comparison to Newton-Krylov-FETI-DP, Nonlinear-FETI-DP-
1, and -2 methods [3, 4]. In contrast to classical Newton-Krylov-FETI-DP
methods, where a geometrical decomposition after linearization is performed,
in nonlinear FETI-DP methods, the nonlinear problem is decomposed before
linearization. The approaches help to localize work and thus are well suited
for modern computer architectures. Recently, an inexact nonlinear FETI-DP
implementation using PETSc and BoomerAMG has scaled, for nonlinear hy-
perelasticity, to the largest supercomputers currently available, i.e., to more
than half a million MPI ranks [6] on the JUQUEEN supercomputer (Julich
Supercomputing Centre), more than half a million cores [6] on the Mira su-
percomputer (Argonne National Laboratory), and later [5] the complete Mira
(786K cores). To the best of our knowledge, this is the largest range of paral-
lel scalability reported for any domain decomposition method. Here, we now
describe new variants of nonlinear FETI-DP methods.

2 Nonlinear FETI-DP Methods

In all nonlinear FETI-DP methods, a geometrical decomposition of the com-
putational domain Ω into nonoverlapping subdomains Ωi, i = 1, ..., N is

1Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany.

e-mail:\{axel.klawonn,martin.lanser\}@uni-koeln.de · 2Institut für Numerische Math-
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sität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg, Germany. e-mail: oliver.

rheinbach@math.tu-freiberg.de
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performed before linearizing the nonlinear problem. In the more traditional
Newton-Krylov-FETI-DP approach a discrete nonlinear problem A(u) = 0
associated with Ω is linearized first. Let Ki(ui) = fi, i = 1, ..., N, be the
local finite element problem on subdomain Ωi and let Wi be the associated
finite element space; see [4], for a detailed definition. We define the nonlinear,
discrete block operator K(u) and the corresponding vectors u and f by

K(u) :=




K1(u1)
...

KN (uN )


 , u :=




u1

...
uN


 , and f :=




f1
...
fN


 . (1)

As in linear FETI-DP, we decompose the degrees of freedom into variables
interior to subdomains (I), dual interface variables (∆), and primal variables
(Π), e.g., on vertices. Using the standard partial assembly operator RT

Π , [1, 7]

we define the nonlinear, partially assembled operator K̃(ũ) := RT
ΠK(RΠ ũ)

and the right hand side f̃ := RT
Πf . We define the usual space of partially

continuous discrete functions by W̃ ⊂ W := W1 × · · · × WN . Using the
standard FETI-DP jump operator B, we can formulate the nonlinear FETI-
DP master system, first introduced in [3]

K̃(ũ) +BTλ− f̃ = 0
Bũ = 0.

(2)

In [4], two approaches have been suggested to solve the nonlinear system (2):
linearize first (Nonlinear-FETI-DP-1 or NL-1) and eliminate first (Nonlinear-
FETI-DP-2 or NL-2). The first variant is based on a Newton linearization of
the saddle point system and a solution of the resulting linear system. The
second variant is based on a nonlinear elimination of the variable ũ in (2)

before linearization. While in NL-1 nonlinear problems in W̃ are solved as an
initial guess, in NL-2 the solution of nonlinear problems in W̃ is included into
each Newton step, often resulting into faster convergence. In both methods
the quality of the coarse space directly influences the Newton convergence.
Thus, for problems where a good coarse space is known, NL-2 is often the
best choice. However, if a good coarse space is not available, current nonlinear
FETI-DP methods might fail to converge without spending effort in globaliza-
tion. Here, we introduce new nonlinear FETI-DP methods based on a partial
nonlinear elimination. In these methods, all primal variables are linearized
before elimination, which also allows the definition of inexact FETI-DP vari-
ants; see also [6, 7]. In the new methods, the choice of primal variables has
a weaker influence on the Newton convergence and local nonlinear problems
are also computationally cheaper.

186 Axel Klawonn, Martin Lanser, Oliver Rheinbach, Matthias Uran



3 Nonlinear FETI-DP Based on Partial Elimination

Derivation of the Method We partition ũ := (ũT
E , ũ

T
L)

T and f̃ :=

(f̃T
E , f̃T

L )T into a set of variables E ⊆ B := [I ∆], and the remaining variables
L := (B \ E) ∪ Π. The variables ũE will be eliminated from the nonlinear
saddle point system (2) while the variables ũL will be linearized. Accordingly,
we partition

K̃(ũ) = (K̃E(ũE , ũL)
T , K̃L(ũE , ũL)

T )T , and

DK̃(ũ) =

[
DũE

K̃E(ũE , ũL) DũL
K̃E(ũE , ũL)

DũE
K̃L(ũE , ũL) DũL

K̃L(ũE , ũL)

]
=:

[
DK̃EE DK̃EL

DK̃LE DK̃LL

]
. (3)

We can reformulate the nonlinear FETI-DP saddle point system (2) as

K̃E(ũE , ũL) +BT
Eλ −f̃E = 0

K̃L(ũE , ũL) +BT
Lλ −f̃L = 0

BE ũE +BLũL = 0,

(4)

with B = [BE BL]. We perform a (local) nonlinear elimination of ũE . To
construct our new nonlinear FETI-DP methods, we first derive a nonlinear
Schur complement in (ũL, λ). Let (ũ

∗
E , ũ

∗
L, λ

∗) be a solution of (4). We assume
there is an implicit function h with the following property in a neighborhood
of (ũ∗

E , ũ
∗
L, λ

∗):
K̃E(h(ũ

∗
L, λ

∗), ũ∗
L) +BT

Eλ
∗ − f̃E = 0. (5)

Here, we consider the first equation from (4). The derivative of the implicit
function is

Dh(ũL, λ) = (DũL
h(ũL, λ), Dλh(ũL, λ)), (6)

whereDũL
h(ũL, λ) = −(DũE

K̃E(h(ũL, λ), ũL))
−1DũL

K̃E(h(ũL, λ), ũL) (7)

and Dλh(ũL, λ) = −(DũE
K̃E(h(ũL, λ), ũL))

−1BT
E . (8)

Inserting the implicit function into equations two and three from (4) we can
define a nonlinear Schur complement by

SL(ũL, λ) :=

[
K̃L(h(ũL, λ), ũL) +BT

Lλ− f̃L
BEh(ũL, λ) +BLũL

]
. (9)

We finally solve the nonlinear problem SL(ũ
∗
L, λ

∗) = 0 with Newton’s method
and obtain the iteration

(
ũ
(k+1)
L

λ(k+1)

)
=

(
ũ
(k)
L

λ(k)

)
− (DSL(ũ

(k)
L , λ(k)))−1SL(ũ

(k)
L , λ(k)). (10)
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Using (7) and (8), the short hand notation introduced in (3), and, for sim-
plicity, omitting the variables and indices, we obtain

DSL(ũL, λ) =

[
DK̃LL −DK̃LEDK̃−1

EEDK̃EL −DK̃LEDK̃−1
EEB

T
E +BT

L

−BEDK̃−1
EEDK̃EL +BL −BEDK̃−1

EEB
T
E

]
.

(11)
It is easy to verify that the derivative of the nonlinear Schur complement
in (11) is equal to the Schur complement of the derivative of the nonlinear
saddle point system in (4). Therefore, we can use any FETI-DP type method
and solve a linear system equivalent to the linear system in (10). In order to

assemble and solve (10) we need to compute h(ũ
(k)
Π , λ(k)) first. We consider

local nonlinear problems in each global Newton step, arising from the first
equation in (4)

K̃E(h(ũ
(k)
L , λ(k)), ũ

(k)
L ) +BEλ

(k) − f̃E = 0. (12)

Since ũ
(k)
L and λ(k) are given as results of the k-th step of the global Newton

iteration (10), we can simply perform a local Newton iteration to find ũ
(k)
E =

h(ũ
(k)
L , λ(k)). The local iteration writes

ũ
(l+1)
E = ũ

(l)
E − (DK̃(ũ

(l)
E , ũ

(k)
L ))−1

EE (K̃E(ũ
(l)
E , ũ

(k)
L ) +BEλ

(k) − f̃E). (13)

Let us finally remark that, since E ∩ Π = ∅, DK̃(ũ
(l)
E , ũ

(k)
L ))EE is block

diagonal and thus all computations in (13) are local to the subdomains.
Two Different Variants We suggest two different choices of E. First,

we define E := B = [I ∆] as the set of interior and dual variables. Conse-
quently, we have L = Π, BE = BB , and BL = 0. This defines the Nonlinear-
FETI-DP-3 (NL-3) method, where local nonlinear problems in uB are solved
in each global Newton step; see Fig. 1. In this method, the coarse space
can slightly influence the convergence of Newton’s method, since primal con-
straints on edges, or faces in three dimensions, influence the variables uB . As a
second choice, we use E := I and thus we have L = ∆∪Π =: Γ , BE = 0, and
BL = BΓ . This leads to the Nonlinear-FETI-DP-4 (NL-4) method, where lo-
cal nonlinear problems in uI are solved in each global Newton step; see Fig. 2.
In this method, the coarse space cannot influence Newton’s method, since the
local problems are independent of the variables on the interface.

4 Numerical Results

As a first model problem, we consider a scaled p-Laplace equation

−div(α|∇u|2∇u− β∇u) = 1 in Ω, u = 0 on ∂Ω, (14)
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Init: (u
(0)
B , ũ

(0)
Π ) = ũ(0) ∈ W̃ , λ(0) = 0

for k = 0, ..., convergence

for l = 0, ..., convergence

build: K̃(ũ(l)) and DK̃(ũ(l))

solve: (DK̃(ũ(l)))BBδu
(l)
B = KB(ũ(l)) +BT

Bλ(k) − fB //local problems

compute steplength α(l)

update: ũ(l+1) := ũ(l) − α(l)
(
δu

(l)T
B , 0

)T
//update only on B

end

ũ(k) := ũ(l+1)

build: K̃(ũ(k)) and DK̃(ũ(k))

solve: DSΠ(ũ
(k)
Π , λ(k))

(
δũ

(k)
Π

δλ(k)

)
=

(
K̃Π(ũ(k))− f̃Π

BBu
(k)
B

)
//solve equivalent

FETI-DP system

compute steplength α(k)

update: λ(k+1) := λ(k) − α(k)δλ(k)

update: ũ
(k+1)
Π := ũ

(k)
Π − α(k)δũ

(k)
Π

ũ(0) :=
(
u
(l+1)T
B , ũ

(k+1)T
Π

)T

λ(0) := λ(k+1)

end

Fig. 1 Pseudocode of Nonlinear-FETI-DP-3.

Init: (u
(0)
I , ũ

(0)
Γ ) = ũ(0) ∈ W̃ , λ(0) = 0

for k = 0, ..., convergence

for l = 0, ..., convergence

build: K̃(ũ(l)) and DK̃(ũ(l))

solve: (DK̃(ũ(l)))IIδu
(l)
I = KI(ũ

(l))− fI //local problems

compute steplength α(l)

update: ũ(l+1) := ũ(l) − α(l)
(
δu

(l)T
I , 0

)T
//update only on I

end

ũ(k) := ũ(l+1)

build: K̃(ũ(k)) and DK̃(ũ(k))

solve: DSΓ (ũ
(k)
Γ , λ(k))

(
δũ

(k)
Γ

δλ(k)

)
=

(
K̃Γ (ũ(k)) +BT

Γ λ(k) − f̃Γ

BΓu
(k)
Γ

)
//solve equiv-

alent FETI-DP system

compute steplength α(k)

update: λ(k+1) := λ(k) − α(k)δλ(k)

update: ũ
(k+1)
Γ := ũ

(k)
Γ − α(k)δũ

(k)
Γ

ũ(0) :=
(
u
(l+1)T
I , ũ

(k+1)T
Γ

)T

λ(0) := λ(k+1)

end

Fig. 2 Pseudocode of Nonlinear-FETI-DP-4.
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Ω2,C

Ω3,C

Ω1,C

Fig. 3 Left: Example for a decomposition of Ω in N = 9 subdomains, intersected by 3

channels Ωi,C , i = 1, 2, 3. We define ΩC =
⋃

i Ωi,C . Right: Subdomain Ωi with channel

Ωi,C of width H
2
, where H is the size of a subdomain.

Table 1 p-Laplace problem; channels of p-Laplace (p = 4) with high coefficient 1e6 in

standard linear Laplacian matrix. N: number of subdomains; Krylov It.: sum of CG iter-

ations over all Newton steps; local solves:number of local factorizations on subdomains;

coarse solves: number of FETI-DP coarse problem factorizations. Best results are marked

in bold face and red color.

# Krylov # local # coarse Min. Max.

N Solver It. solves solves cond. cond.

NK-FETI-DP 864 19 19 95.9 31 265.6

Nonlinear-FETI-DP-1 537 26 26 39.5 151.5
64 Nonlinear-FETI-DP-2 225 34 34 39.6 95.9

Nonlinear-FETI-DP-3 264 36 6 30.4 95.9
Nonlinear-FETI-DP-4 1343 56 17 95.8 32 520.7

NK-FETI-DP 2341 19 19 158.1 59 730.5
Nonlinear-FETI-DP-1 1128 26 26 60.5 255.2

256 Nonlinear-FETI-DP-2 481 34 34 60.6 158.4

Nonlinear-FETI-DP-3 529 38 6 39.6 158.9
Nonlinear-FETI-DP-4 2766 54 18 158.0 60 415.5

where α, β : Ω → R are coefficient functions given by

α(x) =

{
106 if x ∈ ΩC

0 elsewhere
β(x) =

{
0 if x ∈ ΩC

1 elsewhere;
(15)

see Fig. 3 for a definition of ΩC .
In Table 1, we present results for the p-Laplace problem (14). Here, NL-4

and Newton-Krylov-FETI-DP both require many Krylov iterations. The local
nonlinear problems on the interior part of the subdomains solved in NL-4
cannot resolve the strongly global nonlinearity of the channels. Comparable
good results in terms of Krylov space iterations are obtained using NL-2 and
NL-3. The new NL-3 method additionally reduces the number of FETI-DP
coarse solves drastically and thus is potentially faster in a parallel setup. In
contrast to NL-2, where in each global Newton step nonlinear problems in W̃
including the FETI-DP coarse problem have to be solved, in NL-3 and NL-4
the coarse solves are only necessary in the global Newton iteration.

Our second model problem is a nonlinear hyperelasticity problem. We
consider a Neo-Hooke material (ν = 0.3) with a soft matrix material (E =
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Fig. 4 Left: Initial value (reference configuration) and two different materials with ν = 0.3

everywhere, E1 = 210 000 in the red inclusions, and E2 = 210 in the blue matrix material.

Right: Solution when a volume force fv = [0,−10]T is applied.

Table 2 Heterogeneous Neo-Hooke problem; see Fig. 4. Using GMRES as Krylov solver

and primal vertex constraints; d.o.f.: problem size; N: number of subdomains; Krylov It.:

sum of GMRES iterations over all Newton steps; local solves: number of local factoriza-

tions on subdomains; coarse solves: number of FETI-DP coarse problem factorizations.

Best results are marked in bold face and red color.

d.o.f. N Solver #Krylov-It. # local solves # coarse solves

NK-FETI-DP 595 10 10
51 842 64 NL-FETI-DP-4 356 12 6

NK-FETI-DP 939 10 10
206 082 256 NL-FETI-DP-4 491 12 6

210) and stiff inclusions (E = 210 000); see Fig. 4 (left) for the geometry. The
strain energy density function W [2] is given by W (u) = µ

2

(
tr(FTF ) − 3

)
−

µln (det (F )) + λ
2 ln

2 (det (F )) with the Lamé constants λ = νE
(1+ν)(1−2ν) , µ =

E
2(1+ν) and the deformation gradient F (x) := ∇ϕ(x). Here, ϕ(x) = x +

u(x) denotes the deformation and u(x) the displacement of x. The energy
functional of which stationary points are computed, is given by

J(u) =

∫

Ω

W (u)− V (u)dx−
∫

Γ

G(u)ds,

where V (u) and G(u) are functionals related to the volume and traction
forces. The nonlinear elasticity problem is discretized with piecewise linear
finite elements. In Table 2 we present the results for our Neo-Hooke model
problem described in Fig. 4. We only considered continuity in vertices as
primal constraints, which is not an optimal coarse space for highly heteroge-
neous elasticity problems. This leads to divergence of NL-1 and NL-2 when
using no further globalization strategy. Since the coarse space does not influ-
ence the convergence behavior of Newton-Krylov-FETI-DP and NL-4, both
methods converge. Due to the local nonlinear problems solved in NL-4, the
number of GMRES iterations is reduced up to 47% compared to Newton-
Krylov-FETI-DP. Also the number of necessary coarse solves is reduced in
NL-4. Of coarse, in the nonlinear variant, the local work is increased slightly.
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5 Conclusion

We have presented new nonlinear FETI-DP variants based on a partial non-
linear elimination of interior and interface variables. These methods can re-
move the influence of the coarse space to the Newton convergence and can be
superior if a good coarse space is not available. We have seen that the new
methods can reduce the number of FETI-DP coarse solves drastically.
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Direct and Iterative Methods for
Numerical Homogenization

Ralf Kornhuber1, Joscha Podlesny1, and Harry Yserentant2

Abstract
Elliptic problems with oscillating coefficients can be approximated up to ar-
bitrary accuracy by using sufficiently fine meshes, i.e., by resolving the fine
scale. Well-known multiscale finite elements [5, 9] can be regarded as di-
rect numerical homogenization methods in the sense that they provide ap-
proximations of the corresponding (unfeasibly) large linear systems by much
smaller systems while preserving the fine-grid discretization accuracy (model
reduction). As an alternative, we present iterative numerical homogenization
methods that provide approximations up to fine-grid discretization accuracy
and discuss differences and commonalities.

Acknowledgements This research has been funded by Deutsche Forschungsgemeinschaft

(DFG) through grant CRC 1114.

1 Introduction

Numerical approximation usually aims at modifications of standard finite
element approximations of partial differential equations with highly oscilla-
tory coefficients that preserve the accuracy known in the smooth case. Us-
ing classical homogenization as a guideline, these modifications are obtained
from local auxiliary problems [2, 4, 7]. The error analysis for these kinds of
methods is typically restricted to coefficients with separated scales and often
requires periodicity [1, 2, 6]. These restrictions were overcome in a recent
paper by Målqvist and Peterseim [9] that provides quasioptimal energy and
L2 error estimates without any additional assumptions on periodicity and
scale separation [5, 9]. While their approach relies on (approximate) orthog-
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2TU Berlin: yserentant@math.tu-berlin.de
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onal subspace decomposition, alternative decompositions into a coarse space
and local fine-grid spaces associated with low and high frequencies has been
recently considered by Kornhuber and Yserentant [8]. Here, we review these
two decomposition techniques providing direct [9] and iterative methods [8]
for numerical homogenization in order to better understand conceptual sim-
ilarities and differences. We also illustrate the performance of the iterative
variant by first numerical experiments in d = 3 space dimensions.

Both approaches rely on subspace decomposition in function space while
practical, discrete variants aim at approximating a sufficiently accurate, com-
putationally unfeasible fine-grid solution up to discretization accuracy. This
approximation is either obtained directly from a linear system as derived from
local fine-grid problems [9] or iteratively by repeated solution of coarse- and
local fine-grid problems [8]. Comparing the computational effort, the direct
method requires assembly of the multiscale stiffness matrix and usually leads
to larger local fine-grid problems than the iterative approach. In addition,
the local fine-grid problems involve a saddle point structure [9, Remark 4.5]
rather than positive-definite stiffness matrices [8]. However, in contrast to
iterative homogenization the direct approach provides a reduced multiscale
basis that incorporates all relevant features and has various advantages, e.g.,
in case of many different right-hand sides.

2 Elliptic problems with oscillating coefficients

Let Ω ⊂ Rd, d = 2 or d = 3, be a bounded convex domain with polygonal or
polyhedral boundary ∂Ω. We consider the variational problem

u ∈ V : a(u, v) = (f, v) ∀v ∈ V, (1)

where V = H1
0 (Ω) is a closed subspace of H1(Ω), (·, ·) is the canonical scalar

product in L2(Ω), and f ∈ L2(Ω). The bilinear form a(·, ·) takes the form
a(v, w) =

∫
Ω
∇v(x) · A(x)∇w(x) dx, v, w ∈ V , where A(x) ∈ Rd×d is a sym-

metric matrix with sufficiently smooth, but intentionally highly oscillating
entries and

δ|η|2 ≤ η ·A(x)η ≤ M |η|2 (2)

holds for all η ∈ Rd and almost all x ∈ Ω with positive constants δ, M
independent of x and η. It is well-known that (1) admits a unique solution
and, for ease of presentation, we assume u ∈ V ∩H2(Ω). As a model problem,
one might think of two separate scales

A(x) = α
(
x,

x

ε

)
I, x ∈ Ω, (3)

with the identity matrix I and a fine-scale parameter ε > 0. For periodic
coefficients α, the oscillatory problem (1) can be treated by classical homog-
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enization via the solution of certain continuous cell problems. However, no
scale separation, periodicity, or exact solvability of continuous cell problems
will be assumed throughout the rest of the presentation.

Let TH denote a regular partition of Ω into simplices with maximal diam-
eter H > 0. The corresponding space of piecewise affine finite elements

SH = {v ∈ C(Ω) | v|∂Ω = 0 and v|t affine ∀t ∈ TH}

is spanned by the nodal basis λp ∈ SH , p ∈ NH , where NH stands for the set
of interior vertices of TH . The usual finite element approximation is given by
uH = PSH

u with PSH
: V → SH denoting the Ritz projection defined by

PSH
w ∈ SH : a(PSH

w, v) = a(w, v) ∀v ∈ SH .

We have the well-known error estimate ‖u−uH‖ . H‖u‖H2(Ω), where ‖ ·‖ =

a(·, ·)1/2 signifies the energy norm. Here and throughout this paper, we write
a . b, if a ≤ cb holds with a constant c only depending on the contrast M/δ
and on the shape regularity of TH . Unfortunately, ‖u‖H2(Ω) depends on the
oscillatory behavior of A. For example, we have ‖u‖H2(Ω) = O(ε−1) and thus
‖u−uH‖ . ε−1H in the model case (3). Numerical homogenization is aiming
at a modified finite element space Sms

H with dim Sms
H = dim SH such that

ums
H = PSms

H
satisfies ‖u− ums

H ‖ . H.

3 Direct homogenization by localized orthogonal
decomposition

Let Π : V → SH denote a quasi-interpolation with the property

‖v −Πv‖0,t ≤ CΠH‖∇v‖0,ωt
∀t ∈ TH , ∀v ∈ V, (4)

with local L2-norms ‖ · ‖0,t, ‖ · ‖0,ωt
on t, ωt, respectively, and let ωt be

the union of t′ ∈ TH with t ∩ t′ 6= ∅. A possible choice is the Clément-type
operator [3]

Πv =
∑

p∈NH

vpλp, vp =
1

ωp

∫

ωp

v dx, ωp = int supp λp. (5)

The main idea taken from Målqvist and Peterseim [9] is to consider the a-
orthogonal decomposition

V = Sms
H + V f (6)

into the kernel V f of Π and its a-orthogonal complement Sms
H = (I−PV f )V .

Proposition 1. The Ritz projection ums
H ∈ Sms

H of u on Sms
H satisfies
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‖u− ums
H ‖ . H. (7)

Proof. Orthogonality of the splitting (6) implies that w = u − ums
H ∈ V f

fulfills ‖w‖2 = (f, w). Utilizing the local L2 scalar product (·, ·)t, (4), (2), the
local energy norm ‖ · ‖t, the binomial formula, and the L2 norm ‖ · ‖0, we get

(f, w) =
∑

t∈TH

(f, w)t =
∑

t∈TH

(f, w −Πw)t .
∑

t∈TH

‖f‖0,tH‖∇w‖0,ωt

.
∑

t∈TH

s−1H‖f‖0,ts‖w‖ωt
. 1

2s
−2H2‖f‖20 + 1

2cs
2‖w‖2

with positive s ∈ R. The assertion follows by choosing s sufficiently small. ⊓⊔
Note that different choices of Π give rise to different multiscale methods.

We refer to [5, 9] for a detailed discussion.
A basis λms

p = (I − PV f )λp of Sms
H is obtained from the local problems

µms
p ∈ V f : a(µms

p , v) = a(λp, v) ∀v ∈ V f (8)

for the multiscale corrections µms
p = PV fλp. Unfortunately, the resulting mul-

tiscale basis functions λms
p have global support so that sparsity of the corre-

sponding stiffness matrix is lost. As a way out, Målqvist and Peterseim [9]
consider the localized orthogonal projection

µk
p ∈ V f (ωp,k) : a(µk

p, v) = a(λp, v) ∀v ∈ V f (ωp,k) (9)

with local patches ωp,k of order k ∈ N defined by

ωp,1 = ωp, ωp,k = int {t ∈ TH | t ∩ ωp,k−1 6= ∅}, k > 1, (10)

and V f (ωp,k) = {v ∈ V f | int supp v ∈ ωp,k}. The resulting multiscale finite
element space now reads Sk

H = span {λk
p = λp − µk

p | p ∈ NH}. Exploiting
the decay properties of Green’s functions Målqvist and Peterseim [9] (see
[5] for a later, more elegant proof) were able to show that the desired error
estimate (7) is preserved under localization (9).

Theorem 1. The Ritz projection uk
H of the solution u of (1) to Sk

H admits
the error estimate ‖u− uk

H‖ . H for sufficiently large k & H−1.

The solution of the localized problems (9) is computationally unfeasible,
because dim V f = ∞. As a way out, the continuous solution space V is
replaced by a possibly unfeasibly fine finite element space Sh providing an
approximation uh = PSh

u with accuracy ‖u − uh‖ . H. In the model case
(3), we might choose Sh associated with a uniform partition Th with mesh

size h = Hε−1. Repeating the above reasoning with V f replaced by V f
h =

ker Π|Sh
, V f (ωp,k) replaced by V f

h (ωp,k) = V f (ωp,k) ∩ V f
h , etc., we obtain

the multiscale finite element space Sk
H,h = span {λk

p,h = λp−µk
p,h | p ∈ NH}

with discrete multiscale corrections µk
p,h obtained from
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µk
p,h ∈ V f

h (ωp,k) : a(µk
p,h, v) = a(λp, v) ∀v ∈ V f

h (ωp,k). (11)

For quasi-interpolations Π like the one defined in (5), there is no local basis

of the linearly constrained subspaces V f
h = ker Π|Sh

. Hence, the constraint
Πv = 0 is usually enforced by a Lagrange multiplier so that the algebraic
solution of (11) amounts to solving a saddle point problem. Utilizing essen-
tially the same arguments as before, the error estimates in Proposition 1 and
Theorem 1 directly carry over to the discrete case.

Theorem 2. The Ritz projection uk
H,h of the solution u of (1) to Sk

H,h admits

the error estimate ‖u− uk
H,h‖ . H for sufficiently large k & H−1.

Note that localized orthogonal decomposition can be regarded as a direct
method to approximate uh up to the discretization error by the solution uk

H,h

of a much smaller problem. From such a prespective, multiscale finite element
methods appears to be a kind of model reduction.

4 Iterative homogenization by subspace correction

The main idea of iterative homogenization is to derive an iterative scheme
that allows for solving the given boundary value problem (1) up to a pre-
scribed accuracy with a number of steps that depends only on the contrast
M/δ from (2) and on the shape regularity of TH . To this end, we consider
the splitting

V = SH +
∑

p∈NH

Vp, Vp = H1
0 (ωp), (12)

with ωp defined in (5) and NH consisting of all vertices of TH . This splitting
induces a parallel subspace correction method providing the preconditioner

T = PSH
+

∑

p∈NH

PVp
. (13)

Utilizing basic results from subspace correction [10, 11], spectral equivalence

K−1
1 a(v, v) ≤ a(Tv, v) ≤ K2 a(v, v) ∀v ∈ V, (14)

follows from the stability of the splitting (12). This means that for any v ∈ V
there is a decomposition v = vH +

∑
p∈NH

vp into vH ∈ SH and vp ∈ Vp,

p ∈ NH , such that

‖vH‖2 +
∑

p∈NH

‖vp‖2 ≤ K1‖v‖2 (15)

is satisfied with a constant K1 > 0 and such that
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‖v‖2 ≤ K2(‖vH‖2 +
∑

p∈NH

‖vp‖2) (16)

holds with a constant K2 > 0 for any such decomposition. The following
proposition taken from [8] is crucial for the rest of this exposition.

Proposition 2. The splitting (12) is stable with positive constants K1, K2

depending only on the contrast M/δ and on the shape regularity of TH .

It is not difficult to realize that (16) with K2 = d+2 follows from the Cauchy-
Schwarz inequality. Exploiting the quasi-interpolation Π defined in (5) and
that the functions λp, p ∈ NH , form a partition of unity, it turns out that
(15) holds for the decomposition vH = Πv, vp = λp(v −Πv), p ∈ NH . We
refer to [8] for details.

Note that, in contrast to direct numerical homogenization as explained
above, the quasi-interpolation Π now only enters the proof of the condition
number estimate, but not the algorithm itself.

Employing spectral equivalence (14), we can use the spectral mapping
theorem to obtain usual error bounds for preconditioned cg iterations in
function space.

Theorem 3. The convergence rate ρ of the preconditioned cg iteration with

preconditioner T satisfies ρ ≤
√
κ−1√
κ+1

,κ ≤ K1K2, so that the error estimate

‖u− uν‖ . Tol holds for ν & log(Tol−1) and any given tolerance Tol > 0.

Note that, in contrast to direct numerical homogenization, the achievable
accuracy is independent of the choice of SH .

Of course, the preconditioner (13) is computationally unfeasible, because
the evaluation of the local Ritz projections PVp , p ∈ NH , amounts to the
solution of continuous variational problems. As in the previous section, the
continuous solution space V is therefore replaced by a, possibly unfeasibly
large, finite element space Sh ⊂ V that provides an approximation uh = PSH

u
with accuracy of order H. We then consider the discrete splitting

Sh = SH +
∑

p∈NH

Vp,h, Vp,h = Sh ∩H1
0 (ωp), (17)

and the associated preconditioner

Th = PSH
+

∑

p∈NH

PVp,h
. (18)

Similar arguments as in the continuous case provide the stability of the
discrete splitting (17) with constants K1, K2 depending only on the contrast
M/δ from (2) and on the shape regularity of TH . Hence, spectral equivalence

K−1
1 a(v, v) ≤ a(Thv, v) ≤ K2 a(v, v) ∀v ∈ Sh (19)
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follows from well-known results, e.g., in [10, 11]. As a consequence, the
preconditioned cg iteration in Sh with preconditioner Th exhibits mesh-
independent convergence rates.

Theorem 4. The preconditioned cg iteration with preconditioner Th provides
the error estimate ‖u− uν

h‖ . H for ν & log(H−1) iteration steps as applied
to a fixed initial iterate u0

h ∈ Sh.

Note that the achievable accuracy is limited only by the selection of the space
Sh but not by the space SH as opposed to the direct approach.

Each evaluation of the preconditioner Th requires the evaluation of the
Ritz projections to SH and Vp,h, p ∈ NH , respectively. As local bases of these
subspaces are readily available, this amounts to the solution of symmetric,
positive-definite, linear systems associated with the coarse grid TH and with
the local fine grids ωp ∩ Th, p ∈ NH , and not to saddle point problems (11)
as in direct numerical homogenization.

Similar results can be achieved for successive subspace corrections based
on the splitting (17). We refer to [8] for further information.

5 Numerical experiments

We consider the unit cube Ω = (0, 1)3 and its uniform partition into cubes of
edge length H = 1/8 which are further subdivided into cubes of edge length
h = 1/32 (one more uniform refinement step would lead to computations with
more than 2·106 unknowns). The simplical partitions TH and Th are obtained
by subdividing each cube into six tetrahedra by the Coxeter-Freudenthal-
Kuhn triangulation. We consider (1) with f ≡ 1 in the model case (3) with a
scalar coefficient α(x) which is piecewise constant on a 32×32×32 cube grid,
with values that are uniformly distributed random numbers in an interval
with lower bound δ = 1 and upper bound M.

The reduction factors for the energy error ‖uh−uν
h‖ of the preconditioned

cg iteration with preconditioner Th given in (18) and initial iterate u0
h =

uH is listed in Table 1 for the ratios M/δ = 1, 10, 102, 104, and 106. The
convergence speed does not decrease significantly from M/δ = 100, i.e., the
simple Laplace equation, to larger and larger contrast, less and less covered
by theory. The stopping criterion ‖uh − uν

h‖ ≤ ‖uh/2 − uh‖ ≤ ‖u − uh‖ was
reached with at most ν = 2 iteration steps for all considered values of M/δ.
Replacing ωp in (12) by ωp,k, k > 1, thus introducing larger overlap, leads
to a further improvement of reduction factors. Though error reduction will
probably saturate at slightly larger values for mesh sizes h < 1/32, we found
a similar convergence behavior for h = 1/512 in 2D and these computations
confirm the potential of iterative methods for numerical homogenization.
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step M/δ = 100 M/δ = 101 M/δ = 102 M/δ = 104 M/δ = 106

1 0.42289 0.43180 0.43730 0.43673 0.43747

2 0.40494 0.43488 0.44331 0.44399 0.44364

3 0.29253 0.34578 0.34930 0.34953 0.35052

4 0.32946 0.30560 0.30561 0.30714 0.30635

5 0.38972 0.39920 0.40461 0.39976 0.39907

6 0.38917 0.37999 0.38262 0.37489 0.37601

7 0.30847 0.34791 0.35729 0.35498 0.35238

8 0.33201 0.36407 0.38412 0.38667 0.37269

9 0.40475 0.45993 0.47379 0.47412 0.46402

10 0.34971 0.41312 0.41947 0.42260 0.41620

Table 1 Error reduction factors of preconditioned cg iteration with preconditioner Th.
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Nonlinear Multiplicative Schwarz
Preconditioning in Natural Convection
Cavity Flow

Lulu Liu1, Wei Zhang2, and David Keyes3

1 Introduction

The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algo-
rithm, as a complement to additive Schwarz preconditioned inexact Newton
(ASPIN), provides a Gauss-Seidel-like way to improve the global convergence
of systems with unbalanced nonlinearities. To demonstrate, a natural convec-
tion cavity flow PDE system is solved using nonlinear multiplicative Schwarz
preconditioners resulting from different groupings and orderings of the PDEs
and their associated fields, and convergence results are reported over a range
of Rayleigh number, a dimensionless parameter representing the ratio of con-
vection to diffusion, and in this case, of the magnitude of nonlinear to the
linear terms in the transport PDEs. The robustness of nonlinear convergence
with respect to Rayleigh number is sensitive to the grouping strategy.

Globally nonlinearly implicit methods, such as Newton-Krylov-Schwarz,
work well for many problems, but they may be frustrated by “nonlinear stiff-
ness,” which results in stagnation of residual norms or even failure of global
Newton iterations. Nonlinear preconditioning may improve global conver-
gence of nonlinearly stiff problems by changing coordinates and solving a
different system possessing the same root by an outer Jacobian-free [8] New-
ton method.

Though algebraically related, ASPIN and MSPIN arise from different mo-
tivations. Additive Schwarz preconditioned inexact Newton [1], was based
on domain decomposition when proposed in 2002. It is shown in, e.g.,
[1, 2, 3, 7, 11] that ASPIN is effective in reducing the number of globally
synchronizing outer Newton iterations, at the price of solving in parallel
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many smaller subdomain-scale nonlinear systems. Motivated instead by split-
ting physical fields, multiplicative Schwarz preconditioned inexact Newton
algorithm [9] was introduced in 2015. MSPIN solves physical submodels se-
quentially, and different groupings and different orderings result in different
preconditioned functions. These two types of preconditioning can be nested.

2 MSPIN

Given the discrete nonlinear function F : Rn → Rn, we want to find x∗ ∈ Rn

such that
F (x∗) = 0, (1)

where F (x) = [F1(x), F2(x), . . . , Fn(x)]
T and x = [x1, x2, . . . , xn]

T . We as-
sume that F (x) in (1) is continuously differentiable. The function F (x) is split
into 2 6 N 6 n nonoverlapping components representing distinct physical
features as

F (x) = F (u1, . . . , uN ) =



F̂1(u1, . . . , uN )

...

F̂N (u1, . . . , uN )


 = 0, (2)

where x = [x1, . . . , xn]
T = [u1, . . . , uN ]T ∈ Rn. ui and F̂i denote conformal

subpartitions of x and F , respectively, i = 1, . . . , N .
The inexact Newton method with backtracking (INB) [5, 6, 10] serves as

the basic component of MSPIN, so we first review the framework of INB.

Algorithm 1 (INB).

An initial guess x(0) is given. For k = 0, 1, 2, . . . until convergence:

1. Choose ηk and find an approximate Newton step d(k) such that

‖F (x(k))− F ′(x(k))d(k)‖ ≤ ηk‖F (x(k))‖. (3)

2. Determine λ(k) using a backtracking linesearch technique [5].

3. Update x(k+1) = x(k) − λ(k)d(k).

ηk ∈ [0, 1) is a “forcing term,” and determines how accurately we solve
F ′(x(k))d(k) = F (x(k)). As ηk approaches 0, INB becomes ordinary Newton
with backtracking (NB).

In the MSPIN algorithm, the submodels are solved sequentially for the
physical variable corrections, and the preconditioned system consists of the
sum of these corrections. The multiplicative Schwarz preconditioned function
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F(x) =



T1(u1, . . . , uN )

...
TN (u1, . . . , uN )


 (4)

is obtained by solving the following equations:

F̂1(u1 − T1(x), u2, u3, . . . , uN ) = 0,

F̂2(u1 − T1(x), u2 − T2(x), u3, . . . , uN ) = 0,
...

F̂N (u1 − T1(x), u2 − T2(x), u3 − T3(x), . . . , uN − TN (x)) = 0.

(5)

As with ASPIN, MSPIN solves the global preconditioned problem in (4) using
INB in Algorithm 1, which requires only Jacobian-vector multiplication.

In general, the Jacobian F ′(x) = J (x) is dense. Fortunately, as shown in
[9], the Jacobian of preconditioned function F(x) can be written as follows:

J (x) =




∂F̂1

∂δ1

∂F̂2

∂δ1
∂F̂2

∂δ2

...
...

. . .

∂F̂N

∂δ1
∂F̂N

∂δ2
· · · ∂F̂N

∂δN




−1 


∂F̂1

∂δ1
∂F̂1

∂u2

∂F̂1

∂u3
· · · ∂F̂1

∂uN

∂F̂2

∂δ1
∂F̂2

∂δ2
∂F̂2

∂u3
· · · ∂F̂2

∂uN

...
...

...
...

∂F̂N

∂δ1
∂F̂N

∂δ2
∂F̂N

∂δ3
· · · ∂F̂N

∂δN



, (6)

where δi = ui−Ti(x). Due to the continuity of F (x), we know that Ti(x) → 0
and δi → x when x approaches the exact solution x∗. In practical implemen-
tations, it is more convenient to use the following approximate Jacobian

Ĵ (x) = L(x)−1J(x)|x=[δ1,...,δN ]T , (7)

where J(x) = F ′(x) =
(

F̂i

uj

)
N×N

and L(x) is the lower triangular part of

J(x). Functions from the original code may be used to compute Ĵ (y)z for any
given vectors y, z, matrix-free, rather than forming Jacobian J (x) explicitly.

3 Natural Convection Cavity Flow Problem

We consider a benchmark problem [4] that describes the two-dimensional
natural convection cavity flow of a Boussinesq fluid with Prandtl number
0.71 in an upright square cavity Ω = (0, 1)× (0, 1). Following [12], the nondi-
mensional steady-state Navier-Stokes equations in vorticity-velocity form and
energy equation are formulated as:
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



−∆u− ∂ω
∂y = 0,

−∆v + ∂ω
∂x = 0,

−(Pr
Ra )

0.5∆ω + u∂ω
∂x + v ∂ω

∂y − ∂T
∂x = 0,

−( 1
PrRa )

0.5∆T + u∂T
∂x + v ∂T

∂y = 0,

(8)

where Pr and Ra denote the Prandtl number and the Rayleigh number,
respectively. There are four unknowns: the velocities u, v, the vorticity ω,
and the temperature T .

The upright square cavity is filled with air (Pr = 0.71). Boundary condi-
tions are described as follows. On the solid walls, both velocity components
u, v are zero, and the vorticity is determined from its definition:

ω(x, y) = −∂u

∂y
+

∂v

∂x
. (9)

The horizontal (top and bottom) walls are insulated, ∂T
∂y = 0, and the ver-

tical walls are maintained at temperatures T = 0.5 (left) and T = −0.5
(right). The temperature difference drives circulation in the cavity through
the Boussinesq buoyancy term in the vorticity equation. In Figure 1, we com-
pare contours of temperature T at different Rayleigh numbers, where higher
Ra boosts the buoyant convection relative to diffusion.

Considering the partition with respect to velocity unknowns, the vorticity
unknown, and the temperature unknown, we split the system (8) into three
submodels:

FT : −(
1

PrRa
)0.5∆T + u

∂T

∂x
+ v

∂T

∂y
= 0, (10)

Fω : −(
Pr

Ra
)0.5∆ω + u

∂ω

∂x
+ v

∂ω

∂y
− ∂T

∂x
= 0, (11)

Fu,v :





−∆u− ∂ω
∂y = 0,

−∆v + ∂ω
∂x = 0.

(12)

A finite difference scheme with the 5-point stencil is used to discretize the
PDEs, and the first order upwinding is used in both the vorticity equation
and the temperature equation.

3.1 Effect of Ordering

In the framework of MSPIN, even when the partition of unknowns and equa-
tions is determined, different orderings for solving subproblems result in dif-
ferent nonlinear preconditioners.
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Fig. 1 Contours of temperature T at Rayleigh numbers over 2 orders of magnitude.

We consider two different orderings in the MSPIN algorithm for the natural
convection cavity flow problem:

• Ordering A:

F̂1(x) =

[
FT

Fω

]
, F̂2(x) = Fu,v. (13)

• Ordering B:

F̂1(x) = Fu,v, F̂2(x) =

[
FT

Fω

]
. (14)

Independent of ordering, F̂1(x) and F̂2(x) are both linear among their
own unknowns, and are thus solved by GMRES alone with the tolerance
ǫsub−lin−rtol (≡ ǫsub−nonlin−rtol) = 10−5. The nonlinear system (8) is dis-
cretized on 100×100 mesh. We set the tolerances for outer Newton iterations
as ǫglobal−lin−rtol = 10−6 and ǫglobal−nonlin−rtol = 10−10. The initial guess is
zero for u, v, and ω, and linear interpolation in x for T . Figure 2 compares the
convergence history of nonlinear preconditioners corresponding to Ordering
A and Ordering B at different Rayleigh numbers. Using Ordering A MSPIN
converges for all tests, while using Ordering B it fails at Ra = 8000 due to
failure of backtracking. However, performance is inconsistent; compared with
B, A requires fewer global Newton iterations at Ra = 30000, but more iter-
ations at Ra = 50000. As shown in Table 1, for this high a Rayleigh number
on this fine a grid, with a “cold” initial iterate as above, unpreconditioned
globalized Newton stagnates outside of the zone of quadratic convergence.

3.2 Effect of Grouping

For the natural convection cavity flow problem, we can obtain different non-
linear preconditioners by grouping different PDEs and their corresponding
unknowns. We consider four grouping-ordering schemes:
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Fig. 2 Convergence history of nonlinear preconditioners using Ordering A (solid lines)

and Ordering B (dashed lines).

• Grouping A with two subsystems, F̂1 : FT | F̂2 : Fω, Fu,v

• Grouping B with two subsystems, F̂1 : FT , Fω | F̂2 : Fu,v

• Grouping C with two subsystems, F̂1 : FT , Fu,v | F̂2 : Fω

• Grouping D with three subsystems, F̂1 : FT | F̂2 : Fω | F̂3 : Fu,v

Table 1 Global nonlinear iterations for NB and MSPIN (plus global linear iterations
for MSPIN) at 3 mesh resolutions for each Rayleigh number corresponding to Fig. 1. The

initial guess is zero for u, v, and ω, and linear interpolation in x for T . ǫglobal−nonlin−rtol =

10−10, ǫglobal−lin−rtol = 10−6, ǫsub−nonlin−rtol = 10−4, and ǫsub−lin−rtol = 10−6. “*”
indicates that one or more subproblems fail to converge or outer backtracking fails. “-”

indicates that linear iterations fail to converge within allowed limits.

No MSPIN Grouping A Grouping B Grouping C Grouping D

Ra NB FT |Fω, Fu,v FT , Fω|Fu,v FT , Fu,v|Fω FT |Fω|Fu,v

Newton iter. Newton GMRES Newton GMRES Newton GMRES Newton GMRES

64 × 64 mesh, 4 subdomains

103 5 4 5 5 17 4 15 5 17

104 * * 7 27 8 23 6 27

105 * * 18 61 - 17 65

128 × 128 mesh, 16 subdomains

103 5 4 5 5 18 4 16 5 18

104 * * 7 28 10 30 7 28

105 * * 18 110 - 16 83

256 × 256 mesh, 64 subdomains

103 5 4 5 5 18 4 16 4 18

104 * * 7 31 9 32 7 31

105 * * - - 19 97
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The subproblems corresponding to Groupings B and D are linear, and are
solved here by GMRES with BoomerAMG preconditioning. With Groupings
A and C, one subproblem is linear and the other one is still nonlinear, which
is solved by an internal invocation of INB. The elements of the global MSPIN
Jacobians Ĵ are not explicitly available, so the global linear problems inherit
a conditioning from the subproblem solutions that is hard to improve further;
hence, we tabulate the total number of linear iterations required in all of the
Newton steps.

Table 1 compares a global Newton method with backtracking (NB), in
which the Newton correction is always solved for accurately, with MSPIN al-
gorithms corresponding to different grouping-ordering schemes. When MSPIN
algorithms with Groupings B and D converge on a given mesh at a given
Rayleigh number, they have similar numbers of Newton iterations and GM-
RES iterations. In Table 1, MSPIN algorithms with Grouping A, B or C
fail to converge in some cases. Sometimes, GMRES on Ĵ does not converge
within the allowed number of iterations. Sometimes, the outer INB still can-
not converge due to failure of the global line search, even though residuals
decrease in the early iterations. However, the most decomposed MSPIN al-
gorithm, Grouping D, works in all cases. Experimentally, the groupings play
an essential role in determining the quality of nonlinear preconditioning.

Checking corresponding entries for nonlinear iteration count across differ-
ent mesh densities at the same Rayleigh number in Table 1, we observe that
Newton is asymptotically insensitive to the mesh resolution, as expected by
theory.

As shown in [9] on a related forced convection problem, additive field-
split nonlinear preconditioning can be much less robust than multiplicative.
However, classical ASPIN based on domain decomposition can be effective for
such problems at high Reynolds or Raleigh numbers, when properly tuned.
ASPIN for system (8) with Ra = 105 on a 128×128 mesh with 16 subdomains
and overlap=3, with the same tolerance parameters used in Table 1, converges
in 8 Newton iterations. However, this case fails with smaller overlap.

4 Conclusions

MSPIN is used to solve a nonlinear flow problem, with backtracking line-
search as the only globalization technique, in the absence of any other physi-
cally based globalization strategy normally employed in Newton’s method on
such problems, such as mesh sequencing or parameter continuation. We ex-
periment with different groups and orderings, since there is not yet a theory
for their selection in nonlinear Schwarz preconditioning. Groupings are ex-
hibited that robustify Newton’s method even on a fine mesh at high Rayleigh
number from a “cold start” initial guess – a regime in which a traditional
global Newton method with backtracking alone is completely ineffective.
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Treatment of singular matrices in the
Hybrid total FETI method

A. Markopoulos, L. Řı́ha, T. Brzobohatý, P. Jir̊utková, R. Kučera, O.
Meca, and T. Kozubek

1 From FETI to HTFETI method

The FETI (Finite Element Tearing and Interconnecting) method is based
on eliminating primal unknowns so that dual linear systems in terms of La-
grange multipliers are solvable by the projected conjugate gradient method
(see Farhat and Roux [1994]). The projections on the kernel of G⊤ are com-
puted by the orthogonal projector

P = I−G
(
G⊤G

)−1
G⊤. (1)

The H(ybrid)FETI method (see Klawonn and Rheinbach [2010]) combines the
classical FETI method and the FETI-DP method (see Farhat et al. [2001])
with the aim to adapt a code to parallel computer architectures. In this

12 for FETI 

1 2 3 4

b) Size of the coarse problem - #Rigid Body Motions

1 2 3 4

1 

c) Hybrid FETI

LM splitting

0

a) Cantilever Beam

cluster 1

2

6 for HTFETI

Fig. 1 Cantilever beam in 2D.
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ondrej.meca@vsb.cz, tomas.kozubek@vsb.cz
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paper, we use another variant of the Hybrid FETI method (see Brzobohatý
et al.) that starts from the T(otal)FETI method (see Dostál et al. [2006]).
Its implementation (HTFETI) does not differ significantly from the original
approach (TFETI). In some sense, having both algorithms in one library
requires just a few additions across the code of the TFETI method. Note
that TFETI approach also enforces the boundary conditions by Lagrange
multipliers so that stiffness matrices on all subdomains exhibit the same
defect and kernel matrices may be easily assembled.

We will shortly introduce our HTFETI method for the 2-dimensional prob-
lem given by cantilever beam, see Fig.1.a. After discretization, domain de-
composition, and linear algebra object assembly, the linear system reads as
follows:




K1 O O O B⊤
c,1 O B⊤

1

O K2 O O B⊤
c,2 O B⊤

2

O O K3 O O B⊤
c,3 B

⊤
3

O O O K4 O B⊤
c,4 B

⊤
4

Bc,1 Bc,2 O O O O O
O O Bc,3 Bc,4 O O O
B1 B2 B3 B4 O O O







u1

u2

u3

u4

λc,1

λc,2

λ




=




f1
f2
f3
f4
o
o

c




. (2)

We denote:

Bc =

(
Bc,1 Bc,2 O O
O O Bc,3 Bc,4

)
, B =

(
B1 B2 B3 B4

)
.

The matrix Bc is a copy of specific rows from the matrix B correspond-
ing to components of λ acting on the corners between subdomains 1,2, and
3,4, respectively (see Fig.1.c). Although the whole matrix in (2) is singu-
lar, it beneficially affects convergence of the iterative process (Farhat and
Roux [1994]). If the redundant rows of Bc are omitted, the primal solution
components remain the same. To simplify our presentation, we permute (2)
as 



K1 O B⊤
c,1 O O O B⊤

1

O K2 B⊤
c,2 O O O B⊤

2

Bc,1 Bc,2 O O O O O

O O O K3 O B⊤
c,3 B

⊤
3

O O O O K4 B⊤
c,4 B

⊤
4

O O O Bc,3 Bc,4 O O

B1 B2 O B3 B4 O O







u1

u2

λc,1

u3

u4

λc,2

λ




=




f1
f2
o

f3
f4
o

c




, (3)

and then we introduce a new notation consistently with the line partition
in (3):
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


K̃1 O B̃
⊤
1

O K̃2 B̃
⊤
2

B̃1 B̃2 O







ũ1

ũ2

λ̃


 =




f̃1

f̃2

c̃


 . (4)

Eliminating ũi, i = 1, 2, we also eliminate the subset of dual variables λc,j ,
j = 1, 2 related to the matrix Bc. Therefore, the structure behaves like a
problem decomposed into two clusters: the 1st and 2nd subdomains belong to
the first cluster, the 3rd and 4th subdomains belong to the second cluster, see
Fig.1.b. Here, K̃1, K̃2 can be interpreted as the cluster stiffness matrices with
the kernels R̃1, R̃2, respectively. Denoting K̃=diag(K̃1, K̃2), B̃ = (B̃1, B̃2),

R̃
⊤

= (R̃
⊤
1 , R̃

⊤
2 ), F̃ = B̃K̃

+
B̃

⊤
, G̃ = −B̃R̃, d̃ = B̃K̃

+
f̃ − c̃, and ẽ =

−R̃
⊤
f̃
⊤
, we arrive at the Schur complement system

(
F̃ G̃

G̃
⊤
O

)(
λ̃

α̃

)
=

(
d̃

ẽ

)
(5)

that can be solved by the same iterative method as in the classical FETI
method. The dimension of the new coarse problem G̃⊤G̃ is smaller (size =
6) compared to the FETI case. To keep optimality of the HTFETI approach,
the matrix K̃ can not be factorized directly. The implicit factorization will be
demonstrated by its first block (cluster). It is obtained by solving the linear
system K̃1x̃1 = b̃1, i.e.,

(
K1:2 B⊤

c,1:2

Bc,1:2 O

)(
x1

µ

)
=

(
b

z

)
, (6)

where K1:2 = diag(K1,K2) and Bc,1:2 = (Bc,1,Bc,2). The subindex 1 : 2
adverts to the first and the last ordinal number of the subdomains in the
cluster. Although (6) can be interpreted as a FETI problem, we solve it by a
direct solver. The respective Schur complement system reads as:

(
Fc,1:2 Gc,1:2

G⊤
c,1:2 O

)(
µ

β

)
=

(
dc,1:2

ec,1:2

)
, (7)

where Fc,1:2 = Bc,1:2K
+
1:2B

⊤
c,1:2, Gc,1:2 = −Bc,1:2R1:2, dc,1:2 = Bc,1:2K

+
1:2b−

z, ec,1:2 = −R⊤
1:2b, and R1:2 = diag (R1, R2). To obtain the vector x̃1, both

systems (6), (7) are subsequently solved in three steps:

β = S+
c,1:2

(
G⊤

c,1:2F
−1
c,1:2dc,1:2 − ec,1:2

)
,

µ = F−1
c,1:2 (dc,1:2 −Gc,1:2β) ,

x = K+
1:2

(
b−B⊤

c,1:2µ
)
+R1:2β,

(8)

where Sc,1:2 = G⊤
c,1:2F

−1
c,1:2Gc,1:2 is the singular Shur complement matrix.
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The kernel R̃1 of K̃1 is the last object going to be effectively evaluated.
The orthogonality condition K̃1R̃1 = O can be written by

(
K1:2 B⊤

c,1:2

Bc,1:2 O

)(
R1:2

O

)
H1:2 =

(
O

O

)
, (9)

where R̃1 = (R⊤
1:2, O⊤)⊤H1:2. Assuming that the subdomain kernels R1

and R2 are known, it remains to determine H1:2. The first equation in (9)
does not impose any condition onto H1:2. The second equation gives

Bc,1:2R1:2H1:2 = −Gc,1:2H1:2 = O, (10)

implying that H1:2 is the kernel of Gc,1:2, which is not full-column rank
matrix due to the absence of the Dirichlet boundary condition in Bc,1:2.

Preprocessing in the HTFETI method starts in the same way as in the
FETI approach preparing factors Ki and kernels Ri for each subdomain.
Then, only one pair consisting of Fc,j:k and Sc,j:k is assembled and factorized
on each cluster. The dimension of Fc,1:2 is controlled by the number of
Lagrange multipliers λc,1 glueing the cluster subdomains. The dimension of
Sc,1:2 is given by the sum of defects of all matricesKi belonging to a particular
cluster.

2 Solving a singular system via kernel detection

This work continues with the results of Dostál et al. [2011], Brzobohatý et al.
[2011], Kučera et al. [2012], Kučera et al. [2013], and it queries from work
published by Suzuki and Roux [2014].

If a problem with large jumps in the material coefficients and/or with an
irregular decomposition is solved by the FETI method, direct factorizations of
singular symmetric stiffness matrices Ki can be very unstable due to unclear
criteria for distinguishing null pivots. We propose a heuristic technique for
detecting kernels Ri of symmetric positive semi-definite (SPSD) matrices
utilizing direct solvers designed primarily for non-singular cases. The mesh
of the subdomain, the stiffness matrix of which is assembled above, must be
given by the specific graph decomposition. In the three-dimensional case, e.g.,
deleting any two nodes of the relevant graph does not yield two components
(the resulting graph will remain connected). The analyzed matrix should be
also diagonally scaled. Via fixing nodes (FNs) the goal is to find (see Dostál
et al. [2011]) an appropriate set of indices s (size(s) ≥ defect(Ki)) and a
complementary set of indices r characterizing the singular and non-singular
part of Ki, respectively. The original stiffness matrix Ki (the subindex will
be omitted in the rest of this section) can be permuted by the matrix Q so
that
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QKQT =

(
Krr Krs

Ksr Kss

)
,

where Krr is the well-conditioned matrix. It is sufficient to find at least 3
noncollinear nodes from the finite element mesh in the case of 3-dimensional
linear elasticity. The DOFs corresponding to these nodes determine the set
s. Our choice of the FNs is based on a random number generator. From
mechanical point of view, the structure is sufficiently supported by those FNs
against any rigid movement. As the Schur complement S = Kss−KsrK

−1
rr Krs

is a relatively small matrix, it can be analysed by robust algorithms for dense
matrices.

Once the Schur complement is correctly defined, it is spectrally de-
composed using, e.g., LAPACK to UΣU⊤. Its eigenvalues are stored in
Σ = diag(σ1, σ2, · · · , σn) in the descending order. The k-th eigenvalue is
considered to be zero, if

σk/σk−1 < 10−4.

Such information determines splitting U = (Û, Rs) where Rs consists of last
columns of U starting with the column index k, and it is already a part of
the searched kernel of K. If Rs is known, its supplement Rr = −K−1

rr KrsRs

is obtained from (
Krr Krs

Ksr Kss

)(
Rr

Rs

)
=

(
O
O

)
. (11)

As an example, a uniformly meshed cube (L = 30 mm, E = 2.1 ·105 MPa,

µ = 0.3, ρ = 7850 kg/m
3
, g = 9.81 m/s

2
) is used with a variable number

of nodes controlled by n (number of nodes in x, y, and z direction). The
singular set s is selected via several DOFs belonging to randomly chosen
FNs. The quality of a selection (see Fig. 2) is measured by the ratio of bad
choices (collinear nodes) to all possible combinations for a given number of
FNs and the size of mesh n. Probability curves for 3, 4, and 5 FNs depending
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Fig. 2 Probability of collinear fixing nodes (FN).
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on the mesh parameter n are shown in Fig. 2. Increasing FNs for fixed mesh
(constant n) intuitively helps to ensure noncollinear nodes. For instance, for
n = 10 with 3 FNs the probability of a bad choice is 9.068 · 10−2, with 4
FNs it decreases to 3.272 ·10−4, and with 5 FNs to 1.545 ·10−6. Surprisingly
enough, for a fixed number of FNs and a simultaneously enlarging parameter
n (mesh refinement), the probability of collinear FNs decreases as well.

3 ExaScale PaRallel FETI SOlver - ESPRESO

ESPRESO is a highly efficient parallel solver which contains several FETI
method based algorithms including the HTFETI method suitable for parallel
machines with tens or hundreds of thousands of cores. The solver is based
on a highly efficient communication layer based on MPI, and it is able to
run on massively parallel machines with thousands of compute nodes and
hundreds of thousands of CPU cores. ESPRESO is also being developed to
support modern many-core accelerators. We are currently developing four
major versions of the solver:

• ESPRESO CPU is a CPU version using sparse representation of system
matrices;

• ESPRESO MIC is an Intel Xeon Phi accelerated version working with
dense representation of system matrices in the form of Schur complement;

• ESPRESO GPU is a GPU accelerated version working with dense
structures. Support for sparse structures using cuSolver is under devel-
opment;

• ESPRESO GREEN is a power efficient version developed under the
H2020 READEX project. This version is in the very early development
stage.

In order to solve real engineering problems, we are developing a FEM/BEM
library that enables database files from ANSYS simulation software to be
imported and all inputs required by the FETI or HTFETI solver generated.
In addition, we are developing an interface to ELMER that allows ESPRESO
to be used as its linear solver. This integration is done through API that can
be used as an interface to many other applications.

4 Numerical Experiments

Efficiency of the HTFETI method is presented in the ESPRESO library on
the cube benchmark described in Sec. 2. Weak scalability of the solver, see
Fig.3 left, includes matrix assembly, linear solver preprocessing (preprocess-
ing of the TFETI and HTFETI method), and iterative solver runtime mea-
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sured on 1 to 729 compute nodes of IT4Innovations Salomon supercomputer.
Benchmark configuration: subdomain size 14,739 DOFs (n = 17); 1,000 sub-
domains per cluster; Lumped preconditioner, stopping criteria 10−3. Strong
scalability on 126, 216, 343, 512, and 729 compute nodes of Salomon super-
computer is seen in Fig. 3 right. The problem size is 1.5 billions of unknowns.

5 Conclusions

This paper presents the HTFETI method, an extension of FETI algorithm for
problems with the larger number of subdomains to handle the coarse problem
more effectively. The basic principles are explained and demonstrated on
linear elasticity problem. In the second part, the methodology for factorizing
SPSD matrix using robust applications, e.g., PARDISO, is shown. Efficiency
is proved by the numerical test performed in ESPRESO library for almost 9
billions of unknowns.
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From Surface Equivalence Principle
to Modular Domain Decomposition

Florian Muth1, Hermann Schneider2, and Timo Euler3

1 Introduction

Real-world electromagnetic problems such as mounted antennas often involve
multiple electromagnetic scales and properties: These kinds of problems may
contain antenna models with extremely detailed structures and complex ma-
terials besides electrically very large platforms of hundreds of wavelengths.
Potentially, even complete systems, e.g. additionally including the feeding
circuits of the antennas, need to be simulated. There are existing meth-

Fig. 1: Complex models, e.g. involving multiple scales, can be decomposed
into smaller subdomains to apply the most suitable solver to each subdo-
main.

ods suitable to solve the full-wave Maxwell’s equations for each part of
the described complex problem. E.g. the Finite Integration Technique (Wei-
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Computer Simulation Technology AG, Germany Timo.Euler@cst.com
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land [1977]) or the finite element method (Monk [1992]) could be used for
the comparatively small and complex antennas, while a boundary element
method (Chew et al. [2001]) or an asymptotic approach (McNamara et al.
[1990]) would be more appropriate for the electrically large platform. All
these methods have their strengths regarding particular types of electromag-
netic problems, but their capabilities are limited, especially if a combination
of the mentioned problem types occur.
Here, domain decomposition methods come into play. The goal is to spatially
decompose the original model into smaller subdomains and to apply the most
suitable method in each subdomain. To obtain the overall solution, a global
iterative solver is needed. An example for this approach is depicted in Fig. 1.

The presented project pursues a modular domain decomposition approach
to enable the simple integration of existing electromagnetic solvers. Here, the
subdomains are coupled via surface currents. This allows for adding arbi-
trary methods to the developed black box framework, to make use of the full
potential of available electromagnetic solvers.

2 Love’s Equivalence Principle

The method described in this paper is based on the surface equivalence prin-
ciple as developed by A. E. H. Love and described in Schelkunoff [1936].
The coupling of the subdomains is realized by exchanging boundary data in
terms of surface currents. Love’s equivalence principle is illustrated in Fig.
2.

Fig. 2: According to Love’s equivalence principle, sources and material
distributions enclosed by a surface S in an original model (a) can be replaced
by equivalent electric and magnetic surface currents JS and MS on S to
obtain an equivalent model with the same solution outside of S (b).
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Let’s assume an original model domain Ω is decomposed into two subdo-
mains Ω1 and Ω2 by introducing a closed surface S, see Fig. 2(a). Ei and
Hi are the solutions of the original model for the electric and magnetic fields
in subdomain Ωi. εi and µi are the permittivity and the permeability of the
material in the respective subdomain. The field solution on the surface S is
denoted by ES and HS .
According to Love’s equivalence principle, the sources and material distri-
butions enclosed by surface S can be replaced by equivalent electric and
magnetic surface currents JS = nS×HS and MS = ES×nS . Here, nS is the
unit normal vector of S pointing outwards. The resulting equivalent model
for the outer domain Ω1 as shown in Fig. 2(b) reproduces the solution of the

original model in Ω1, i.e. E
(e)
1 = E1 and H

(e)
1 = H1, and null fields in Ω2. In

the equivalent model, it is irrelevant what is modelled inside of the surface
S, since the fields of the solution are forced to zero anyway.
The same applies for the corresponding inner equivalent model. Equivalent
surface currents are defined in the same way on S, but the unit normal vector
nS is inverted pointing inwards. As for the outer equivalent model this results
in null fields in Ω1 and reproduces the solution of the original model in Ω2.
Fig. 3 illustrates again the above described principle with the help of a

Fig. 3: Love’s equivalence principle is demonstrated by means of a reflector
antenna setup using CST MICROWAVE STUDIO R©: By monitoring the
tangential fields on S in the original model (a), either the inside (b) or the
outside (c) of the closed surface S can be replaced by equivalent surface
currents.

reflector antenna setup simulated with CST MICROWAVE STUDIO R©. Ad-
ditionally, the inner equivalent model (Fig. 3(c)) is shown besides the original
and the outer equivalent models.
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 3 Iteration Scheme for Modular Domain Decomposition

The principle described in the previous section will be utilized for the black
box domain decomposition approach. In this way, the subdomains need only
provide surface currents to realize the coupling to the other subdomains. In
the end, this will result in an iterative domain decomposition method, which
will be explained in the following section.

The reflector antenna model from section 2 is again considered. After de-
composing it into the two subdomains Ω1 and Ω2, we obtain a typical cou-
pled system. Now, the idea is to solve this coupled system by making use of
Love’s surface equivalence principle. But, instead of knowing the solution
of the original model ES and HS beforehand, only approximations ẼS and
H̃S are available, since the subdomains have to be solved separately. Here,
the subdomains can basically be truncated by arbitrary boundary conditions,
even transparent boundary conditions can be considered. Additionally, the
exchange surfaces can be chosen in different locations. This gives the result-
ing domain decomposition method a high flexibility in defining the coupling
interfaces between the subdomains and allows for the introduction of overlaps
between them.
The above approach finally results in the following linear system, whose terms
will be explained subsequently:

[
I R1A

−1
1 C12R

T

2

R2A
−1
2 C21R

T

1 I

] [
x1

x2

]
=

[
R1A

−1
1 b1

R2A
−1
2 b2

]
(1)

x1 =

[
H̃

(1)

S+

Ẽ
(1)

S+

]
; x2 =

[
H̃

(2)

S

Ẽ
(2)

S

]
(2)

The unknowns of the system x1 and x2 are defined on the coupling surfaces
between the subdomains. By solving this system iteratively using a GMRES
solver (Saad and Schultz [1986]), the solution of the original model on the
surface S is obtained. From this, the field solutions in the subdomains can
be derived.
Although eq. 1 describes a domain decomposition formally very much alike
to e.g. the formulation found in Peng and Lee [2010], it goes far beyond non-
overlapping domain decompositions with standard transmission conditions:
It features a high flexibility in defining the coupling interfaces and exten-
sions of the subdomains, as described above. In section 4, this flexibility is
employed to enhance iteration convergence by introducing overlaps without
resorting to e.g. higher order transmission conditions as done in Peng and
Lee [2010].
The iteration scheme of the presented method is illustrated in Fig. 4.
Boundary data in terms of surface fields is iteratively exchanged between
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Fig. 4: Boundary data is iteratively exchanged by monitoring surface fields,
which are then imprinted as current sources in the other domain. By solving
the corresponding linear system using e.g. a GMRES solver, the solution of
the original model is obtained.

the subdomains, where each iteration mainly consists of three parts. First,
the monitored surface fields xj from subdomain Ωj are transformed into a

current source for subdomain Ωi, represented by the operator CjiR
T

i . Af-
terwards, subdomain Ωi is solved by applying its inverted system operator
A−1

i . In the last step, the operator Ri restricts the obtained solution to the
corresponding coupling surface S. In practice, the last step is realized by
monitoring the fields on the coupling surface. After each iteration, the feed-
back is exchanged between the subdomains to take into account the influence
of the other parts of the model.
As shown in Fig. 4, the surfaces where the fields are monitored and the cur-
rents are imprinted do not coincide. This follows from the jumping fields due
to the imprinted electric and magnetic currents.

4 Investigations

The area of application of the presented black box framework mainly com-
prises models with a small number of user-defined, coupled subdomains as is
the case for antenna placement scenarios. Here, the priority is not on scalabil-
ity regarding the number of subdomains, but on the flexibility of the overall
domain decomposition framework.
For first investigations, an “array” of two patch antennas is considered. The
setup of this model and how it is decomposed into two subdomains is il-
lustrated in Fig. 5. Each of the patch elements is simulated with CST’s fi-
nite element frequency domain solver using an absorbing boundary condition
(ABC). By shifting the coupling interfaces, non-overlapping (d = 0) as well
as overlapping (d > 0) setups can be realized. In the latter case, each sub-
domain is extended towards the other one by modelling the structure of the
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original model in the overlap region. The discretizations of the subdomains
can be chosen independently of each other and don’t need to match in the
overlap region nor at the coupling interfaces.

For the validation of the results of the presented domain decomposition
method, the absolute value of the electric field is evaluated along the ar-
ray axis and slightly above the surface of the patch elements for d = 0. In
Fig. 6, the corresponding curves are depicted showing the smooth transition
from one subdomain to the other at x = −3 cm. Furthermore, the results
precisely match the solution of the original model.

An interesting aspect for future investigations is the relationship between
the relative residual of the global iterative solver and the error of the quanti-
ties of interest. For the investigated model (d = 0), the absolute error of the
S-parameter as the quantity of interest is already smaller than 10−3 after the
first iteration, which is sufficient for typical engineering applications (Fig. 7).

Fig. 5: The 1x2 patch antenna array is decomposed into two subdomains,
each calculated by CST’s finite element frequency domain solver. The sub-
domains are truncated by an absorbing boundary condition (ABC) and can
partly overlap by a size d.

As pointed out in section 3, overlaps can be used to accelerate the conver-
gence of the global iterative solver. Fig. 8 compares the convergence of the
relative residual of the global iterative solver for different overlap sizes d. The
larger the overlap size the faster the presented method converges. At the same
time, there is no significant performance drawback, since the overlaps are still
quite small in terms of the wavelength λ. E.g. d = 4× 10−2 λ corresponds to
an overlap size of approximately one mesh cell layer and reduces the number
of iterations from 7 to 4 to reach a relative residual smaller than 10−3.
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Fig. 6: The results of the presented method precisely match the solution
of the original model for the non-overlapping setup (d = 0). Especially, a
smooth transition between the subdomains at x = −3 cm can be observed.

Fig. 7: Comparison of the relative residual of the global iterative solver
with the absolute error of the S-parameter for the non-overlapping setup
(d = 0): For typical engineering applications, an absolute error smaller than
10−3 is already sufficient. The value from the fifteenth iteration was taken
as reference.

5 Discussion and Conclusion

This paper has presented a domain decomposition approach, which is suitable
for electrically large and complex setups. The main advantage is its modular-
ity due to the coupling of the subdomains via surface currents motivated by
the equivalence principle. The resulting black box framework allows for any
numerical method in each subdomain. Another feature is the high flexibil-
ity in defining the coupling interfaces between the subdomains. In this way,
overlapping setups can easily be introduced.
Promising results regarding the coupling of finite element subdomains were
shown. The presented method was proven to converge for both the non-
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Fig. 8: The convergence of the presented method can be accelerated by
introducing an overlap d > 0. There is no significant performance drawback,
since the overlap size is in the range of a fraction of the wavelength λ.

overlapping and the overlapping setup. By introducing a small overlap of a
fraction of a wavelength, the convergence of the method could be accelerated
drastically.
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Space-time CFOSLS Methods
with AMGe Upscaling

Martin Neumüller1, Panayot S. Vassilevski2, and Umberto E. Villa3

Abstract This work considers the combined space-time discretization of
time-dependent partial differential equations by using first order least square
methods. We also impose an explicit constraint representing space-time mass
conservation. To alleviate the restrictive memory demand of the method, we
use dimension reduction via accurate element agglomeration AMG coarsen-
ing, referred to as AMGe upscaling. Numerical experiments demonstrating
the accuracy of the studied AMGe upscaling method are provided.

1 Introduction

In this paper we explore a robust approach to derive combined space-time
discretization methods for two classes (parabolic and hyperbolic) of time-
dependent PDEs. We use the popular FOSLS (first order systems least-
squares) approach (cf., e.g., Cai et al. [1994] or Carey et al. [1995]) ) treat-
ing time as an additional space variable and, in addition, we prescribe a
space-time divergence equation as a constraint in order to maintain certain
space-time mass conservation (following, e.g., Adler and Vassilevski [2014]).

More specifically, our approach is applied to the following model problem
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∂S

∂t
+ div(L(S)) = q0(x, t), x ∈ Ω ⊂ Rd, t ∈ (0, T ), (1)

where L is at most a first-order differential operator with respect to the space
variable x only. At t = 0 we impose an initial condition S = S0 and on ∂Ω
for all t ∈ (0, T ) we apply some appropriate boundary conditions (if any).
More specifically we consider differential operators of the form

L(S) := −k∇xS and L(S) := f(S)u(·)

for respectively parabolic and hyperbolic problems, as explained in more de-
tails in Section 4 and 5.

2 Space-time Constrained First Order System Least
Squares

Problem (1) can be rewritten as a first order system by introducing the “flux”
variable σ := [L(S);S]⊤ as

σ −
[
L(S)
S

]
= 0,

divx,t σ = q0,
(2)

where divx,t is the d+1-dimensional space-time divergence operator. We then
introduce the FOSLS functional as

J(σ, S) =

∥∥∥∥σ −
[
L(S)
S

]∥∥∥∥
2

0, K−1

+ ‖q0 − divx,t σ‖20 ,

where K = K(x) ∈ R(d+1)×(d+1) is a symmetric and positive definite co-
efficient matrix and ‖ · ‖0 (‖ · ‖0,K−1) denotes the (weighted) L2(ΩT )-norm
with respect to the space-time domain ΩT := Ω×(0, T ). A constrained least-
square version of (2) is given by minimizing the functional J(σ, S) under the
constraint which is given by the conservation equation

(divx,t σ, w) = (q0, w) for all w ∈ L2(ΩT ).

Here we denote with (·, ·) the inner product with respect to L2(ΩT ). First
order optimality conditions for the constrained minimization problem lead
to the system of variational equations: Find σ ∈ H(divx,t;ΩT ), S ∈ V and
µ ∈ L2(ΩT ), such that
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(σ,ψ)K−1 + (divx,t σ, divx,tψ) −
([

L(S)
S

]
, ψ

)

K−1

+(µ, divx,tψ) = (q0, divx,tψ),

−
(
σ,

[
L(φ)
φ

])

K−1

+

([
L(S)
S

]
,

[
L(φ)
φ

])

K−1

= 0,

(divx,t σ, w) = (q0, w)

(3)
holds for allψ ∈ H(divx,t;ΩT ), all φ ∈ V and all w ∈ L2(ΩT ). Here V denotes
an appropriate function space for the unknown S, such that L : V → L2

is a bounded operator. In a straightforward manner we obtain the finite
element discretization of the CFOSLS system (3) by using appropriate finite
dimensional spaces, i.e. we use σh ∈ Rh ⊂ H(divx,t;ΩT ), Sh ∈ Vh ⊂ V and
µH ∈ WH ⊂ L2(ΩT ). Note that the Lagrangian multiplier µH belongs to
the space WH of discontinuous piecewise polynomials defined on a coarser
mesh TH (the lowest order being piecewise constants). The fine mesh Th is
constructed by performing one uniform refinement of TH . This choice leads
to a relaxed Petrov-Galerkin discretization of the mass conservation equation
and prevents overconstraining the resulting system. A relevant error analysis
of the above discretization has been presented in Adler and Vassilevski [2014].
Finally, using appropriate basis functions for the discrete function spaces, we
obtain the system of linear equations for the saddle point problem



A B⊤ D⊤

B C 0
D 0 0





σh

Sh

µH


 =



fh
0
gH


 . (4)

3 AMGe Upscaling

The AMGe (element agglomeration) coarsening has been developed at LLNL,
originally to derive hierarchies of finite element spaces for designing multi-
grid solvers for bilinear forms corresponding to an entire de Rham sequence of
spaces (H1-conforming, H(curl)-conforming, and H(div)-conforming), (Pas-
ciak and Vassilevski [2008]), and more recently (Lashuk and Vassilevski [2012,
2014]) to ensure that these hierarchies of spaces have guaranteed approxima-
tion properties. Such spaces are hence suitable to construct accurate coarse
discretizations and can be used as a tool for dimension reduction, also refereed
to as numerical upscaling.

The CFOSLS space-time discretization approach leads to saddle–point sys-
tems involving function spaces in the divergence constraint that are H(div)-
conforming. This allows to solve combined space-time problems up to 2 space
dimensions using the existing AMGe upscaling framework for 3D Raviart-
Thomas elements. The goal in the near future is to extend this framework
to 4D Raviart-Thomas analogs. This paper, as a first step, demonstrates the
feasibility of the AMGe upscaling approach applied to combined space-time

Space-time CFOSLS Methods with AMGe Upscaling 227



discretization that is both accurate, mass-conservative and achieving rea-
sonable dimension reduction, which makes the expensive direct space-time
approach (applied on the fine grid) feasible at coarser upscaled levels.

In the next sections we study the presented approach in detail for the two
differential operators introduced in the beginning of this work. The finite
element library MFEM (MFEM) is used to assemble the discretized systems
which are then solved using the algebraic multigrid solvers (AMG) in hypre
(HYPRE).

4 Parabolic problem

Here we choose the differential operator L(S) := −k∇xS, where k = k(x)
is a given positive coefficient. For simplicity, we use homogeneous Dirichlet
boundary conditions on ∂Ω for all t ∈ (0, T ). For the variational problem (3)
we then introduce the weight

K =

[
kId 0
0 1

]
.

A natural space for the unknown S is then given by V = L2(0, T,H
1
0 (Ω)). For

the discretization, we use a standard conforming subspace Vh ⊂ V consisting
of piecewise Lagrangian polynomials which are globally continuous. We then
solve the discretized saddle-point problem (4) by using the MINRES method
with the block diagonal preconditioner

P̂ =



Â 0 0

0 Ĉ 0

0 0 Ŵ


 ,

where Â denotes the auxiliary space AMG solver for H(div)-problem applied
to the matrix A (HypreADS, Kolev and Vassilevski [2012]), Ĉ is a standard
AMG preconditioner for C (BoomerAMG, HYPRE), and Ŵ represents the
diagonal of the L2(ΩT ) mass matrix W .

Example 1. In this example we let Ω = (0, 1)2, T = 1 and k ≡ 1. The exact
solution is given by u(x1, x2, t) = e−t sin(πx1) sin(πx2).

The initial – fine – space-time mesh (level 0) is an unstructured tetrahedral
mesh with 490, 200 elements. We use graph partitioning algorithms (Karypis
and Kumar [1998]) to construct the agglomerated space-time meshes shown
in Figure 1. For the discretization, we use lowest order finite element spaces on
the fine grid and then we construct the hierarchy of coarse spaces as explained
in Section 3. Table 1 reports the errors with respect to the exact solution.
We observe that the upscaling procedure allows to dramatically reduce the
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number of unknowns maintaining reasonable good approximations, see also
Figure 1.

level elements dof ||S − SH ||0 ||σ − σH ||0 ||uh − uH ||0 ||σh − σH ||0 iter

0 490,200 1,579,808 3.4360E-03 2.4217E-02 - - 107

1 7,700 218,089 6.2509E-03 3.2351E-02 2.0985E-03 3.5408E-02 80
2 1,043 59,085 2.5489E-02 7.5482E-02 8.3829E-03 1.0854E-01 102

3 179 12,366 8.1318E-02 1.7308E-01 2.6544E-02 2.5752E-01 60

4 39 3,127 2.3470E-01 3.7018E-01 7.6846E-02 5.5365E-01 34
5 8 635 3.0685E-01 5.1457E-01 1.0064E-01 7.7024E-01 27

Table 1 Numerical errors for different agglomeration levels for Example 1.

5 Hyperbolic problem

Here we consider the differential operator L(S) := f0(S∗)S u(·), with the
given velocity field u (satisfying u · nx = 0 on ∂Ω) and the given positive
function f0 = f0(S∗). Such equations can be used, for example, to model
the evolution in time of water or gas saturation in an oil reservoir. We then
introduce the weight

K = K(S∗) =

[
f0(S∗)Id 0

0 1

]
which gives σ = K(S∗)

[
u
1

]
S.

A natural setting for S is given by V = L2(ΩT ). Using the second equation
of (3) we can eliminate the unknown S and we obtain the reduced system
for σ and the Lagrange multiplier µ: Find σ ∈ H(div;ΩT ) and µ ∈ L2(ΩT ),
such that

((
K−1 − δ−1

K

[
u
1

] [
u
1

]⊤)
σ, ψ

)
+(µ, divψ) = 0,

(divσ, w) = (q, w)

(5)

holds for all ψ ∈ H(div;ΩT ) and for all w ∈ L2(ΩT ). Here δK ∈ R is given
by

δK =

[
u
1

]⊤
K

[
u
1

]
and further S = δ−1

K

[
u
1

]⊤
σ.

It can be shown that the matrix K−1 − δ−1
K

[
u
1

] [
u
1

]⊤
in (5) is positive

definite on the nullspace of the divergence operator, if divx(f0(S∗)u) ≥ 0 in
Ω and u · nx = 0 on ∂Ω.
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Numerical solution Sh Numerical solution |σh| Agglomerated mesh on level 0

Numerical solution Sh Numerical solution |σh| Agglomerated mesh on level 1

Numerical solution Sh Numerical solution |σh| Agglomerated mesh on level 2

Numerical solution Sh Numerical solution |σh| Agglomerated mesh on level 3

Fig. 1 Numerical solutions and agglomerated meshes for different levels (Example 1).
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Example 2. In this example we consider Ω = {x ∈ R2 : |x| < 1}, T = 2,
f0(S∗) ≡ 1 and q0 ≡ 0 with the velocity function and the initial condition

u(x1, x2, t) =

[
−x2

x1

]
and S0(x1, x2) = e−100[(x1−0.5)2+x2

2].

For the discretization we use Raviart-Thomas pairs Rh,Wh for σ and the
Lagrange multiplier µ. The initial fine mesh (an unstructured tetrahedral
mesh with 1, 315, 708 elements) and the agglomerated meshes are shown in
Figure 2. Table 2 shows (similarly to what already observed for the parabolic
example) that upscaling allows to achieve both effective dimension reduction
and good approximation of the fine grid solution (level 0). The divergence
free solver Christensen et al. [2015] allows for the robust solution of the
discretized saddle point problem at each level as shown by the number of
iterations reported in Table 2.

level elements dof ||σh − σH ||0 ||µh − µH ||0 iter

0 1,315,708 3,970,948 - - 39

1 164,495 1,636,016 1.1665E-03 1.2176E-09 39
2 21,009 495,815 5.0647E-03 2.2788E-04 33

3 3,215 99,004 9.1879E-03 4.6800E-04 24

4 684 22,324 1.0483E-02 5.6677E-04 19
5 200 8,041 1.2115E-02 7.1052E-04 16

Table 2 Numerical errors for different agglomeration levels for Example 2.
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Scalable BDDC Algorithms for
Cardiac Electromechanical Coupling

L. F. Pavarino1, S. Scacchi1, C. Verdi1, E. Zampieri1, and S. Zampini2

1 Introduction

The spread of electrical excitation in the cardiac muscle and the subsequent
contraction-relaxation process is quantitatively described by the cardiac elec-
tromechanical coupling model. The electrical model consists of the Bidomain
system, which is a degenerate parabolic system of two nonlinear partial dif-
ferential equations (PDEs) of reaction-diffusion type, describing the evolu-
tion in space and time of the intra- and extracellular electric potentials. The
PDEs are coupled through the reaction term with a stiff system of ordi-
nary differential equations (ODEs), the membrane model, which describes
the flow of the ionic currents through the cellular membrane and the dynam-
ics of the associated gating variables. The mechanical model consists of the
quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-
incompressible transversely isotropic hyperelastic material, and coupled with
a system of ODEs accounting for the development of biochemically generated
active force.

The numerical approximation of the cardiac electromechanical coupling
is a challenging multiphysics problem, because the space and time scales
associated with the electrical and mechanical models are very different, see
e.g. Chapelle et al. [2012], Sundnes et al. [2014]. Moreover, the discretization
of the model leads to the solution of a large nonlinear system at each time
step, which is often decoupled by an operator splitting techniques into the
solution of a large linear system for the electrical part and a nonlinear system
for the mechanical part.
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While several studies in the last decade have been devoted to the devel-
opment of efficient solvers and preconditioners for the Bidomain model, see
e.g. Plank et al. [2007], Pavarino and Scacchi [2008], Zampini [2014] and the
recent monograph by Colli Franzone et al. [2014], a few studies have focused
on the development of efficient solvers for the quasi-static cardiac mechani-
cal model, see Vetter and McCulloch [2000], Rossi et al. [2012], Gurev et al.
[2011].

In this paper, we present new numerical results for a Balancing Domain
Decomposition by Constraints (BDDC) preconditioner, first introduced in
Dohrmann [2003], here embedded in a Newton-Krylov (NKBDDC) method,
introduced in Pavarino et al. [2015] for the nonlinear system arising from the
discretization of the finite elasticity equations. The Jacobian system arising
at each Newton step is solved iteratively by a BDDC preconditioned GMRES
method. We report here the results of three-dimensional numerical tests on
a BlueGene/Q machine, showing the scalability of the NKBDDC mechanical
solver.

2 Cardiac Electromechanical Models

a) Mechanical model of cardiac tissue.We denote byX = (X1, X2, X3)
T

the material coordinates of the undeformed cardiac domain Ω̂, by x =
(x1, x2, x3)

T the spatial coordinates of the deformed cardiac domain Ω(t)
at time t, and by F(X, t) = ∂x

∂X the deformation gradient. The cardiac tissue
is modeled as a nonlinear hyperelastic material satisfying the steady-state
force equilibrium equation

Div(FS) = 0, X ∈ Ω̂. (1)

The second Piola-Kirchoff stress tensor S = Spas + Svol + Sact is the sum of
passive, volumetric and active components. The passive and volumetric com-

ponents are defined as Spas,vol
ij = 1

2

(
∂Wpas,vol

∂Eij
+ ∂Wpas,vol

∂Eji

)
i, j = 1, 2, 3,

where E = 1
2 (C − I) and C = FTF are the Green-Lagrange and Cauchy

strain tensors, W pas is an exponential strain energy function (derived from
Eriksson et al. [2013]) modeling the myocardium as a transversely isotropic

hyperelastic material, and W vol = K (J − 1)
2
is a volume change penaliza-

tion term accounting for the almost incompressibility of the myocardium,
with K a positive bulk modulus and J = det(F).

b) Mechanical model of active tension. The active component Sact

develops along the myofiber direction, Sact = Ta
âl âl

âT
l C âl

, where âl is the fiber

direction and Ta = Ta

(
Cai, λ,

dλ
dt

)
is the biochemically generated active ten-

sion, which depends on intracellular calcium concentrations, and the myofiber

stretch λ =
√
âTl Câl and stretch-rate dλ

dt (see Land et al. [2012]).
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c) Electrical model of cardiac tissue: the Bidomain model. We
will use the following parabolic-elliptic formulation of the modified Bidomain
model on the reference configuration Ω̂ × (0, T ),





cmJ
∂v̂

∂t
−Div(J F−1DiF

−T Grad(v̂ + ûe)) + J iion(v̂, ŵ, ĉ) = 0

−Div(J F−1DiF
−T Grad v̂)−Div(J F−1(Di +De)F

−T Grad ûe) = J îeapp
∂ŵ

∂t
−Rw(v̂, ŵ) = 0,

∂ĉ

∂t
−Rc(v̂, ŵ, ĉ) = 0.

(2)
for the transmembrane potential v̂, the extracellular potential ûe, and the
gating and ionic concentrations variables (ŵ, ĉ). This system is completed
by prescribing initial conditions, insulating boundary conditions, and the ap-
plied current îeapp; see Colli Franzone et al. [2016] for further details. The

axisymmetric conductivity tensors are given by Di,e(x) = σi,e
l al(x)a

T
l (x) +

σi,e
t at(x)a

T
t (x), where σ

i,e
l , σi,e

t are the conductivity coefficients in the intra-
and extracellular media measured along and across the fiber direction al, at.

d) Ionic membrane model and stretch-activated channel cur-
rent. The functions Iion(v,w, c) (iion = χIion), Rw(v,w) and Rc(v,w, c)
in the Bidomain model (2) are given by the ionic membrane model intro-
duced by ten Tusscher et al. [2004], available from the cellML depository
(models.cellml.org/cellml). χ denotes the cellular surface to volume ratio.

3 Methods

Space and time discretization We discretize the cardiac domain with a
hexahedral structured grid Thm for the mechanical model (1) and The for
the electrical Bidomain model (2), where The is a refinement of Thm . We
then discretize all scalar and vector fields of both mechanical and electrical
models by isoparametric Q1 finite elements in space. The time discretization
is performed by a semi-implicit splitting method; see Colli Franzone et al.
[2016] for further details.

Computational kernels. Due to the discretization strategies described
above, the main computational kernels of our solver at each time step are the
following:

1- solve the nonlinear system deriving from the discretization of the mechan-
ical problem (1) using an inexact Newton method. At each Newton step, a
nonsymmetric Jacobian systemKx = f is solved inexactly by the GMRES
iterative method preconditioned by a BDDC preconditioner, described in
the next section.

2- solve the symmetric positive semidefinite linear system deriving from the
discretization of the Bidomain model by using the Conjugate Gradient
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method preconditioned by the Multilevel Additive Schwarz preconditioner
developed in Pavarino and Scacchi [2008].

3.1 Iterative Substructuring, Schur Complement
System and BDDC Preconditioner

To keep the notation simple, in the remainder of this section and the next,
we denote the reference domain by Ω instead of Ω̂. Let us consider a decom-
position of Ω into N nonoverlapping subdomains Ωi of diameter Hi (see e.g.

[Toselli and Widlund, 2004, Ch. 4]) Ω =
⋃N

i=1 Ωi, and set H = maxHi. As
in classical iterative substructuring, we reduce the problem to the interface

Γ :=
(⋃N

i=1 ∂Ωi

)
\∂Ω by eliminating the interior degrees of freedom associ-

ated to basis functions with support in the interior of each subdomain, hence
obtaining the Schur complement system

SΓxΓ = gΓ , (3)

where SΓ = KΓΓ − KΓIK
−1
II KIΓ and g = fΓ − KΓIK

−1
II fI are obtained

from the original discrete problem Kx = f by reordering the finite element
basis functions in interior (subscript I) and interface (subscript Γ ) basis func-
tions. The Schur complement system (3) is solved iteratively by the GMRES
method using a BDDC preconditioner M−1

BDDC

M−1
BDDC

SΓxΓ = M−1
BDDC

fΓ . (4)

Once the interface solution xΓ is computed, the internal values xI can be
recovered by solving local problems on each subdomain Ωi.

BDDC preconditioners represent an evolution of balancing Neumann-
Neumann methods where all local and coarse problems are treated additively
due to a choice of so-called primal continuity constraints across the interface
of the subdomains. These primal constraints can be point constraints and/or
averages or moments over edges or faces of the subdomains. BDDC precon-
ditioners were introduced in Dohrmann [2003] and first analyzed in Mandel
and Dohrmann [2003]. For the construction of BDDC preconditioners applied
to the nonlinear elasticity system constituting the cardiac electromechanical
coupling problem, we refer to Pavarino et al. [2015].

4 Numerical Results

We present here the results of parallel numerical experiments run on the IBM-
BlueGene/Q machine of Cineca (www.cineca.it). Our FORTRAN90 code is
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based on the open source PETSc library, see Balay et al. [2016]. At each
Newton iteration of the mechanical solver, the Jacobian system is solved
by GMRES preconditioned by the BDDC preconditioner, using as stopping
criterion a 10−8 reduction of the relative residual l2-norm. The BDDCmethod
is available as a preconditioner in PETSc and it has been contributed to the
library by Zampini [2016. To appear.].

The values of the Bidomain electrical conductivity coefficients used in all
the numerical tests are σi

l = 3.0, σe
l = 2.0, σi

t = 0.315, σe
t = 1.35, all in

mΩ−1cm−1. The parameter values in the transversely isotropic strain energy
function are chosen as in the original work Eriksson et al. [2013]. The domains
used in the simulations model are wedges of the ventricular wall. They are
either slabs or truncated ellipsoidal domains; for details on the dimensions,
see Pavarino et al. [2015]. The myocardial fibers are modeled to rotate intra-
murally linearly with the depth of the ventricular wall for a total amount of
120o.

V VE VEF VEm VEmF
procs. dof lit time lit time lit time lit time lit time

slab domains
256 105903 94 1.0 42 0.9 38 1.1 32 1.2 26 1.2
512 209223 90 1.1 40 1.1 37 1.3 32 1.5 26 1.5

1042 413343 86 1.4 38 1.6 36 1.9 30 2.1 24 2.2
2048 807003 85 2.2 38 2.9 36 3.5 30 3.9 24 4.1
4096 1604043 84 5.2 39 6.6 - - - - - -
8192 3188283 88 16.7 - - - - - - - -

ellipsoidal domains
256 105903 475 3.3 180 2.3 168 2.6 119 2.5 106 2.4
512 209223 533 4.2 191 2.8 174 3.3 126 3.0 109 3.0

1042 413343 558 5.8 173 4.0 158 4.6 125 4.7 106 4.9
2048 807003 674 9.4 179 6.3 169 7.5 130 7.2 107 7.5
4096 1604043 686 15.9 176 12.3 - - - - - -

Table 1 Weak scaling test on slab and ellipsoidal domains. Mechanical solver with
GMRES-BDDC and different choices of primal constraints: vertices (V), vertices + edges
(VE), vertices + edges + faces (VEF), vertices + edges + edge moments (VEm), vertices
+ edges + edge moments + faces (VEmF). Fixed local mechanical mesh: 5×5×5 elements.
Local mechanical problem size = 648. The table reports the number of processors (procs.,
that equals the number of subdomains), the total number of degrees of freedom (dof), the
average GMRES-BDDC iterations per Newton iteration (lit) and the average CPU time
in seconds per Newton iteration (time). The missing results (denoted by -) correspond to
out-of-memory runs.

Test 1: weak scaling. We first consider a weak scaling test on slab and
truncated ellipsoidal domains of increasing size. The number of subdomains
(processors) is increased from 256 to 8192, with the largest domain being a
slab or a truncated half ellipsoid. The physical dimensions of the domains are
chosen so that the electrical mesh size h is kept fixed to the value of about
h = 0.01 cm and so that the local mesh on each subdomain is fixed (20·20·20).
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The mechanical mesh size is four times smaller than the electrical one in
each direction, thus on each subdomain the local mechanical mesh is 5 · 5 · 5.
The discrete nonlinear elasticity system increases from about 100 thousand
degrees of freedom for the the case with 256 subdomains to 3 million degrees
of freedom for the the case with 8192 subdomains. Motivated by the results
of our previous study (Pavarino et al. [2010]) of BDDC methods for almost
incompressible linear elasticity, we have considered several choices of primal
constraints in our BDDC preconditioner: subdomain vertices (V), vertices
+ edges (VE), vertices + edges + faces (VEF), vertices + edges + edge
moments (VEm), vertices + edges + edge moments + faces (VEmF). The
simulation is run for 10 electrical time steps of size τe = 0.05 ms during the
excitation phase and for 2 mechanical time steps of size τm = 0.25 ms.

The results regarding the mechanical solver reported in Table 1 show that
the linear GMRES iteration (lit) are completely scalable due to the use of
the BDDC preconditioner, as well as the nonlinear Newton iterations (not
shown), while the cpu times increase with the number of processors. This
is due to the superlinear cost of the coarse problem and will require further
research with a three-level BDDC preconditioner. For slab domains, even if
the number of GMRES iterations is the largest, the best choice of primal
space in terms of CPU times is the minimal one (V), using only the vertices.
For truncated ellipsoidal domains, instead, the GMRES iterations with only
vertices as primal space grow considerably, and the best primal choice in
terms of timings is vertices + edges (VE).

Test 2: whole heartbeat simulation. We then present the results of a
whole heart beat simulation (500 ms, 10000 time steps) on 256 processors.
The domain is a truncated ellipsoid discretized with a 96×32×8 mechanical
mesh (86427 dof) nested in a 768× 256× 64 electrical mesh (25692290 dof).
Fig. 1, top panels, reports the transmembrane potential distributions on the
deforming epicardial surface and selected transmural sections of the cardiac
domain at six selected time instants during the heartbeat.

We compare our BDDC solver (with only subdomain vertices primal con-
straints) vs. the widely used parallel AMG preconditioner BoomerAMG pro-
vided within the Hypre library (Henson and Yang [2002]); we used the default
BoomerAMG parameters without any specific tuning. The Table in Fig. 1,
bottom, shows the average GMRES iterations per time step are 821 and 138
for the AMG and the BDDC solver, respectively. The average CPU times
per time step are 32 and 3 seconds for the AMG and the BDDC solver, re-
spectively. Thus the BDDC solver yields a reduction of computational costs
and cpu times of about a factor 10 with respect to the default AMG precon-
ditioner considered (this gain would probably be reduced by a proper AMG
parameter tuning).
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prec Tnit nit Tlit lit Ttime (s) time (s)

AMG 6790 3 1642220 232 64578 32.29
BDDC 6790 3 276932 40 6083 3.04

Fig. 1 Whole heartbeat simulation. Top: mechanical deformation of the cardiac domain at
six time instants, from 50 to 300 msec. At each instant, the plot shows the transmembrane
potential v at each point, ranging from resting (blue, −85 mV) to excited (red, 45 mV)
values, on the epicardial surface and on selected transmural sections. The values on the axis
are expressed in centimeters. Bottom: table reporting the comparison between the AMG
and BDDC preconditioners: total Newton iterations (Tnit), average Newton iterations per
time step (nit), total GMRES iterations (Tlit), average GMRES iterations per Newton
iteration (lit), total CPU time (Ttime) in seconds, average CPU time per time step (time)
in seconds.
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A BDDC algorithm for weak Galerkin
discretizations

Xuemin Tu1 and Bin Wang1

1 Introduction

The weak Galerkin (WG) methods are a class of nonconforming finite ele-
ment methods, which were first introduced for a second order elliptic problem
in Wang and Ye [2014]. The idea of the WG is to introduce weak functions
and their weak derivatives as distributions, which can be approximated by
polynomials of different degrees. For second elliptic problems, weak func-
tions have the form of v = {v0, vb}, where v0 is defined inside each element
and vb is defined on the boundary of the element. v0 and vb can both be
approximated by polynomials. The gradient operator is approximated by a
weak gradient operator, which is further approximated by polynomials. These
weakly defined functions and derivatives make the WG methods highly flexi-
ble and these WG methods have been extended to different applications such
as Darcy in Lin et al. [2014], Stokes in Wang and Ye [2016], bi-harmonic in
Mu et al. [2014], Maxwell in Mu et al. [2015c], Helmholtz in Mu et al. [2015b],
and Brinkman equations in Mu et al. [2014]. In Mu et al. [2015a], the optimal
order of polynomial spaces is studied to minimize the number of degrees of
freedom in the computation.

The WG methods are closely related to the hybridizable discontinuous
Galerkin (HDG) methods, which were introduced by Cockburn and his col-
laborators in Cockburn et al. [2009]. As most DG methods, the WG methods
result in a large number of degrees of freedom and therefore require solving
large linear systems with condition number deteriorating with the refinement
of the mesh. Efficient fast solvers for the resulting linear system are neces-
sary. However, so far there are relatively few fast solvers for the WG methods.
Some multigrid methods, based on conforming finite element discretization,
are studied in Chen et al. [2015].
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The BDDC algorithms, introduced by Dohrmann for second order elliptic
problem in Dohrmann [2003], see also Mandel and Dohrmann [2003], Man-
del et al. [2005], are non-overlapping domain decomposition methods, which
are similar to the balancing Neumann-Neumann (BNN) algorithms. In the
BDDC algorithm, the coarse problems are given in terms of a set of primal
constraints. An important advantage with such a coarse problem is that the
Schur complements that arise in the computation will all be invertible. The
BDDC algorithms have been extended to the second order elliptic problem
with mixed and hybrid formulations in Tu [2005, 2007] and the Stokes prob-
lem in Li and Widlund [2006b].

In this paper, we apply the BDDC preconditioner directly to the system
arising from the WG discretization and estimate the condition number of the
resulting preconditioned operator using its spectral equivalence with that of
a hybridized RT method, which have been studied in Tu [2007].

The rest of the paper is organized as follows. An elliptic problem and
its WG discretization are described in Section 2. We introduce the BDDC
algorithms in Section 3 and analyze the condition number of the resulting
preconditioned operator in Section 4. Finally, some computational results are
given in Section 5.

2 An elliptic problem and its WG discretization

We consider the following elliptic problem on a bounded polygonal domain
Ω, in two dimensions, with a Dirichlet boundary condition:

{
−∇ · (ρ∇u) = f in Ω,
u = g on ∂Ω,

(1)

where ρ is a positive definite matrix function with entries in L∞(Ω) satisfying

ξT ρ(x)ξ ≥ α ‖ξ‖2 , for a.e. x ∈ Ω,

for some positive constant α, f ∈ L2(Ω), and g ∈ H1/2(∂Ω). Without loss
of generality, we assume that g = 0. If Ω is convex or has a C2 boundary,
the equation (1), with sufficiently smooth coefficient ρ, has a unique solution
u ∈ H2(Ω).

We will approximate u by introducing discontinuous finite element spaces.
Let Th be a shape-regular and quasi-uniform triangulation of Ω and denote
an the element in Th by κ. Let hκ be the diameter of κ and the mesh size
be h = maxκ∈Th

hT . Define E to be the union of edges of elements κ. Ei and
E∂ are the sets of the edges which are in interior of the domain and on its
boundary, respectively.

Let Pk(D) be the space of polynomials of order at most k on D and
Pk(D) = [Pk(D)]2. Define the weak Galerkin finite element spaces associated
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with Th as:

Vk = {v = {v0, vb} : v0|κ ∈ Pk(κ), vb|e ∈ Pk−1(e), ∀κ ∈ Th, e ∈ ∂κ}
= {v = {v0, vb} : v0 ∈ Wk, vb ∈ Mk−1},

where

Wk = {wh ∈ L2(Ω) : wh|κ ∈ Pk(κ), ∀κ ∈ Th},
Mk = {µh ∈ L2(E) : µh|e ∈ Pk(e), ∀e ∈ E}.

A function v ∈ Vk has a single value vb on each e ∈ E .
Let

V 0
k = {v ∈ Vk vb = 0 on ∂Ω}.

Denoted by ∇w,k−1, the discrete weak gradient operator on the finite el-
ement space Vk is defined as follows: for v = {v0, vb} ∈ Vk, on each element
κ ∈ Th, ∇w,k−1v|κ ∈ Pk−1(κ) is the unique solution of the following equation

(∇w,k−1v|κ,q)κ = −(v0,κ,∇ · q)+ < vb,κ,q · n >∂κ, ∀q ∈ Pk−1(κ),

where v0,κ and vb,κ are the restrictions of v0 and vb to κ, respectively,
(u,w)κ =

∫
κ
uwdx, and < u,w >∂κ=

∫
∂κ

uwds. To simplify the notation, we
will drop the subscript k − 1 in the discrete weak gradient operator ∇w,k−1.

The discrete problem resulting from the WG discretization of (1) can be
written as: find uh = {u0, ub} ∈ Vk such that

as(uh, vh) = a(uh, vh) + s(uh, vh) = (f, vh), ∀vh = {v0, vb} ∈ Vk, (2)

where

a(uh, vh) =
∑

κ∈Th

(ρ∇wuh,∇wvh)κ,

s(uh, vh) =
∑

κ∈Th

h−1
κ < Qbu0 − vb, Qbv0 − vb >∂κ,

and where Qb is the L2-projection from L2(e) to Pk−1(e), for e ∈ ∂κ. In Mu
et al. [2015a], (2) is proved to have a unique solution and the approximation
properties of the WG methods are also studied.

Given a uh ∈ Vk, let q|κ = ∇wuh|κ and write (2) as a system of q, u0, ub,
which is similar to the linear system resulting from the HDG discretization
with the local stabilization parameter h−1

κ . Given the value of ub on ∂κ, qκ

and u0 can be uniquely determined, see Cockburn et al. [2009]. Therefore,
by eliminating ∇wu|κ and u0 locally in each element, (2) can be reduced to
a system in ub only

Aub = b, (3)
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where b is the corresponding right-hand-side function.
In next section, we will develop a BDDC algorithm to solve the system in

(3) for the ub. To make the notation simple, we will denote ub by λ and the
finite element space for ub by Λ = {µ ∈ Mk−1 : µ|e = 0 ∀e ∈ ∂Ω}.

3 The BDDC algorithms and condition number bound

We decompose Ω into N non-overlapping subdomains Ωi with diameters Hi,
i = 1, · · · , N , and set H = maxi Hi. We assume that each subdomain is a
union of shape-regular coarse triangles and that the number of such trian-
gles forming an individual subdomain is uniformly bounded. We also assume
ρ(x), the coefficient of (1), is constant in each subdomain. We reduce the
global problem (3) to a subdomain interface problem. Let Γ be the inter-
face between subdomains. The set of the interface nodes Γh is defined as
Γh = (∪i6=j∂Ωi,h ∩ ∂Ωj,h) \ ∂Ωh, where ∂Ωi,h is the set of nodes on ∂Ωi and
∂Ωh is the set of nodes on ∂Ω.

We can decompose Λ into the subdomain interior and interface parts as

Λ =
N⊕

i=1

Λ
(i)
I

⊕
Λ̂Γ .

We denote the subdomain interface space of Ωi by Λ
(i)
Γ , and the associate

product space by ΛΓ =
∏N

i=1 Λ
(i)
Γ . R

(i)
Γ is the operator which maps functions

in the continuous interface numerical trace space Λ̂Γ to their subdomain

components in the space Λ
(i)
Γ . The direct sum of the R

(i)
Γ is denoted by RΓ .

We can eliminate the subdomain interior variables λ
(i)
I in each subdomain

independently and define the subdomain Schur complement S
(i)
Γ by: given

λ
(i)
Γ ∈ Λ

(i)
Γ , S

(i)
Γ λ

(i)
Γ is determined by such that

[
A

(i)
II A

(i)
IΓ

A
(i)T

IΓ A
(i)
ΓΓ

][
λ
(i)
I

λ
(i)
Γ

]
=

[
0

S
(i)
Γ λΓ

]
. (4)

The global interface problem is assembled from the subdomain interface
problems, and can be written as: find λΓ ∈ Λ̂Γ , such that

ŜΓλΓ = bΓ , (5)

where bΓ =
∑N

i=1 R
(i)T

Γ b
(i)
Γ , and ŜΓ =

∑N
i=1 R

(i)T

Γ S
(i)
Γ R

(i)
Γ . Thus, ŜΓ is a

symmetric, positive definite operator defined on the interface space Λ̂Γ . We
will propose a BDDC preconditioner for solving (5) with a preconditioned
conjugate gradient method.
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In order to introduce the BDDC precondition, we first introduce a partially
assembled interface space Λ̃Γ by

Λ̃Γ = Λ̂Π

⊕
Λ∆ = Λ̂Π

⊕(
N∏

i=1

Λ
(i)
∆

)
.

Here, Λ̂Π is the coarse level, primal interface space which is spanned by
subdomain interface edge basis functions with constant values at the nodes
of the edge for two dimensions. We change the variables so that the degree
of freedom of each primal constraint is explicit, see Li and Widlund [2006a]
and Klawonn and Widlund [2006]. The new variables are called the primal

unknowns. The space Λ∆ is the direct sum of the Λ
(i)
∆ , which are spanned

by the remaining interface degrees of freedom with a zero average over each
edge/face. In the space Λ̃Γ , we relax most continuity constraints across the
interface but retain the continuity at the primal unknowns, which makes all
the linear systems nonsingular.

We need to introduce several restriction, extension, and scaling operators

between different spaces. R
(i)

Γ restricts functions in the space Λ̃Γ to the com-

ponents Λ
(i)
Γ of the subdomain Ωi. R

(i)
∆ maps the functions from Λ̂Γ to Λ

(i)
∆ ,

its dual subdomain components. RΓΠ is a restriction operator from Λ̂Γ to its

subspace Λ̂Π . RΓ : Λ̃Γ → ΛΓ is the direct sum of the R
(i)

Γ and R̃Γ : Λ̂Γ → Λ̃Γ

is the direct sum of RΓΠ and the R
(i)
∆ . We define a positive scaling factor

δ†i (x) as follows: for γ ∈ [1/2,∞),

δ†i (x) =
ργi (x)∑

j∈Nx
ργj (x)

, x ∈ ∂Ωi,h ∩ Γh,

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj . We

note that δ†i (x) is constant on each edge/face, since we assume that the ρi(x)

is constant in each subdomain. Multiplying each row of R
(i)
∆ , with the scaling

factor δ†i (x), gives us R
(i)
D,∆. The scaled operators R̃D,Γ is the direct sum of

RΓΠ and the R
(i)
D,∆.

The partially assembled interface Schur complement is defined by S̃Γ =

R
T

Γdiag(S
(i)
Γ )RΓ and the preconditioned BDDC operator is then of the form:

find λΓ ∈ Λ̂Γ , such that

R̃T
D,Γ S̃

−1
Γ R̃D,Γ ŜΓλΓ = R̃T

D,Γ S̃
−1
Γ R̃D,Γ bΓ . (6)

This preconditioned problem is the product of two symmetric, positive defi-
nite operators and we can use the preconditioned conjugate gradient method
to solve it.
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4 Condition number bound

We first introduce one useful norm, which is defined in Gopalakrishnan [2003]
and Cockburn et al. [2014]. For any domain D, we denote the L2 norm by
‖ · ‖D. For any λ ∈ Λ(D), define

|||λ|||2D =


 1

h

∑

κ∈Th,κ⊆D̄

‖λ−mκ(λ)‖2L2(∂κ)




1/2

, (7)

where mκ = 1
|∂κ|

∫
∂κ

λds, and |∂κ| is the length of the boundary of κ.

We define the interface averaging operator ED, by

ED = R̃Γ R̃
T
D,Γ , (8)

which computes a weighted average across the subdomain interface Γ and
then distributes the averages to the degrees of freedom on the boundary of
the subdomains.

Similarly to the proof of [Tu and Wang, 2016, Lemma 5], using the spectral
equivalence of A, defined in (3), the linear system from the hybridized RT
method, and the norm defined in (7), we obtain that the interface averaging
operator ED satisfies the following bound:

Lemma 1. For any λΓ ∈ Λ̃Γ ,

|EDλΓ |2S̃Γ
≤ C

(
1 + log

H

h

)2

|λΓ |2S̃Γ
,

where C is a positive constant independent of H, h, and the coefficient of
(1).

As in the proof of [Li and Widlund, 2006b, Theorem 1] and [Tu and Wang,
2016, Theorem 1], using Lemma 1, we can obtain

Theorem 1. The condition number of the preconditioned operator M−1ŜΓ

is bounded by C(1 + log H
h )

2, where C is a constant which is independent of
h, H, and the coefficients ρ of (1).

5 Numerical Experiments

We have applied our BDDC algorithms to the model problem (1), where Ω =
[0, 1]2. We decompose the unit square into N ×N subdomains with the side-
length H = 1/N . Equation (1) is discretized, in each subdomain, by the kth-
order WG method with a element diameter h. The preconditioned conjugate
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Table 1 Performance with H/h = 8/# sub=64

ρ = 1 ρ checkboard pattern
k = 1 k = 1 k = 1 k = 2

H/h #sub Cond. Iter. Cond. Iter. Cond. Iter. Cond. Iter.

8 4× 4 2.22 6 3.50 7 1.80 5 2.37 5

8× 8 2.45 13 3.85 16 2.08 9 2.76 10

16× 16 2.45 14 3.86 17 2.16 14 2.87 15

24× 24 2.46 14 3.87 17 2.17 15 2.89 15

32× 32 2.46 14 3.87 17 2.18 15 2.90 16

#sub H/h Cond. Iter. Cond. Iter. Cond. Iter. Cond. Iter.

8× 8 4 1.78 11 2.90 14 1.67 9 2.33 10

8 2.45 13 3.86 16 2.08 9 2.76 10

16 3.29 15 4.95 18 2.49 10 3.18 10

24 3.85 17 5.67 18 2.74 10 3.43 11

32 4.28 17 6.21 19 2.91 10 3.60 11

gradient iteration is stopped when the relative l2-norm of the residual has
been reduced by a factor of 106.

We have carried out two different sets of experiments to obtain iteration
counts and condition number estimates. In the first set of experiments, we
take the coefficient ρ ≡ 1. In the second set of experiments, we take the
coefficient ρ = 1 in half the subdomains and ρ = 1000 in the neighboring
subdomains, in a checkerboard pattern. All the experimental results are fully
consistent with our theory.
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Parallel Sums and
Adaptive BDDC Deluxe

Olof B. Widlund1 and Juan G. Calvo2

1 Introduction

There has recently been a considerable activity in developing adaptive meth-
ods for the selection of primal constraints for BDDC algorithms and, in par-
ticular, for BDDC deluxe variants. The primal constraints of a BDDC or
FETI–DP algorithm provide the global, coarse part of such a preconditioner
and are of crucial importance for obtaining rapid convergence of these pre-
conditioned conjugate gradient methods for the case of many subdomains.
When the primal constraints are chosen adaptively, we aim at selecting a
primal space, which for a certain dimension of the coarse space, provides the
fastest rate of the convergence for the iterative method. In the alternative, we
can try to develop criteria which will guarantee that the condition number
of the iteration stays below a given tolerance.

A particular inspiration for our own work has been a talk, see Dohrmann
and Pechstein [2012], by Clark Dohrmann at DD21, held in Rennes, France,
in June 2012. Dohrmann had then started joint work with Clemens Pechstein,
see also Pechstein and Dohrmann [2016].

Much of this work for BDDC and FETI-DP iterative substructuring algo-
rithms, which has been supported by theory, has been confined to developing
primal constraints for equivalence classes with two elements such as those
related to subdomain edges for problems defined on domains in the plane;
see a recent survey paper, Klawonn et al. [2016b]. In our context, the equiva-
lence classes are sets of finite element nodes which belong to the boundaries
of more than one subdomain with the equivalence relation defined by the sets
of subdomain boundaries to which the nodes belong. While it is important
to further study the best way of handling all cases, the basic issues appear
to be well settled when the equivalence classes all have just two elements.
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We note that this work is relevant for problems posed in H(div) even in
three dimensions (3D) since the degrees of freedom on the interface between
subdomains for Raviart-Thomas and Brezzi-Douglas-Marini elements are as-
sociated only with faces of the elements, see Oh et al. [2015], Zampini [2016].
(These papers also concern BDDC three–level algorithms choosing two levels
of primal constraints adaptively.) But for other elliptic problems in 3D, there
is a need to develop algorithms and results for equivalence classes with three
or more elements.

There is early work by Mandel, Š́ıstek, and Soused́ık, who developed condi-
tion number indicators, cf. Mandel and Soused́ık [2007], Mandel et al. [2012].
Talks by Clark Dohrmann and Axel Klawonn at DD23, held on Jeju Island,
the Republic of Korea in July 2015, see Klawonn et al. [2016a], reported
on recent progress to give similar algorithms a firm theoretical basis. A talk
by Hyea Hyun Kim in the same mini-symposium also reported considerable
progress for a different kind of algorithm. Her main new algorithm for prob-
lems in three dimensions is similar but not the same as ours; see further Kim
et al. [2015]. Our main result, developed independently, was reported on by
the first author in the same mini-symposium; see further Calvo and Widlund
[2016] and, for applications to isogeometric analysis, Beirão da Veiga et al.
[2015].

This paper will focus on using parallel sums for general equivalence classes.
Such an approach for equivalence classes with two elements has proven very
successful in simplifying the formulas and arguments; see in particular Pech-
stein and Dohrmann and section 2. Parallel sums for equivalence classes with
more than two elements have also been quite successfully in numerical ex-
periments by Simone Scacchi and Stefano Zampini, reported in Beirão da
Veiga et al. [2015], for problems arising in isogeometric analysis and also by
Zampini in a study of 3D problems formulated in H(curl), based in part on
Dohrmann and Widlund [2016], and reported on in this mini-symposium.

In this paper, we will focus on low order, nodal finite element approxima-
tions for scalar elliptic problems in three dimensions,

−∇ · (ρ(x)∇u) = f(x), x ∈ Ω, ρ(x) > 0, (1)

resulting in a linear system of equations to be solved using BDDC domain
decomposition algorithms, especially its deluxe variant. We will always as-
sume that the choice of boundary conditions results in a positive definite,
symmetric stiffness matrix.

2 Equivalence classes and BDDC algorithms

BDDC algorithms, see, e.g., Li and Widlund [2006], are domain decomposi-
tion algorithms based on the decomposition of the domain Ω of an elliptic
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operator into non-overlapping subdomains Ωi, each often associated with tens
of thousands of degrees of freedom. The subdomain interface Γi of Ωi does
not cut through any elements and is defined by Γi := ∂Ωi \ ∂Ω. The equiva-
lence classes are associated with the subdomain faces, edges, and vertices of
Γ := ∪iΓi, the interface of the entire decomposition. Thus, for a problem in
three dimensions, a subdomain face is associated with the degrees of freedom
of the nodes belonging to the interior of the intersection of two boundaries
of two neighboring subdomains Ωi and Ωj . Those of a subdomain edge are
typically associated with a set of nodes common to three or more subdomain
boundaries, while the endpoints of the subdomain edges are the subdomain
vertices which are associated with even more subdomains.

Given the stiffness matrix A(i) of the subdomain Ωi, we obtain a subdo-
main Schur complement S(i) by eliminating the interior variables, i.e., all
those that do not belong to Γi. We will also work with principal minors of
these Schur complements associated with faces, F, and edges, E, denoting

them by S
(i)
FF and S

(i)
EE , respectively.

The interface space is divided into a primal subspace of functions which
are continuous across Γ and a complementary, dual subspace for which we
will allow multiple values across the interface during part of the iteration.
In our study, all the subdomain vertex variables will always belong to the
primal set. We have three product spaces of finite element functions/vectors
defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂ WΓ .

WΓ is a product space without any continuity constraints across the inter-
face. Elements of W̃Γ have common values of the primal variables but allow
multiple values of the dual variables while the elements of ŴΓ are continuous
at all nodes on Γ. We will change variables, explicitly introducing the primal
variables and a complementary sets of dual variables in order to simplify the
presentations. We note that the change of basis will not in any way change
the results of the computation. After eliminating the interior variables, we
can then write the subdomain Schur complements as

S(i) =

(
S
(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

We will partially subassemble the S(i), obtaining S̃, enforcing the continuity
of the primal variables only. Thus, we then work in W̃Γ . In each step of the
iteration, we solve a linear system with the coefficient matrix S̃. Solving these
linear systems will be considerably much faster than if we work with the fully
assembled system if the dimension of the primal space is modest. At the end
of each iteration, the approximate solution is made continuous at all nodal
points of the interface by applying a weighted averaging operator ED. We
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always accelerate the iteration with the preconditioned conjugate gradient
algorithm.

BDDC deluxe. When designing a BDDC algorithm, we have to choose
an effective set of primal constraints and also a good recipe for the averaging
across the interface. Our paper concerns the choice of the primal constraints
while we will always use the deluxe recipe in the construction of the averaging
operator ED.

We note that in work on three-dimensional problems formulated inH(curl),
it was found that traditional averaging recipes did not always work well; cf.
Dohrmann and Widlund [2016]. The same is true for problems in H(div); see
Oh et al. [2015]. This occasional failure has its roots in the fact that there are
two sets of material parameters in these applications. The deluxe scaling that
was then introduced has also proven quite successful for a variety of other
applications.

A face component of the average operator ED across a subdomain face
F ⊂ Γ , common to two subdomainsΩi andΩj , is defined in terms of principal

minors S
(k)
FF of the S(k), k = i, j :

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF )

−1(S
(i)
FFw

(i)
F + S

(j)
FFw

(j)
F ).

Here w
(i)
F is the restriction of w(i) to the face F, etc.

Deluxe averaging operators are also developed for subdomain edges and
the operator ED is assembled from all these components; see further section
3. Our bound for this operator will be obtained from bounds for certain
eigenvalues for the individual equivalence sets and will include factors that
depend quadratically on the number of equivalence classes associated with
the faces and edges of the individual subdomains. We have found that the
performance consistently is far better than these bounds.

The core of any estimate for a BDDC algorithm is the norm of the av-
eraging operator ED. By an algebraic argument known, for FETI–DP since
2002, we know that the condition number of the iteration satisfies

κ(M−1
BDDC Ŝ) ≤ ‖ED‖S̃ ; (2)

see Klawonn et al. [2002]. Here M−1
BDDC denotes the BDDC preconditioner

and Ŝ the fully assembled Schur complement of the problem. Instead of de-
veloping an estimate for ED, we will work with PD := I − ED and estimate

(RT
F (w

(i)
F − w̄F ))

TS(i)RT
F (w

(i)
F − w̄F ). Here RF denotes the restriction to the

face F. We find, following Pechstein, that the sum of this quadratic form and
a similar contribution from the neighboring subdomain Ωj equals

(w
(i)
F − w

(j)
F )T (S

(i)
FF : S

(j)
FF )(w

(i)
F − w

(j)
F )

where
A : B := A(A+B)−1B
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is the parallel sum of A and B; cf. Anderson Jr. and Duffin [1969]. We note
that if A and B are positive definite, then A : B = (A−1 +B−1)−1. If A+B
is only positive semi-definite, we can replace (A + B)−1 by (A + B)†, any
generalized inverse. The quadratic form can be estimated from above by

2(w
(i)
F −wFΠ)T (S

(i)
FF : S

(j)
FF )(w

(i)
F −wFΠ)+2(w

(j)
F −wFΠ)T (S

(i)
FF : S

(j)
FF )(w

(j)
F −wFΠ)

where wFΠ is the restriction of an arbitrary element of the primal space to
the face. We note that each of these terms can be estimated by an expression
which is local to only one subdomain.

With w
(i)
F∆ := w

(i)
F − wFΠ , we now estimate w

(i)T
F∆ (S

(i)
FF : S

(j)
FF )w

(i)
F∆ by

the energy of w(i). We then need the minimum norm extension of any finite
element function defined on F, which will provide a uniform bound for any
extension of the values on F to the rest of Γi. We find that the relevant
matrix is

S̃
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F .

Here S
(i)
F ′F ′ is the principal minor of S(i) with respect to Γi \ F and S

(i)
F ′F an

off-diagonal block of S(i). By appropriate choices of the primal space and of
wFΠ , we are able to show that

w
(i)T
F∆ (S̃

(i)
FF : S̃

(j)
FF )w

(i)
F∆ ≤ w(i)TS(i)w(i),

where w(i) is an arbitrary extension of the values of w
(i)
F .

For an adaptive algorithm, we can complete the estimate by using a gen-
eralized eigenvalue problem:

S̃
(i)
FF : S̃

(j)
FFφ = λS

(i)
FF : S

(j)
FFφ. (3)

Primal constraints are then generated by using the eigenvectors of a few of the

smallest eigenvalues of (3) and making (S̃
(i)
FF : S̃

(j)
FF )(w

(i)
F − w

(j)
F ) orthogonal

to these eigenvectors.
A bound can now be obtained in terms of the smallest eigenvalue associated

with the eigenvectors not used in deriving the primal constraints. Numerical

studies show a very rapid decay of the eigenvalues of S
(i)−1
FF (S

(i)
FF − S̃

(i)
FF ); this

property can also be proven assuming that Ωi is Lipschitz and the coefficient
ρ(x) a constant. Therefore only a few primal constraints will greatly improve
the bound on the norm of (EDw)F .

3 Equivalence classes with more than two elements

We begin this section by considering parallel sums of more than two oper-
ators. We will work with symmetric matrices which all are at least positive
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semi-definite. For three positive definite matrices, we can define their parallel
sum by

A : B : C := (A−1 +B−1 + C−1)−1,

with similar formulas for four or more matrices. A quite complicated formula
for A : B : C is given in Tian [2002] for the general case when some or all of
the matrices might be only positive semi-definite. It is also shown, in [Tian,
2002, Theorem 3], that A : B : C = (A† + B† + C†)† if and only if the
three operators A,B, and C have the same range. In our context, this is not

always the case since the matrix S̃
(i)
EE, defined below, will be singular if Ωi is

an interior subdomain while it will be non-singular if ∂Ωi intersects a part
of ∂Ω where a Dirichlet condition is imposed. This issue can be avoided by
making all operators non-singular by adding a small positive multiple of the
identity to the singular operators.

We will first focus on a case of an equivalence class common to three sub-
domains as arising for most subdomain edges in a three-dimensional finite
element context if the subdomains are generated using a mesh partitioner.

We will use the notation S
(i)
EE , S

(j)
EE , and S

(k)
EE for the principal minors, of

the degrees of freedom of an edge E, of the subdomain Schur complements of
the three subdomains that have this subdomain edge in common. The Schur
complements of the Schur complements representing the minimal energy ex-
tensions to individual subdomains, of given values on the subdomain edge E,

will be denoted by S̃
(i)
EE , S̃

(j)
EE , etc., and are defined by

S̃
(i)
EE := S

(i)
EE − S

(i)T
E′ES

(i)−1
E′E′ S

(i)
E′E . (4)

Here S
(i)
E′E′ is the principal minor of S(i) of Γi \ E and S

(i)
E′E an off-diagonal

block.
We can now introduce the deluxe average over the edge E by

w̄E := (S
(i)
EE + S

(j)
EE + S

(k)
EE)

−1(S
(i)
EEw

(i)
E + S

(j)
EEw

(j)
E + S

(k)
EEw

(k)
E ).

By using elementary inequalities, we can now obtain a bound of the square
of the norm of an edge component of PDw by

3w
(i)T
E∆ S

(i)
EE : (S

(j)
EE + S

(k)
EE)w

(i)
E∆

and two similar terms obtained by changing the superscripts appropriately.
Returning to the search for adaptive primal spaces, we note that ideally,

we would now like to prove that the three operators T
(i)
E := S

(i)
EE : (S

(j)
EE +

S
(k)
EE), T

(j)
E := S

(j)
EE : (S

(i)
EE + S

(k)
EE), and T

(k)
E := S

(k)
EE : (S

(i)
EE + S

(j)
EE) all can

be bounded uniformly from above by

S
(i)
EE : S

(j)
EE : S

(k)
EE := (S

(i)−1
EE + S

(j)−1
EE + S

(k)−1
EE )−1. (5)
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If this were possible, we could use that same matrix for estimates for

w
(i)
E∆, w

(j)
E∆, and w

(k)
E∆; we could use arguments very similar to those of the

previous section. But we are not that lucky; good bounds are only possible

if S
(i)
EE , S

(j)
EE , and S

(k)
EE are spectrally equivalent with good bounds. However,

it is easy to find interesting examples where this does not hold. We therefore

have to find a different common upper bound for T
(i)
E , T

(j)
E , and T

(k)
E and

accomplish this by using the trivial inequality

T
(i)
E ≤ T

(i)
E + T

(j)
E + T

(k)
E ,

and define our generalized eigenvalue problem as

(S̃
(i)
EE : S̃

(j)
EE : S̃

(k)
EE)φ = λ(T

(i)
E + T

(j)
E + T

(k)
E )φ. (6)

We note that these arguments extend directly to equivalence classes with
more than three elements.

This is the recipe that we have used in most of our numerical experiments,
which have proven quite successful; cf. Calvo and Widlund [2016] for many
more details. However, it deserves to be noted that the distribution of the
eigenvalues associated with the subdomain edges, in our experience, is less
favorable than those of the subdomain faces but that we can benefit from
the fact that the number of degrees of freedom of an edge typically is much
smaller than that of a face.

Given the success, by others, with using parallel sums of each of the two
sets of three Schur complements, we have also carried out experiments with
that alternative generalized eigenvalue problem. The performance is very sim-
ilar to that of our algorithm.

In our experiments, we have compared the performance of our adaptive
algorithms with standard choices of the primal spaces. In choosing our primal
constraints, we have, in some of our experiments, used tolerances introduced
in Kim et al. [2015]. We have found that our adaptive algorithm also works
quite well for irregular subdomains generated by the METIS mesh partitioner.
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Jan Mandel and Bedřich Soused́ık. Adaptive selection of face coarse degrees of
freedom in the BDDC and the FETI-DP iterative substructuring methods.
Comput. Methods Appl. Mech. Engrg., 196(8):1389–1399, 2007.
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Adaptive BDDC Deluxe Methods for
H(curl)

Stefano Zampini1

1 Introduction

We present two- and three-dimensional numerical results obtained using
BDDC deluxe preconditioners, cf. Dohrmann and Widlund [2013], for the
linear systems arising from finite element discretizations of

∫

Ω

α ∇× u · ∇ × v + β u · v dx. (1)

This bilinear form originates from implicit time-stepping schemes of the
quasi-static approximation of the Maxwell’s equations in the time domain, cf.
Rieben and White [2006]. The coefficient α is the reciprocal of the magnetic
permeability, whereas β is proportional to the ratio between the conductivity
of the medium and the time step. Anisotropic, tensor-valued, conductivities
can be handled as well. We only present results for essential boundary condi-
tions, but the generalization of the algorithms to natural boundary conditions
is straightforward.

The operator∇× is the curl operator, defined, e.g., in Boffi et al. [2013]; the
vector fields belong to the space H0(curl), which is the subspace of H(curl)
of functions with vanishing tangential traces over ∂Ω. The space H(curl) is
often discretized using Nédélec elements; those of lowest order use polynomi-
als with continuous tangential components along the edges of the elements.
While most existing finite element codes for electromagnetics use lowest or-
der elements, those of higher order have shown to require fewer degrees of
freedom (dofs) for a fixed accuracy; see, e.g., Schwarzbach et al. [2011] and
Grayver and Kolev [2015]. We note that higher order elements have been
neglected in the domain decomposition (DD) literature with the exception

1Extreme Computing Research Center, Computer, Electrical and Mathematical Sciences
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of spectral elements. Sec. 3 contains novel results for two-dimensional dis-
cretizations of (1) using arbitrary order Nédélec elements of first and second
kind on triangles.

The design of solvers for edge-element approximations of (1) poses signifi-
cant difficulties, since the kernel of the curl operator is non-trivial. Moreover,
finding logarithmically stable decompositions for edge-element approxima-
tions in three dimensions is challenging, due to the strong coupling that
exists between dofs located on the subdomain edges and on the subdomain
faces. Among non-overlapping DD solvers, it is worth citing the wirebasket
algorithms developed by Dohrmann and Widlund [2012] and by Hu et al.
[2013]. To save space, we omit citing some of the related DD literature; ref-
erences can be found in Dohrmann and Widlund [2012], and Dohrmann and
Widlund [2016].

The edge-element approximations of (1) have also received a lot of atten-
tion from the multigrid community; for Algebraic Multigrid (AMG) methods
see Hu et al. [2006] and the references therein. Robust and efficient multigrid
solvers can be obtained combining AMG and auxiliary space techniques, that
require some extra information on the mesh connectivity and on the dofs, cf.
Hiptmair and Xu [2007], Kolev and Vassilevski [2009]. This approach has
recently proven to be quite successful in 3D even with higher order elements,
cf. Grayver and Kolev [2015].

An analysis for 3D FETI-DP algorithms with the lowest order Nédélec
elements of the first kind was given in Toselli [2006], a paper which also
highlighted the importance of changing the basis on the subdomain edges.
Recently, Toselli’s results have been significantly improved by Dohrmann and
Widlund [2016], who were able to obtain sharp and quasi-optimal condition
number bounds, with a mild dependence on the material parameters through
the factor 1 + βH2/α. Deluxe scaling proved to be critical to obtain bounds
independent on the jumps of the material coefficients in 3D.

While BDDC algorithms are often robust with respect to jumps in the ma-
terial parameters, their convergence rates drastically deteriorate when these
jumps are not aligned with the interface of the subdomains. After the pio-
neering study of Mandel and Soused́ık [2007], primal space enrichment tech-
niques have been the focus of much recent work on BDDC and FETI-DP
algorithms; cf. Mandel et al. [2012], Pechstein and Dohrmann [2013], Kim
et al. [2015], Klawonn et al. [2015], Calvo and Widlund [2016] and the refer-
ences therein. Sec. 3 contains numerical results using heterogeneous material
coefficient distributions, for triangular elements of both kinds, and for the
lowest order tetrahedral elements of the first kind. All the results of this pa-
per have been obtained using the BDDC implementation developed by the
author, and which is available in the current version of the PETSc library
(Balay et al. [2015]). For details on the implementation, see Zampini [2016].
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2 Adaptive BDDC Deluxe Methods

Non-overlapping DD algorithms are often designed using the stiffness matrix
A(i) assembled on each subdomain Ωi. We note that for the problem of in-
terest, these matrices are always symmetric and positive definite. The recipe
for the construction of a BDDC preconditioner consists in the design of a

partially continuous space W̃, the direct sum of a continuous primal space
WΠ and a discontinuous dual space W∆, and in the choice of an averaging
operator ED for the partially continuous dofs, cf. Mandel et al. [2005]. A
remarkably simple formula, related to the stability of the average operator
with respect to the energy norm, provides an upper bound for the condition
number (κ) of the BDDC preconditioned operator

κ ≤ max
w∈W̃

wTET
DSEDw

wTSw
,

where S is the direct sum of the subdomain Schur complements S(i), obtained
by condensing out from A(i) the dofs in the interior of the subdomains. We
can then control the convergence rate of the methods by enriching the primal
space WΠ , and this can be accomplished by solving a few local generalized
eigenvalue problems, associated to the equivalence classes of the interface.

For the BDDC deluxe algorithms, a local generalized eigenvalue problem
for each equivalence class C, shared by two subdomains, is given by

(S̃
(i)−1
CC + S̃

(j)−1
CC )Φ = λ(S

(i)−1
CC + S

(j)−1
CC )Φ, (2)

with S
(i)
CC a principal minor of S(i) relative to C. The S̃

(i)
CC matrices are ob-

tained by energy-minimization as S̃
(i)
CC = S

(i)
CC−S

(i)T
C′CS

(i)−1
C′C′ S

(i)
C′C , with C ′ the

set of complementary interface dofs of C, cf. Pechstein and Dohrmann [2013].
Elements in the dual space are then made orthogonal, in the inner product

(S
(i)−1
CC + S

(j)−1
CC )−1, to a few selected eigenvectors of (2), with eigenvalues

greater than a given tolerance µ.
More complicated generalized eigenvalue problems arise when controlling

the energies contributed by interface classes shared by 3 or more subdomains;
even if they lead to fully controllable condition number bounds, they could
potentially generate unnecessary primal constraints, cf. Kim et al. [2015],
Calvo and Widlund [2016]. In our algorithm, we instead consider the eigen-
vectors associated to the largest eigenvalues of

(S̃
(i)−1
CC + S̃

(j)−1
CC + S̃

(k)−1
CC )Φ = λ(S

(i)−1
CC + S

(j)−1
CC + S

(k)−1
CC )Φ, (3)

that is a generalization of (2), so far without a theoretical validation. With
tetrahedral meshes, classes shared by more than three subdomains are rarely
encountered. Therefore, we impose full continuity on the partially assembled
space for the few dofs that belong to these classes.

Adaptive BDDC Deluxe Methods for H(curl) 259



We also provide results for adaptive algorithms working with the economic
variant of the deluxe approach (e-deluxe), where the S(i) are obtained by
eliminating the interior dofs in 2 layers of elements next to the subdomain
part of the interface.

3 Numerical Experiments

The triangulation ofΩ and the assembly of the subdomain matrices have been
performed with the DOLFIN library, cf. Logg and Wells [2010]. ParMETIS
(Karypis [2011]) is used to decompose the meshes, and each subdomain is
assigned to a different MPI process. MUMPS (Amestoy et al. [2001]) is used
for the subdomain interior solvers and for the explicit computation of the
S(i). A relative residual reduction of 10−8 is used as the stopping criterion of
the conjugate gradients; random right-hand sides are always considered.

Results will be given sometimes as a function of the ratio H/h, where
H = maxi{maxP1,P2∈∂Ωi,h

d(P1, P2)}, with P1 and P2 two vertices of the
boundary mesh ∂Ωi,h of Ωi, and d(P1, P2) their Euclidean distance. N1

p and
N2

p denote Nédélec first and second kind elements on simplices, respectively,
with p the polynomial order.

For the numerical results, we always consider decompositions of the unit
domain into 40 irregular subdomains; large scale numerical results for adap-
tive BDDC algorithms with N1

1 tetrahedral elements can be found in Zampini
and Keyes [2016].

2D Results

We first report on the quasi-optimality and on the dependence of p. The
material coefficients are subdomain-wise constant, but they have jumps be-
tween subdomains, which are subdivided in even and odd groups according
to their MPI rank. α = β = 100 for odd subdomains, α = β = 0.01 for even
subdomains. The primal space is characterized in terms of the continuity
of the tangential traces along the subdomain edges, cf. Toselli and Vasseur
[2005]. The quadrature weights for such constraints can easily be obtained
by exploiting the Stokes theorem, i.e.,

∫

Ωi

∇× u dx =

∫

∂Ωi

u · t ds.

Fig. 1 shows the quasi-optimality of the deluxe methods with N1
p (left) and

N2
p (center) elements. The results in the right panel, obtained with a fixed

mesh and by increasing p, seem to indicate a polylogarithmic bound.
We then analyze adaptive BDDC deluxe algorithms with the heteroge-

neous coefficients distribution given in Fig. 2. The mesh is fixed (H/h=140.7),
as well as the number of dofs, which varies from 800K for N1

1 to 11M for N2
4 .

Fig. 3 shows the condition number, the iteration count, and the relative size,
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Fig. 1 2D results. κ as a function of H/h. Left: N1
p . Center: N2

p . Right: κ as a function

of p (H/h = 66).

in terms of the number interface dofs, of the adaptively generated coarse
spaces, all given as a function of the eigenvalue threshold. The latter appears
to be a very good indicator of κ; the iteration count constantly decrease as
the threshold approaches 1. The number of primal dofs is always smaller than
10% of the interface dofs, even with values of µ close to the limit; we note
that more favorable coarsenings are obtained with higher order elements.

Fig. 2 2D distributions of α (left) and β (center). Right: decomposition in 40 subdomains.

3D Results

As first highlighted by Toselli [2006], the existence of a stable decomposition
in 3D is precluded if a change of basis of the dofs of the subdomain edges
is not performed. This change of basis, which consists in the splitting of the
dofs of each subdomain edge E in a constant and a gradient component, is
not local to E, as it involves all the other interface dofs associated to those
elements which have a fine edge in common with E. In our 3D experiments, we
consider only N1

1 elements; constructing suitable changes of basis for higher
order elements could be the subject of future research.

As already noted by Dohrmann and Widlund [2016], some care must be
exercised when considering a decomposition obtained by mesh partitioners,
since the proper detection of subdomain edges is crucial for the success of the
algorithm. To this end, we first construct the connectivity graph of the mesh
vertices through mesh edges, and analyze its connected components. We then
mark the corners that have been found, i.e. the connected components made
up by just one element, and proceed by analyzing the connectivity graph of
the mesh edges through mesh vertices, excluding the connections through the
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Fig. 3 2D results. κ (left), iterations (center), and relative size of WΠ (right) as a function

of µ. Top: N1
p . Bottom: N2

p . α, β as in Fig. 2.

corners. The connected components of this graph are further refined in order
to avoid any possible subdomain edge which does not have endpoints. Once
that the subdomain edges have been properly identified, we then assign them
a unique orientation across the set of sharing subdomains, and construct
the change of basis as outlined in Toselli [2006], using the modification for
non-straight edges proposed by Dohrmann and Widlund [2016].

For the 3D results, we consider a mesh of 750K elements, with H/h=26.3;
the number of dofs is approximatively 1M. In Fig. 4 we report the results of
adaptive algorithms using an extrusion in the z-direction of the coefficients
distributions in Fig. 2, and compare the deluxe and e-deluxe generated pri-
mal spaces. Notably, e-deluxe gives very similar results to the deluxe case.
The eigenvalue threshold results in a very good indicator of κ even in 3D,
despite the lack of a theoretical validation for the eigenvalue problem (3).
The iterations constantly decrease as the threshold approaches one in both
cases. The relative size of the primal problem is larger than in the 2D case,
but it still shows interesting coarsening factors.
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Fig. 4 3D results. κ (left), iterations (center) and relative size of WΠ (right) as a function

of µ. (x, y) distributions of α and β as in Fig. 2 (extruded in the z- direction).

We close with a test case where α and β are exponentially and randomly
chosen in [10−qα , 10qα ] and [10−qβ , 10qβ ], and using µ = 10. The results,
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provided in Table 1 as a function of qα and qβ , provide a clear evidence that
the condition number is fully controllable.

Table 1 3D results. κ and iterations (in parentheses) for adaptive BDDC algorithms.
Randomly distributed α ∈ [10−qα , 10qα ], β ∈ [10−qβ , 10qβ ]; µ = 10.

Deluxe E-deluxe

qβ=0

qβ=1
qβ=2

qβ=3

qα = 0 qα = 1 qα = 2 qα = 3

3.82 (15) 4.17 (15) 4.26 (16) 7.61 (20)

9.34 (24) 9.34 (24) 9.33 (24) 8.66 (22)
8.08 (22) 8.09 (22) 8.14 (22) 7.82 (22)

8.19 (20) 8.21 (20) 8.28 (20) 8.39 (20)

qα = 0 qα = 1 qα = 2 qα = 3

4.62 (15) 4.14 (15) 4.48 (16) 7.43 (19)

9.15 (24) 9.15 (23) 8.98 (23) 8.29 (23)
8.22 (22) 8.22 (22) 8.25 (22) 7.88 (22)

8.06 (20) 8.07 (20) 8.16 (20) 8.30 (20)
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A Study of the Effects of Irregular Subdomain
Boundaries on Some Domain Decomposition
Algorithms

Erik Eikeland1, Leszek Marcinkowski2, and Talal Rahman3

1 Introduction.

In the standard domain decomposition theory the resulting subdomains are often
assumed to have a certain regularity, as in [Toselli and Widlund, 2005, Assumption
4.3], where each subdomain is a finite union of coarse scale elements and the number
of coarse elements forming the subdomain are uniformly bounded. This assumption
does not always hold. Subdomains might be generated from a mesh partitioner, or
be the result of a decomposition scheme with slight or systematic alterations of the
subdomain following refinement, e.g. see the type 3 domain in [Dohrmann et al.,
2008a, figure 5.1] and the snowflake domain in figure 1. In this paper we will assume
that each subdomain is a connected union of fine scale elements.

Several papers, Dohrmann et al. [2008b,a], Klawonn et al. [2008], Widlund
[2009], have developed theory for such less regular or irregular subdomains. In these
studies the subdomains are assumed to be uniform or John domains; see Dohrmann
et al. [2008a], Klawonn et al. [2008] for definitions of these families of domains.
While these domains are not necessarily Lipschitz, a number of the tools impor-
tant to the development of theory of domain decomposition algorithms have been
developed for such domains in the plane. We note that the Poincaré inequality is
particularly important; see Dohrmann et al. [2008a].

In this paper we primarily consider the Additive Average method, introduced in
Bjørstad et al. [1997]. We note that [Toselli and Widlund, 2005, Assumption 4.3]
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was not needed in the original proof. The original proof uses the trace theorem, and
to our knowledge this theorem is not available if the subdomains are only John do-
mains. In Dryja and Sarkis [2010], the authors proved a condition number estimate
of the Additive Average method for the scalar elliptic equation in R2 without the
use of a trace theorem. Following the setup of Dryja and Sarkis [2010], we have
extended the result to R3 and can show that this convergence estimate, with some
modification, holds also when subdomain are John domains. To our knowledge con-
vergence estimates for methods where the subdomains are John or uniform domains
have previously only been available for methods in R2. We have obtained an esti-
mate valid for both R2 and R3. In addition, when restricted to R2 our result may
be improved so that it is comparable with the results of Dohrmann and Widlund
[2012a]. In this paper we must leave out the proof due to page restrictions.

In certain cases of domain decomposition, the length of the subdomain bound-
aries can grow with refinement. One example is the snowflake domain shown in
figure 1. In Dohrmann and Widlund [2012b,a] it was pointed out that such domains
introduce a factor into the condition number bound which depends on the Hausdorff
dimension of the resulting boundary as h goes to zero. For the snowflake domain in
figure 1, we have a bound of this factor. Numerical results in section 4 are presented
to indicate that this factor need to be present in the condition number bound.

This paper has the following layout. In section 2 we present the test problem, as-
sumptions and definitions. In section 3 we introduce the additive average Schwarz
preconditioner with convergence estimate as our main result. Finally we present
some numerical results in section 4, mainly to illustrate effects of various subdo-
mains on the condition number.

2 The Differential Problem

Find u ∈ H1
0 (Ω) such that

a(u,v) = f (v), v ∈ H1
0 (Ω), (1)

where
a(u,v) := (α(·)∇u,∇v)L2(Ω), f (v) :=

∫

Ω
f vdx (2)

We assume that α ∈ L∞(Ω), with α(x) ≥ α0 > 0 and that f ∈ L2(Ω). Here Ω is
a polygonal or polyhedral region in Rn where n ∈ {2,3}. Let T h(Ω) be the shape
regular triangulation of Ω into triangular or tetrahedral elements. Let Vh be a space
of piecewise linear continuous functions.

Vh(Ω) :=
{

v ∈C0(Ω);v|ek
∈ P1(x)

}
,

where ek are elements of T h(Ω) and P1(x) is the set of linear polynomials.
The finite element problem is then defined as: Find uh ∈Vh(Ω) such that
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a(uh,v) = f (v), v ∈Vh(Ω). (3)

2.1 Assumptions

Let Ω be divided into disjoint subdomains Ωi, Ω = ∪iΩ i, i ∈ {1, · · · ,N}, where
each Ωi is a John domain, as defined in Dohrmann et al. [2008a], with a uniformly
bounded John constant. Let the boundary ∂Ωi be aligned with the triangulation of
T h(Ω) such that the inherited triangulation of Ωi is shape regular with a mesh
parameter hi and Hi := diam(Ωi). According to Dohrmann et al. [2008a], diam(Ωi)

can be estimated above and below by |Ωi|
1
n with one of the constants depending on

the John constant CJ . Denote by Ω h
i the layer around ∂Ωi which is a union the of e(i)k

the element of T h(Ωi) which touch ∂Ωi, the boundary of Ωi. We assume that all
elements in Ω h

i are quasi uniform. We also, as in Dryja and Sarkis [2010], introduce

α i := sup
x∈Ω h

i

α(x), α i := inf
x∈Ω h

i

α(x). (4)

2.2 The Snowflake Domain.

When proving the condition number estimate in Theorem 1, we needed to estimate
the number of elements in the internal boundary layer given by Ω h

i ∩Ωi. Usually
such an estimate is given by c(Hi/hi)

n−1 where c is a constants not depending on
the mesh parameter. This is not correct for all types of subdomains.

The snowflake domain follows a rule of refinement. It starts with a square with a
boundary node in each corner. With each refinement all boundary edges are divided
into three equal parts, and the middle part is replaced with an equilateral triangle.
In figure 1, we see the first 3 refinements of the a snowflake domain. For the par-
ticular domain in the figure, we see that the triangles at the top and at the bottom
always point into the domain, subtracting from its area, while the triangles at the
left and the right side, always point outwards, adding to its area. The net change
of the domains area is zero. With each refinement, the length of the boundary of
the subdomain increases by a factor 4/3. It is possible to show that the asymptotic
boundary of the snowflake domain is a von Koch curve with a Hausdorff dimension
greater then 1. In Dohrmann and Widlund [2012b,a], it is pointed out that such a
domain introduce a factor into the condition number which depends on the Haus-
dorff dimension, and particularly for the snowflake domain a bound for this factor
is given by c(4/3)log(Hi/hi), with c independent of mesh parameters. This bound can
be rewritten as C(Hi/hi)

0.262 with C independent of mesh parameters.
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Fig. 1 Here we have 3 different levels of refinement of a snowflake domain. This domain has
constant area but its boundary is growing by a factor 4/3 with each refinement.

3 Additive Average Schwarz Method

Let us decompose Vh(Ω) = V0(Ω) +V1(Ω) + ...+VN(Ω), and define Vi(Ω) =
Vh(Ω)∩H1

0 (Ωi) on Ωi and extend by zero outside Ωi for i ∈ {1, · · · ,N}. The coarse
space V0(Ω) is defined as the range of the following interpolation operator IA. For
u ∈Vh(Ω), let IAu ∈Vh(Ω) be defined so that on Ωi

IAu =

{
u j, if x j ∈ ∂Ωih
ū j, if x j ∈ Ωih \∂Ωih

(5)

where
ū j :=

1
ni

∑
x j∈∂Ωih

u j. (6)

Here Ωih and ∂Ωih are the sets of nodal points x j on Ωi and ∂Ωi, respectively, and
ni is the number of nodes on ∂Ωih. u j is the value of u at a nodal point.

For i ∈ {1, · · · ,N}, let us introduce

bi(u,v) := ai(u,v), u,v ∈Vi(Ω), (7)

where ai(·, ·) is the restriction of a(·, ·) to Ωi.
For i = 0 we introduce

b0(u,v) :=
N

∑
i=1

αhn−2
i ∑

x j∈∂Ωih

(u j − ū j)v j. (8)

3.1 The Preconditioner

For i ∈ {0, · · · ,N}, we define the operator T (A)
i : Vh(Ω)→ Vi(Ω) by bi(T

(A)
i u,v) =

a(u,v), with v ∈ Vi(Ω). Of course, each of these problems have a unique solution.
Let us introduce TA := T (A)

0 +T (A)
1 + · · ·+T (A)

N . We replace (3) by the operator equa-
tion
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TAuh = gh (9)

where gh = ∑N
i=0 gi, and gi = T (A)

i uh and uh is the solution of 3.
The main result

Theorem 1. For any u ∈Vh(Ω) the following holds:

C1β−1
1 a(u,u)≤ a(Tu,u)≤C2a(u,u), (10)

where β1 = (α/α)maxi χi(Hi/hi)
2, and C1 and C2 depend on the parameter of an

isoperimetric inequality, and the John constant, but not on the mesh parameter, and
χi is a factor related to the Hausdorff dimension of the subdomain boundary. This
factor χi might be mesh dependent, and can be estimated from the condition that
Cχi(H/h)n−1 are the number of patches needed to to cover Ω h

i , where C is a mesh
independent constant and n is the dimension of the problem.

Due to page restrictions, we leave out the proof. It is similar to that in Dryja and
Sarkis [2010] but extended to R3, and valid for subdomains being John domains
using some results from Dohrmann et al. [2008a].

Remark 1. When restricted to R2 with α constant in Ω , we can show that β1 in
Theorem 1 can be reduced to β1 = maxi χi((1+ log(Hi/hi))(Hi/hi)).

4 Numerical Results

Here we present numerical results, for the simple Poisson equation in R2, for a vari-
ety of more or less irregular subdomains. The purpose of these results is to illustrate
how the geometrical features of the subdomains impact the condition number. All
tests have been done with the Additive Average method, and with the method in
Dohrmann et al. [2008a]. In all the tests the two methods have shown similar per-
formance. All methods are implemented in MATLAB using pcgeig with a default
tolerance of 10−6.

In table 1, we present results from solving the Poisson equation on the unit square
with 16 subdomain of various shapes. We mainly look for effects on the condition
number from boundary deformations, and from the use of subdomains with mesh
dependent John constants. We use the results from the square subdomains with con-
stant boundaries and a mesh independent John constant as a reference.

Based on the definition of a John domain in Dohrmann et al. [2008a], the sub-
domains with fingers, see figure 2, are designed to have a mesh dependent John
constant that is doubling with each refinement of h. This does not cause an increase
the condition number in the range of refinement tested as shown in table 1. Similar
results where observed with the method in Dohrmann et al. [2008a]. Subdomains
from the partitioner METIS result in an increase in the condition number, but it is
hard to estimate what geometrical feature causes this increase. It is surprising that
the type 2 subdomains of Dohrmann et al. [2008a] does not increase the condi-
tion number compared to the reference domain. The type 2 subdomain boundary
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is growing with refinement, however we see that the number of elements along the
boundary is given by C(H/h) with C independent of mesh parameters. This might
explain why we do not see any increase in the condition number from this choice of
subdomain geometry.

Table 1 This table shows iteration and condition numbers when solving the Poisson equation on
different subdomains using additive average Schwarz method. The number of subdomains is fixed
at N = 16 and h =

{ 1
16 ,

1
32 ,

1
64 ,

1
128 ,

1
256

}
.

Square
subdomains

Square
subdomains
with fingers

METIS
subdomains

Type 2
subdomains

N h itr cond itr cond itr cond itr cond
16 1/16 17 6.22 13 4.20 21 9.18 13 4.20
16 1/32 26 16.61 28 18.91 38 25.26 22 14.00
16 1/64 46 38.34 43 44.47 62 66.85 35 36.41
16 1/128 68 82.32 65 97.42 91 126.29 53 82.86
16 1/256 84 170.58 94 205.13 135 282.69 81 171.98

Fig. 2 Figures showing square subdomains with fingers on the edges. These fingers have length
1/3H and width h thus growing thiner with a refinement of h. This should give a growing John
constant with refinement of h.

Fig. 3 Figures showing rectangular subdomains. Here theory for irregular subdomains estimates
that Hi =CJ |Ωi|

1
2 .
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Table 2 This table shows iteration and condition numbers when solving the Poisson equation
on both square and rectangular subdomains. The numerics is done with fixed H

h = 16 for N =
{4,16,64} subdomains. Using the method presented in Dohrmann et al. [2008a].

Square subdomains Rectangle subdomains
N H/h itr cond itr cond
4 16 13 20.57 13 20.57
16 16 27 20.66 36 55.94
64 16 32 20.69 84 350.61

Table 3 This table shows iteration and condition numbers when solving the Poisson equation on
snowflake subdomains using additive average Schwarz method. Here β = 1.262.

Snowflake subdomains
N H/h itr cond cond

(H/h)
cond

(H/h)β
cond

log(H/h)(H/h)β

9 3 15 6.94 2.31 1.73 1.58
9 9 35 28.53 3.17 1.78 0.81
9 27 75 121.62 4.50 1.90 0.58
9 81 154 488.57 6.03 1.91 0.43

The deliberately poor choice of rectangular subdomains, as shown in figure 3,
illustrate a type of domain where the John constant increases as the number of sub-
domains increases. Theory establishes that for the domains given in figure 3, we
can estimate Hi = CJ |Ωi|

1
2 with a constant which depends on the John constant. In

table 2, we observe an increase in the condition number even though the method in
principle should be scalable and H/h is kept fixed.

Finally in table 3 the results for snowflake domains are listed. Looking at the
ratio of the condition number with different proposed estimates it seems clear that
the original estimate for the additive average Schwarz method given in Bjørstad
et al. [1997] does not hold. If we take into account the Hausdorff dimension of the
subdomain boundary, and adjust the classical convergence estimate by the bound of
the factor χ , then this would result in an estimate C(H/h)β with β = 1.262. This
estimate fits well with the numerical results. The condition number is well within
the bounds established for irregular domains. Similar results were obtained when
using the method of Dohrmann et al. [2008a] on snowflake subdomains.
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On the Definition of Dirichlet and
Neumann Conditions for the
Biharmonic Equation and Its Impact
on Associated Schwarz Methods

Martin J. Gander1 and Yongxiang Liu2

1 Introduction

We are interested in formulating and analyzing Schwarz methods for the
biharmonic equation

∆2u = f in Ω, (1)

where ∆ denotes the Laplacian, f is a source term and Ω is a domain in R2.
The biharmonic equation is quite different from the Laplace equation, since
it requires two boundary conditions, and not just one.

A classical clamped boundary condition would impose the value and nor-
mal derivative at the boundary,

D1(u) :=


u
∂u
∂n

]
, (2)

and a two level additive Schwarz method with this “Dirichlet” boundary
condition at the interfaces between subdomains was studied in [1], where a
condition number estimate of order 1 + (Hδ )

4 was proved for large overlap

and order 1 + (Hδ )
3 for small overlap. A non-overlapping Schwarz precondi-

tioner for a discontinuous Galerkin discretization was introduced in [8], with
a condition number estimate of order (1+ H

h )
3. The convergence rate for the

classical Schwarz method with “Dirichlet” condition (2) was also studied in
[15].

Considering (2) as “Dirichlet” condition, there are two corresponding pos-
sibilities for the associated “Neumann” conditions, depending on which func-
tional minimization led to the necessary optimality condition in (1). If the
problem comes from a Stokes formulation [4], the variational derivative leads
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for the “Neumann” conditions to

N1(u) :=


∆u

−∂n∆u

]
. (3)

If one however uses the energy functional of a thin plate, see [11] and refer-
ences therein, the “Neumann” condition associated with (2) is

N2(u) :=


∆u− (1− σ)∂ττu

−∂n∆u− (1− σ)∂τ (∂nτu)

]
, (4)

where ∂τ is the tangential derivative along the boundary and σ ∈ (0, 1) is a
material constant. While condition (3) does not always lead to a well posed
problem for the biharmonic equation, condition (4), which can be interpreted
as the freely supported boundary condition for the plate problem, is always
well posed up to a linear function, analogously to the Neumann condition
for the Laplace equation. A FETI method using (2) and (4) was proposed
and studied in [7], and later in [13], where continuity of the transverse dis-
placements is enforced at substructure cross points, and a condition number
estimate of order (1+log H

h )
3 was obtained. An optimized Schwarz waveform

relaxation method based on combining the “Dirichlet” condition (2) with the
“Neumann” condition (3) was introduced in [14] for the corresponding time
dependent problem, and an optimized choice of the combining parameters in
the transmission conditions was illustrated by numerical experiments.

The clamped condition (2) is however not the only possible choice for a
“Dirichlet” condition. Instead of (2) and (3), one could also consider

D3(u) :=


u
∆u

]
(5)

as the “Dirichlet” condition, and then naturally the corresponding “Neu-
mann” condition would be

N3(u) :=


∂nu

−∂n∆u

]
, (6)

see for example [5, 17]. Similarly, in the thin plate case, instead of (2) and
(4), another choice for the “Dirichlet” condition would be

D4(u) :=


u

∆u− (1− σ)∂ττu

]
, (7)

and then the corresponding “Neumann” condition would be

N4(u) :=


∂nu

−∂n∆u− (1− σ)∂τ (∂nτu)

]
. (8)
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When the boundary is flat, conditions (5) and (7) are essentially equivalent,
since imposing u also imposes ∂ττ . Similarly also conditions (6) and (8) are
equivalent for flat boundaries. For curved boundaries however, and as trans-
mission conditions, these conditions are different.

Because of these different choices for the “Dirichlet” conditions, the classi-
cal Schwarz methods studied in [1] and [15] are not the only possible ones for
the biharmonic equation, and similarly there are also more possibilities for
optimized Schwarz methods than the one in [14]. We will show that a differ-
ent choice of “Dirichlet” conditions in the classical Schwarz method permits
the removal of the typical power of 3 in the convergence estimates, and leads
to faster methods, while optimized Schwarz methods are robust with respect
to which condition is chosen to be the “Dirichlet” one.

2 Classical Schwarz Methods

Because of the three different possibilities for the “Dirichlet” conditions in
(2), (5) and (7), we get three classical Schwarz methods which we index by j ∈
{1, 3, 4}. To simplify the description and analysis, we consider an unbounded
domain Ω = R2 and solutions u decaying at infinity. We assume that Ω is
divided into two subdomains Ω1 = (−∞, L) × R and Ω2 = (0,+∞) × R,
where L ≥ 0 denotes the overlap.

Given an initial approximation u0
2, the three classical alternating Schwarz

methods indexed by j ∈ {1, 3, 4} compute for n = 1, 2, . . .

∆2un
1 = f1 in Ω1, ∆2un

2 = f2 in Ω2,
Dj(u

n
1 ) = Dj(u

n−1
2 ) at x = L, Dj(u

n
2 ) = Dj(u

n
1 ) at x = 0.

(9)

Taking a Fourier transform in the y direction with Fourier symbol k, and
assuming that the relevant numerical Fourier frequencies |k| lie in the interval
[kmin, kmax] with kmin, kmax > 0, we obtain by a direct computation (see also
[15] for j = 1):

Theorem 1. If L > 0, the convergence factors ρj for the Algorithm (9) are

ρ1(L) = (kminL+
q
k2minL

2 + 1)2e−2kminL ∼ 1− 1

3
k3minL

3,

ρ3,4(L) = e−2kminL ∼ 1− 2kminL.

We see that the classical clamped “Dirichlet” transmission condition (2) leads
to a convergence factor depending on the overlap L cubed, whereas using the
other two possible “Dirichlet” conditions (5) or (7), the convergence factor
only depends linearly on L. This substantially improved convergence factor,
which is now like for Laplace’s equation [9], is illustrated for an example in
Figure 1 on the left.
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3 Optimal and Optimized Schwarz Methods

Optimized Schwarz methods [9] use a combination of Dirichlet and Neumann
conditions as transmission conditions, and allowing a non-local operator for
this combination can lead to optimal Schwarz methods which converge in
a finite number of steps (two in the case of two subdomains, see [9] and
references therein). Letting D2 := D1, such a method, again indexed by
j ∈ {1, 2, 3, 4}, computes for an initial approximation u0

2 and n = 1, 2, . . .

∆2un
1 = f1 in Ω1,

(Nj + PjDj)(u
n
1 ) = (Nj + PjDj)(u

n−1
2 ) at x = L,

∆2un
2 = f2 in Ω2,

(Nj + PjDj)(u
n
2 ) = (Nj + PjDj)(u

n
1 ) at x = 0,

(10)

where Pj is a two by two matrix to be chosen for best performance of the
method, depending on the choice of “Dirichlet” and “Neumann” conditions
Dj and Nj we made. The following result can be obtain by a direct but
lengthy calculation using Fourier analysis.

Theorem 2. If the symbols of the elements in the matrix Pj for variant j of
Algorithm (10) are chosen in the Fourier domain as

P̂1 =


2|k|2 2|k|
2|k|3 2|k|2

]
, P̂2 =


(1 + σ)|k|2 2|k|

2|k|3 (1 + σ)|k|2
]
,

P̂3 =

 |k| 1
2|k|

0 −|k|

]
, P̂4 =

 1
2 (1 + σ)|k| 1

2|k|
1
2 (1− σ)(σ + 3)|k|3 − 1

2 (1 + σ)|k|

]
,

(11)

then the resulting optimal Schwarz method converges in two iterations.

Remark 1. The choice of the matrix Pj , j ∈ {1, 2, 3, 4} in Theorem 2 leads
in each case to the transparent boundary condition, and the associated al-
gorithm can be interpreted as an exact factorization independently of the
PDE one considers, see [12] and references therein, and also the more recent
variants [6, 2, 16, 3]. Such factorizations are theoretically still possible in the
presence of cross points, see [10].

The optimal choice of P̂j in Theorem 2 corresponds to a non-local operator
once back-transformed using the inverse Fourier transform, and thus is often
approximated using an absorbing boundary condition or perfectly matched
layers to obtain a more practical algorithm. Theorem 2 also indicates a very
simple, structurally consistent local approximation: replacing |k| by a con-
stant p ≥ 0 will make the approximation exact for precisely this frequency
|k|, and leads to the following results.

Theorem 3. With the structural consistent approximations for p ≥ 0,

P a
1 =


2p2 2p
2p3 2p2

]
, P a

3 =


p 1

2p

0 −p

]
, (12)
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the convergence factor of the optimized Schwarz algorithm (10) is

ρ(L) =

✓
p− |k|
p+ |k|

◆2

e−2|k|L < 1. (13)

With overlap, L > 0, the optimal choice for p for best performance, and the
associated contraction factor are for L small

p ∼
✓
k2min

2L

◆1/3

, ρ(L) ∼ 1− 4(2kmin)
1/3L1/3, (14)

where kmin is an estimate for the lowest frequency along the interface. Without
overlap, L = 0, and with kmax an estimate for the largest frequency along the
interface, one obtains

p =
p
kminkmax, ρ(0) =

✓√
kmax −

√
kmin√

kmax +
√
kmin

◆2

∼ 1− 4

r
kmin

kmax
, kmax large.

(15)

Proof. The convergence factor (13) can be obtained by a direct computation,
and noticing that it is identical to the case of the Laplace equation, the results
from [9] can then be used to obtain (14) and (15).

Theorem 4. With the structural consistent approximations for p ≥ 0,

P a
2 =


(1 + σ)p2 2p

2p3 (1 + σ)p2

]
, P a

4 =

 1
2 (1 + σ)p 1

2p
1
2 (1− σ)(σ + 3)p3 − 1

2 (1 + σ)p

]
,

(16)
the convergence factor of the optimized Schwarz algorithm (10) for j = 2
and j = 4 coincide. With overlap, L > 0, the optimal choice of p for best
performance, and the associated contraction factor are for L small

p ∼ 1

21/3

✓
6k4min

(1− σ2)L

◆1/5

, ρ(L) ∼ 1− 16

3

(62k3min(1− σ2))1/5

3− 2σ − σ2
L3/5. (17)

Without overlap, one obtains for kmax large

p ∼
p
kminkmax, ρ(0) ∼ 1− 16k

3/2
min

3− 2σ − σ2

1

k
3/2
max

. (18)

The proof of Theorem 4 requires a detailed asymptotic analysis and is too
long for this short manuscript. We see however that the constant σ from the
plate problem enters the convergence factor, and the convergence of algorithm
(10) for j ∈ {2, 4} is worse than in the case j ∈ {1, 3}. Theorem 3 and
Theorem 4 also show that the optimized Schwarz algorithms have the same
performance, independently of the choice of “Dirichlet” condition, in contrast
to the classical Schwarz method.

On the Definition of Dirichlet and Neumann Conditions for the Biharmonic Equation and . . . 277



M

Table 1 Iteration numbers for classical Schwarz (9) and optimized Schwarz (10).

Classical Schwarz j = 1 Classical Schwarz j = 3 Optimized Schwarz j = 1, 3

L \ h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

h 853 6469 50906 >200000 34 68 134 267 6 9 12 14
2h 235 1655 12819 101157 18 35 67 135 5 8 11 14
4h 53 305 2189 16971 9 17 34 67 4 7 9 13

One might be wondering what the importance is of the structural con-
sistent choice of the approximate transmission condition in Theorem 3 and
Theorem 4. Our next result answers this question for one particular case.

Theorem 5. For algorithm (10) in the case j = 1 without overlap, if we
permit the general matrix

P g
1 =


p11 p12
p21 p22

]
, (19)

then the optimal choice of the parameters is

p11 = p22 ≥ 0, p12p21 = p211,
p21
p12

= kminkmax. (20)

Therefore, the structural choice in Theorem 3 is optimal.

The proof of Theorem 5 is technical and too long for this short paper.

4 Numerical Results

We solve the biharmonic equation (1) numerically on the unit square domain
Ω = (0, 1) × (0, 1) with the homogeneous “Dirichlet” conditions D1(u) = 0
on ∂Ω, and choose for the right hand side f := 24y2(1− y)2+24x2(1−x)2+
8[(1 − 2x)2 − 2(x − x2)][(1 − 2y)2 − 2(y − y2)], so that the exact solution
is u = x2(1 − x)2y2(1 − y)2. We discretize (1) using a standard 13-point
finite difference scheme obtained by taking the square of the standard five
point Laplacian, see [11]. We divide the domain into two equal overlapping

subdomains Ω1 and Ω2. We stop the Schwarz iteration when
kun−ukl2

kukl2
≤

10−6, where un denotes the discrete approximation at iteration n, and u is
the discrete solution obtained by a direct method.

We compare for j = 1, 3 the classical Schwarz algorithm (9) to the opti-
mized Schwarz algorithm (10). The results in Table 1 clearly show how the
good choice of “Dirichlet” greatly improves the performance, and also the
superiority of the optimized Schwarz method, as one would expect from the
contraction factor plot in Figure 1 on the left. In Figure 1 on the right we
show the plot corresponding to Table 1, and we can clearly see the asymptotic
difference in behavior as predicted by Theorem 1 and Theorem 3.
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Fig. 1 Left: convergence factors corresponding to an overlap L = 1/50 for the biharmonic

equation and various Schwarz algorithms. Right: graphical representation of the results
from Table 1, and theoretical prediction from Theorem 1 and Theorem 3.

5 Conclusions

We showed that using the classical clamped boundary conditions as “Dirich-
let” transmission conditions for a Schwarz algorithm applied to the bihar-
monic equation leads to a convergence that depends on the overlap cubed,
see also [1, 15]. A better choice of “Dirichlet” conditions involving a Laplacian
leads to a convergence that only depends linearly on the overlap, like in the
case of Laplace’s equation, without additional computational cost, since the
Laplacian appearing in this new “Dirichlet” condition is naturally available,
for example in a mixed formulation. We then proved that optimized Schwarz
methods do not depend on the choice of what the “Dirichlet” condition is,
and they all lead to a still substantially better convergence behavior than the
classical Schwarz method with the best “Dirichlet” condition. We also found
that transmission conditions based on the thin plate model (Dj and Nj for
j = 2, 4) are inferior in performance compared to the ones coming from the
Stokes model (Dj and Nj for j = 1, 3).
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SHEM: An optimal coarse space for
RAS and its multiscale approximation

Martin J. Gander1 and Atle Loneland2

1 Introduction and Model Problem

Domain decomposition methods for elliptic problems need a coarse space
component in order to be scalable, and there are many now classical results
in the literature on such two level Schwarz, balancing Neumann-Neumann
and FETI methods, see [20] and references therein. Coarse spaces can how-
ever do much more for a subdomain iteration than just make it scalable.
For each domain decomposition method, there exists an optimal coarse space
which will make it converge in only one iteration, i.e. makes the method into
a direct solver. A first such coarse space component was discovered within
transmission conditions in [12]. A separate optimal coarse space was devel-
oped in [9], and also introduced in [11], with easy to use approximations to
get practical coarse spaces, see also [10] where the case of discontinuous sub-
domain iterates was treated. The full potential of these new coarse spaces for
additive Schwarz methods (AS) applied to multiscale problems was realized
in [13], where also a convergence analysis can be found.

We explain here what this optimal coarse space is for Restricted Additive
Schwarz (RAS). RAS was discovered in [2], and it represents a consistent
discretization of the parallel Schwarz method that was introduced by Lions
in the first DD conference [16], see [5] and [8] for more explanations. There is
no general convergence theory for RAS, but the results of Lions apply in the
discrete setting. The optimal coarse space and its approximation also differ
from the case of AS, since RAS iterates are in general discontinuous.

Our approximations of the optimal coarse space are related to more recent
developments of robust coarse spaces for high contrast problems, see [1] and
the analysis in [14], where multiscale finite elements were proposed for the
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coarse space. The idea to enrich the coarse space goes back to [6] and [7],
where subdomain eigenfunctions are combined with partition of unity func-
tions, see also [4]. A different approach is using eigenfunctions of the Dirichlet
to Neumann map of each subdomain, see [3], the improved variant based on
a generalized eigenvalue problem in the overlaps in [19], and also the recent
adaptive coarse spaces for BDD(C) and FETI(-DP) methods [17, 15]. A good
overview of the most recent approaches can be found in [18]. The main differ-
ence in our approach is that we start with an optimal coarse space depending
on the method for which we want to construct the coarse space, and that we
do not need volume eigenproblems in our construction.

Our model problem is the elliptic boundary value problem

−∇ · (α(x)∇u) = f in Ω, u = 0 on ∂Ω, (1)

where Ω is a bounded convex domain in R2, f ∈ L2(Ω) and α ∈ L∞(Ω) such
that α ≥ α0 for some positive constant α0. Discretizing this problem using a
P1 finite element method leads to the linear system

Au = f . (2)

Based on a decomposition of the domain Ω into J non-overlapping subdo-
mains Ω̃j , which are enlarged to create overlapping subdomains Ωj , one can

construct non-overlapping restriction matrices R̃j , associated overlapping re-
striction matrices Rj , and local subdomain matrices Aj := RjART

j to define
RAS,

un+1 = un +
J∑

j=1

R̃T
j A

−1
j Rj(f −Aun), (3)

see [2], and [5, 8] for more details.

2 Optimal Coarse Space

To discover the optimal coarse space for RAS, we define the error en := u−un

and look at properties of the error after one iteration. First note that the
solution satisfies (3) at the fixed point, i.e.

u = u+
J∑

j=1

R̃T
j A

−1
j Rj(f −Au). (4)

Taking the difference between (4) and (3), and using that for any vector e0

we have e0 =
∑J

j=1 R̃jRje
0 by the definition of Rj and R̃j , we obtain
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Fig. 1 Error (left) and residual (right) of the 1-level method with minimal overlap h after
one iteration for the Poisson problem in the top row, and for the high contrast problem

from Figure 2 on the left in the bottom row.

e1 = e0 −
J∑

j=1

R̃T
j A

−1
j RjAe0 =

J∑

j=1

R̃T
j A

−1
j AjRje

0 −
J∑

j=1

R̃T
j A

−1
j RjAe0

=
J∑

j=1

R̃T
j A

−1
j (AjRj −RjA)e0 =

J∑

j=1

R̃T
j A

−1
j (RjART

j Rj −RjA)e0

=
J∑

j=1

R̃T
j A

−1
j RjA(R

T
j Rj − I)e0.

Now since (RT
j Rj − I)e0 contains only non-zero elements outside subdomain

Ωj , A(RT
j Rj−I)e0 represents precisely boundary conditions for Ωj , and thus

R̃je
1 = R̃jR̃

T
j A

−1
j RjA(RT

j Rj − I)e0

is a discrete harmonic function on each Ω̃j . This is illustrated in Figure 1 for
the case of the Poisson equation in the top row, where we see that the error
is harmonic in the Ω̃j on the left and on the right we show the associated

residual, which is zero in each Ω̃j , since the error is harmonic there. In the
bottom row we show the corresponding results for the high contrast problem
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Fig. 2 Left: channel distributions of α for a geometry with h = 1
64

, H = 16h. Right:

irregular distribution of α for a geometry with h = 1
128

, H = 16h.

from Figure 2 on the left, and we see that even though the error looks very
different, it is still the solution of the homogeneous equation, i.e. “harmonic”,
in each non-overlapping subdomain, the residual is zero there.

If the coarse space should remove all of e1 for RAS, it needs to contain all
discrete harmonic functions on each non-overlapping subdomain Ω̃j . Putting
these functions into the columns of the coarse restriction matrix R0, the
coarse correction step with A0 := R0ART

0 leads to the exact solution,

u = u1 +RT
0 A

−1
0 R0(f −Au1).

A simple basis for the optimal coarse space is to choose the functions whose
value equals 1 at one node of the interface of the non-overlapping subdomains,
zero at all the others, and then to harmonically extend this data inside the
non-overlapping subdomain. The dimension of this optimal coarse space is
thus twice the number of interface nodes of the non-overlapping decomposi-
tion, and would be infinite dimensional at the continuous level.

3 Approximation of the Optimal Coarse Space

Since the full discrete harmonic space is very large, we propose to approxi-
mate it, and it is best to explain this using as example the decomposition of
the square into four sub-squares which represent the non-overlapping subdo-
mains Ω̃j . The first four basis functions which we put into the coarse space
are shown in Figure 3 on the left. In the constant coefficient case, i.e. the
Poisson equation, this would just correspond to Q1 finite elements in these
square subdomains, as we see in the top row, but in the more general case
of a specific distribution α as shown in Figure 2, we solve a one dimensional
boundary value problem along the edges where the function is non-zero, see
[13]. To get a better coarse space, we enrich the former one by adding harmon-
ically extended eigenfunctions on each non-overlapping subdomain from an
interface eigenvalue problem along each edge of the non-overlapping decom-
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Fig. 3 Discontinuous multiscale finite element basis functions (left) and first spectral

enrichment functions (right) corresponding to the Poisson case for h = 1/32 and H = 16h
in the top row, and a multiscale problem with distribution α given in Figure 2 on the left

for h = 1/64 and H = 32h in the bottom row.

position [13], which leads to the Spectral Harmonically Enriched Multiscale
coarse space we call SHEMj , where j indicates how many functions were
added for the enrichment. An example of two such spectral coarse functions
based on the first eigenfunction is shown in Figure 3 on the right for the Pois-
son equation on top, and below for the multiscale problem with distribution
α given in Figure 2 on the left. If we add all spectral enrichment functions,
we obtain again the optimal coarse space OHEM (Optimal Harmonically
Enriched Multiscale coarse space).

4 Numerical Results

The first numerical experiment is for the distribution α shown in Figure 2 on
the left. The iteration counts and the size of the coarse space compared to
the optimal coarse space are shown in Table 1, where we run RAS or GMRES
preconditioned with RAS until the l2 norm of the initial residual is reduced by
a factor of 106. For the solution of the generalized 1D eigenvalue problems we
used eig in Matlab. We see that SHEM3 is a robust method, independently
of h, which is related to the fact that in the distribution α given in Figure
2 on the left, there are at most 3 channels crossing any one given interface.
This motivates to use an adaptive variant we call SHEMa, where we include
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SHEM3 SHEMa

α̂ iter. GMRES dim. rel. dim. iter. GMRES dim. rel. dim.

100 8 (8) 7 (7) 180 25% (6%) 15 (17) 10 (10) 84 12% (3%)
102 10 (11) 9 (9) 180 25% (6%) 15 (17) 11 (11) 132 18% (4%)

104 10 (11) 9 (10) 180 25% (6%) 15 (17) 12 (12) 132 18% (4%)

106 10 (11) 9 (10) 180 25% (6%) 15 (17) 12 (12) 132 18% (4%)

Table 1 Iteration count for RAS with the new coarse space SHEM3 and SHEMa for the
distribution in Figure 2 on the left, with h = 1

64
, H = 16h and overlap 2h (in parenteses

h = 1
256

, H = 64h and overlap 8h).

an adaptive number of enrichment functions on each interface, based on the
size of the eigenvalues. Table 1 shows that SHEMa is also robust when the
contrast increases, and uses fewer coarse functions, just a small percentage
of the optimal coarse space OHEM.

We next consider the distribution of α given in Figure 2 on the right for
α̂ = 104. We show in Table 2 the iteration counts for an increasing number of
coarse basis functions on each edge. For this example we consider both small
overlap δ = 2h and large overlap δ = H. These results show that SHEM
for RAS performs very well for the fairly hard distribution of α in Figure 2
on the right. We see also that by systematically increasing the number of
spectral enrichment functions on each edge we eventually reach a maximal
degree where OHEM turns RAS into a direct solver, as predicted. We also
note that RAS without Krylov acceleration performs about as well as RAS
with GMRES when SHEMj is used with j ≥ 6, which shows that the iterative
solver is now so good that Krylov acceleration is not needed any more, a bit
like multigrid for the Poisson equation.

In Table 3 we give the iteration count for the same distribution of α in
Figure 2 on the right, except that we now consider an adaptive variant of
the coarse space. For both small overlap δ = 2h and large overlap δ = H we
consider three experiments: For the first experiment we choose the threshold
for including eigenfunctions into the coarse space such that we are guaran-
teed that at least one spectral function is included on each subdomain edge
segment. For the second experiment, the threshold is chosen such that we
are guaranteed at least two spectral functions on each of the subdomain

SHEMj δ = 2h SHEMj δ = H

j iter. GMRES iter. GMRES dim. rel. dim.

3 34 13 7 6 868 26%

6 9 8 5 4 1540 46%
9 7 7 4 4 2212 66%
12 6 6 4 4 2884 86%

15 1 1 1 1 3360 100%

Table 2 Iteration count for RAS with the new coarse space SHEMj for the distribution

in Figure 2 on the right with h = 1
128

, H = 16h.
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SHEMa δ = 2h (4h) SHEMa δ = H

min. iter. GMRES iter. GMRES dim. rel. dim.

1 39 (43) 20 (20) 10 (12) 7 (8) 532 (551) 16% (8%)
2 17 (21) 12 (13) 7 (7) 6 (6) 747 (782) 22% (11%)

3 13 (14) 10 (11) 6 (6) 5 (5) 980 (988) 29% (14%)

Table 3 Iteration count for RAS with SHEMa for the distribution in Figure 2 on the right

with h = 1
128

, H = 16h and overlap 2h (in parenteses h = 1
256

, H = 32h and overlap 4h).

SHEM0 SHEMa

α iter. dim. iter. dim. rel. dim.

100 14 49 14 49 6%

102 38 49 18 114 14%

104 92 49 12 117 15%
106 116 49 12 117 15%

Fig. 4 Left: Irregular decomposition of Ω into 16 subdomains with h = 1/64. Right:

Iteration count for RAS with SHEM0 and SHEMa for the distribution in Figure 2 on the
left with h = 1

64
and Ω subdivided as on the left, with overlap 3h.

edge segments and for the last experiment, the threshold is chosen so that
at least three spectral functions are guaranteed. The numerical results in Ta-
ble 3 show that a comparable performance as the one given in Table 2 can
be achieved with a considerably smaller coarse space as long as all the bad
eigenmodes that are due to the discontinuities in the coefficients are included
in the coarse space, and the results are similar when the mesh is refined.

We finally show a numerical experiment where we use an irregular decom-
position of the domain into subdomains, as shown in Figure 4 on the left. As
in the case of a regular decomposition in Figure 3, we can compute the corre-
sponding multiscale coarse basis functions and spectral enrichment functions
for each subdomain, and obtain the iteration counts in Figure 4 on the right.
We clearly see that SHEM also works very well for an irregular domain de-
composition, and just enriching the coarse space with the adaptively chosen
number of spectral enrichment functions leads to a robust solver.

5 Conclusions

We presented an optimal coarse space for RAS called OHEM, which leads to
convergence of RAS in one iteration, both when used as an iterative solver and
as a preconditioner for GMRES. We then proposed an approximation called
SHEM based on multiscale finite elements in each subdomain, enriched with
spectral harmonic functions. We showed numerically that SHEM is robust
for problems with high contrast, and also derived an adaptive variant.
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Optimized Schwarz methods for
domain decompositions with parabolic
interfaces

Martin J. Gander1 and Yingxiang Xu2

1 Introduction

Optimizing parameters involved in the transmission conditions of subdomain
iterations leads to the well-known optimized Schwarz methods, see [2, 3] and
references therein, where for analysis usually a model problem is considered
on R2, decomposed into two half planes with a straight interface. In applica-
tions the interface is however seldom straight, which creates a gap between
theory and applications. After early steps in [4], several research efforts have
been devoted to close this gap: for a general curved interface, transmission
conditions involving the local interface curvature using micro-local analysis
were derived in [1], but they are not optimal. When the curved interface is
simple, for example a circle, it was shown in [5] and [7] that the curvature
enters the transmission parameters and the corresponding estimates of the
convergence factors, and that optimized transmission parameters can be well
approximated using parameters from straight interface analysis, provided the
curvature is included through a proper scaling. For cylindrical interfaces, see
[8]. This analysis can however not show if any other geometric characteristics
enter the optimized transmission parameters for a general curved interface,
apart from the curvature. We examine here the situation of a parabolically
shaped interface, and show that in addition to the interface curvature, other
information of the interface will also enter the optimized transmission param-
eters. In applications with curved interfaces, optimized transmission param-
eters from the straight interface analysis are often used locally without any
theoretical explanation and lead to fairly good performance, see for example
[2]. We will also compare our new results with this approach.

1. Section de Mathématiques, Université de Genève, 2-4 rue du Lièvre, CP 64, CH-
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Fig. 1 Domain decomposition with parabolic interfaces.

2 Schwarz methods with parabolic interfaces

We consider the model problem

(∆− η)u = f, in Ω,
u = 0, on ∂Ω,

(1)

where η > 0 is a model parameter, Ω = {(x, y)|x = 1
2 (τ

2 − σ2), y = στ, σ ∈
(0, 1), τ ∈ (0, 1)}. Using the so-called parabolic coordinates

y = στ, x =
1

2
(τ2 − σ2), (2)

we have Ω = {(x(σ, τ), y(σ, τ))|0 < σ < 1, 0 < τ < 1}. We introduce the
decomposition Ω = Ω1∪Ω2 with Ω1 = {(x(σ, τ), y(σ, τ))|0 < σ < σ0+L, 0 <
τ < 1} and Ω2 = {(x(σ, τ), y(σ, τ))|σ0 < σ < 1, 0 < τ < 1} where σ0 is a
constant satisfying 0 < σ0 < 1 and L ≥ 0 is a constant that describes the
overlap. If L = 0, there is no overlap. The curves Γ1 = {(x(σ, τ), y(σ, τ))|σ =
σ0 + L, 0 < τ < 1} and Γ2 = {(x(σ, τ), y(σ, τ))|σ = σ0, 0 < τ < 1} are the
artificial interfaces, see Fig. 1.

A general parallel Schwarz algorithm is then given by

(∆− η)uni = f in Ωi,
uni = 0 on ∂Ωi\Γi,

Bi(u
n
i ) = Bi(u

n−1
j ) on Γi, 1 ≤ i 6= j ≤ 2,

(3)

where Bi, i = 1, 2, are transmission conditions to be chosen. It is well known
that for fast convergence, the transmission operators Bi, i = 1, 2 should be
chosen as ∂ni

+ Si, with Si local differential operators along the interfaces
approximating the Dirichlet to Neumann operators [2, 3].

The Schwarz method (3) is usually analyzed with Fourier techniques, but
in the case of parabolic interfaces this is not possible. Noting that the trans-
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form (2) is a conformal map with scale factor H =
√
σ2 + τ2, the model

problem (1) becomes

( 1
σ2+τ2∆στ − η)u(σ, τ) = f(σ, τ), in Ω,

u(σ, τ) = 0, on ∂Ω.
(4)

Choosing the transmission operators Bi, i = 1, 2 as Bi = ∂σ + Si, we then
obtain the Schwarz method (3) as

( 1
σ2+τ2∆στ − η)uni (σ, τ) = f(σ, τ) in Ωi,

uni (σ, τ) = 0 on ∂Ωi\Γi,
(∂σ + Si)(u

n
i ) = (∂σ + Si)(u

n−1
j ) on Γi, 1 ≤ i 6= j ≤ 2.

(5)

3 Optimized local transmission conditions

We now determine the optimized local operators Si, i = 1, 2. Since the Fourier
transform can not be used, we apply the technique of separation of variables,
which has been employed successfully in analyzing optimized Schwarz meth-
ods for model problems with variable reaction term in [6]. To this end, we
assume that the function u(σ, τ) is separable, u(σ, τ) = φ(σ)ψ(τ), or equiv-
alently, uni (σ, τ) = φni (σ)ψ(τ), i = 1, 2. Inserting this ansatz into the first
equation of (5) with homogeneous right hand side f = 0 gives

−(φni (σ))
′′
ψ(τ)− φni (σ)ψ

′′
(τ) + (σ2 + τ2)ηψn

i (σ)ψ(τ) = 0, i = 1, 2.

Separating terms, we see that there must exist a positive constant α such
that

− (φni (σ))
′′

φni (σ)
+ σ2η =

ψ
′′
(τ)

ψ(τ)
− τ2η = −α, i = 1, 2.

Together with the homogeneous boundary conditions, we obtain that α must
be an eigenvalue of the Sturm-Liouville eigenvalue problem

ψ
′′
(τ) + (α− τ2η)ψ(τ) = 0, ψ(0) = ψ(1) = 0. (6)

Assuming that we use a uniform grid with mesh size h = 1/N in the τ -

direction, we then have ψ(τ) =
∑N

j=1 ψj sin jπτ . Using this ansatz and testing
(6) with sin kπτ for k = 1, · · · , N , we obtain for each k

(α− k2π2)ψk − 2η
N∑

j=1

ψj

∫ 1

0

τ2 sin jπτ sin kπτdτ = 0.

Hence α represents eigenvalues of the matrix π2diag(12, 22, · · · , N2) + 2ηM,

where M is a matrix with entries Mjk =
∫ 1

0
τ2 sin jπτ sin kπτdτ . We then
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denote the k-th eigenvalue by αk, the smallest one by αmin and the largest
one by αmax.

For each eigenvalue αk, k = 1, · · · , N , we then need to consider

−(φn1 (σ))
′′
+ (αk + σ2η)φn1 (σ) = 0, φn1 (0) = 0,

−(φn2 (σ))
′′
+ (αk + σ2η)φn2 (σ) = 0, φn2 (1) = 0,

whose basic solutions are known in closed form,

φin(σ;α, η) =
M(− 1

4
α√
η , 14 ,

√
ησ2)

√
σ

,

φde(σ;α, η) =
W (− 1

4
α√
η , 14 ,

√
η)

M(− 1
4

α√
η , 14 ,

√
η)

M(− 1
4

α√
η , 14 ,

√
ησ2)

√
σ

+
W (− 1

4
α√
η , 14 ,

√
ησ2)

√
σ

,

where W and M are Whittaker functions. Note that φin(σ;α, η) increases
monotonically in σ with φin(0;α, η) = 0 and φde(σ;α, η) decreases monoton-
ically in σ with φde(1;α, η) = 0.

Using the separation assumption ui(σ, τ) = φi(σ)ψ(τ) also in the trans-
mission conditions in (5) gives

(∂σ + S1)φ
n
1 (σ0 + L)ψ(τ) = (∂σ + S1)φ

n−1
2 (σ0 + L)ψ(τ),

(∂σ + S2)φ
n
2 (σ0)ψ(τ) = (∂σ + S2)φ

n−1
1 (σ0)ψ(τ).

Inserting ψ(τ) =
∑N

j=1 ψj sin jπτ and testing these equations by sin kπτ we
obtain for each k = 1, 2, · · · , N

(∂σ + µ1(k))φ
n
1 (σ0 + L) = (∂σ + µ1(k))φ

n−1
2 (σ0 + L),

(∂σ + µ2(k))φ
n
2 (σ0) = (∂σ + µ2(k))φ

n−1
1 (σ0),

where µi(k), i = 1, 2 are the Fourier symbols of the operators Si.
Similar to the technique used in [6] (see also [2]), we then obtain the

convergence factor of algorithm (5),

ρ(L, µ1(k), µ2(k)) :=
(∂σ + µ1(k))φde(σ0 + L)

(∂σ + µ1(k))φin(σ0 + L)

(∂σ + µ2(k))φin(σ0)

(∂σ + µ2(k))φde(σ0)
. (7)

As local approximations of the Dirichlet to Neumann operators, we consider

µapp
1 (k) = p1 + q1αk, µapp

2 (k) = −p2 − q2αk,

which correspond to the local operators along the interfaces Γ1 and Γ2,

S1 = p1 − q1∂ττ + q1τ
2η, S2 = −p2 + q2∂ττ − q2τ

2η.

Inserting µapp
i (k), i = 1, 2 into (7) leads to the convergence factor

ρopt(αk, L, p1, p2, q1, q2) :=
(∂σ+p1+q1αk)φde(σ0+L)
(∂σ+p1+q1αk))φin(σ0+L)

(∂σ−p2−q2αk)φin(σ0)
(∂σ−p2−q2αk)φde(σ0)

. (8)
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The best choice for the free parameters pi, qi, i = 1, 2, minimizes the conver-
gence factor, i.e. it is solution of the min-max problem

min
pi>0,qi≥0,i=1,2

max
α∈[αmin,αmax]

|ρopt(α,L, p1, p2, q1, q2)|. (9)

Using the theory of ordinary differential equations, one can prove

Lemma 1. a) For any fixed α, η > 0, φin(σ;α, η) is monotonically increas-

ing in σ for σ > 0. For any fixed σ, η > 0, ∂σφin(σ;α,η)
φin(σ;α,η)

is monotonically

increasing in α for α > 0.
b) For any fixed α, η > 0, φde(σ;α, η) is monotonically decreasing in σ for

σ ∈ (0, 1). For any fixed σ, η > 0, −∂σφde(σ;α,η)
φde(σ;α,η)

is monotonically increasing

in α for α > 0.

Let G(σ, α, η) := ∂σφin(σ;α,η)
φin(σ;α,η)

− ∂σφde(σ;α,η)
φde(σ;α,η)

and Gmin := G(σ0;αmin, η).

Theorem 1. For the OO0 (optimized of order 0) method, let p1 = p2 =
p > 0 and q1 = q2 = 0. Then for small overlap, L > 0, the parameter

p∗ = 2−1G
2
3

minL
− 1

3 solves asymptotically the min-max problem (9) and

max
α∈[αmin,αmax]

|ρopt(α,L, p∗, p∗, 0, 0)| = 1− 4G
1
3

minL
1
3 +O(L

2
3 ). (10)

Proof. Using Lemma 1, the results can be proved by the techniques used to
prove Theorem 3.8 and Theorem 3.9 in [5].

Similar results can also be proved for the OO2 (optimized of order 2) method
and the O2s (optimized two-sided Robin) method for overlapping, and non-
overlapping domain decompositions. The corresponding results are summa-
rized in Table 1.

Type Constraint Optimized parameters max |ρopt|

L > 0

OO2
p1 = p2 > 0

q1 = q2 > 0

p∗1 = p∗2 = 2−
7
5 G

4
5
minL

− 1
5

q∗1 = q∗2 = 2
1
5 G

− 2
5

minL
3
5

1− 2
12
5 G

1
5
minL

1
5 +O(L

2
5 )

O2s
p1 > 0, p2 > 0
q1 = q2 = 0

p∗1 = 2−
8
5 G

4
5
minL

− 1
5

p∗2 = 2−
4
5 G

2
5
minL

− 3
5

1− 2
8
5 G

1
5
minL

1
5 +O(L

2
5 )

L = 0

OO0
p1 = p2 > 0
q1 = q2 = 0

p∗1 = p∗2 = 2−
1
2 G

1
2
minα

1
4
max 1− 2

3
2 G

1
2
minα

− 1
4

max +O(α
− 1

2
max)

OO2
p1 = p2 > 0

q1 = q2 > 0

p∗1 = p∗2 = 2−
5
4 G

3
4
minα

1
8
max

q∗1 = q∗2 = 2−
1
4 G

− 1
4

minα
− 3

8
max

1− 2
9
4 G

1
4
minα

− 1
8

max +O(α
− 1

4
max)

O2s
p1 > 0, p2 > 0

q1 = q2 = 0

p∗1 = 2−
5
4 G

3
4
minα

1
8
max

p∗2 = 2
1
4 G

1
4
minα

3
8
max

1− 2
5
4 G

1
4
minα

− 1
8

max +O(α
− 1

4
max)

Table 1 Optimized transmission parameters and the corresponding convergence factor

estimate.

Optimized Schwarz methods for domain decompositions with parabolic interfaces 293



4 Geometric characteristics entering the optimization

In Section 3 we obtained the optimized transmission conditions in the
parabolic coordinates (σ, τ), where the interface is a line. In a real appli-
cation, one would however compute in the standard Cartesian coordinates
where the interface is a parabola in our model problem, and we study now
how the optimized parameter of OO0 looks in the standard Cartesian co-
ordinates to see how geometric characteristics enter the optimization of the
transmission parameters. Without loss of generality, we consider only the
interface Γ1, where the optimized transmission condition is

(∂σ + p∗)un1 (σ0 + L, τ) = (∂σ + p∗)un−1
2 (σ0 + L, τ). (11)

A direct calculation gives ∂n1
= 1√

σ2+τ2
∂σ, and dividing both sides of (11)

by
√
σ2 + τ2 we get

(∂n1
+

1√
σ2 + τ2

p∗)un1 (x, y) = (∂n1
+

1√
σ2 + τ2

p∗)un−1
2 (x, y), on Γ1. (12)

A further direct calculation shows that σ2+ τ2 =
√
x2 + y2−x+ y2√

x2+y2−x
,

and hence in Cartesian coordinates the optimized transmission parameter

is given by (
√
x2 + y2 − x + y2√

x2+y2−x
)p∗, i.e. it varies along the interface,

instead of being a constant. To see how the interface curvature enters this
optimized transmission condition, we compute the curvature of the interface
Γ1 and obtain κ = σ

(σ2+τ2)
3
2

= σ
H3 with σ = σ0 + L. Hence the optimized

parameter in Cartesian coordinates is given by (σ0+L
κ )−

1
3 p∗. Note that the

constant σ0 + L describes the position of the parabolically shaped interface.
Therefore, in addition to the interface curvature, other geometric character-
istics (here the constant σ0+L) can enter as well the optimized transmission
parameters.

5 Numerical experiments

To show that our predicted transmission parameter from Theorem 1 is in-
deed asymptotically optimal, we first consider the model problem (1) in the
parabolic coordinates (σ, τ), i.e. the OO0 variant of the Schwarz algorithm
(5), with σ0 = 0.5 and Si = p∗, i = 1, 2. We discretize (5) using FreeFem++,
and start with a random initial guess on the interfaces, simulating directly
the error equations, i.e. f = 0. The number of iterations required to reach an
error reduction of 1e − 6 is shown in the first row of Table 2. A log-log plot
of these results on the left in Fig. 2 shows good agreement with the estimate
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Coordinates N 20 40 80 160 320

Parabolic #iter(OO0) 8 11 13 17 23

#iter(OO0) 8 12 14 19 24
Cartesian #iter(OO0-Scaled) 10 12 16 22 28

#iter(OO0-Straight) 10 13 16 22 28

Table 2 Iteration numbers of the OO0 Schwarz method with overlap 1/N discretized in

parabolic coordinates (first row), compared to discretization in Cartesian coordinates tak-
ing all geometric information into account (second row), and using the optimized parameter

from the straight interface analysis [2] either locally scaled by the interface curvature (third

row) or with kmin = π/c, where c is the interface length (last row).
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Fig. 2 Left: Log-log plot of the number of iterations from the first row in Table 2. Right:
Number of iterations required by the OO0 Schwarz method in parabolic coordinates com-

pared to other values of the Robin parameter p; the red star indicates our prediction p∗.

in Theorem 1. To show how our prediction p∗ approximates the numerically
optimal Robin parameter, we vary the Robin parameter p from 3 to 18 with
76 equidistant samples and record the corresponding number of iterations
required by the Schwarz method with N = 160. The results are shown on
the right in Fig. 2, and we see that our prediction p∗ is very close to the
numerically optimal Robin parameter.

We next solve the model problem (1) in Cartesian coordinates using
Freefem++ like one would in a real application. We choose again the in-
terface parameter σ0 = 0.5, and use the transmission condition (12) on Γ1

and a corresponding one on Γ2. In this situation the overlap is the local dis-
tance between the interfaces Γ1 and Γ2. In Table 2 in the second row we
show the number of iterations required by the optimized Schwarz method
to reach an error reduction of 1e − 6. Comparing with the first row, we see
that our prediction of the optimized Robin parameter taking into account
all geometric characteristics performs basically as when computing in the
parabolic coordinates. In the third and last row of Table 2, we show the re-
sults obtained with the strategy suggested in [7], i.e. to use the optimized
transmission parameter from the straight interface analysis [2], either scaled
locally by the interface curvature, or choosing kmin = π/c with c the length
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of the interface1. These last two approaches also reach the same asymptotic
convergence order and are comparable, but more iterations are needed than
for our new approach which takes more geometric features into account.

6 Conclusion

To get a better understanding on the influence of geometry on optimized
transmission conditions, we studied a model problem using a domain decom-
position with parabolically shaped interfaces. Using separation of variables,
we showed that the optimized parameter in Cartesian coordinates varies along
the interface, and not only the interface curvature comes in, but also further
geometric characteristics of the interface appear. We then showed numeri-
cally that indeed taking all these geometric characteristics into account the
new optimized parameter outperforms the strategy of using only the local
curvature or interface length to scale appropriately an optimized parameter
from a straight interface analysis.
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A Mortar Domain Decomposition
Method for Quasilinear Problems

Matthias A. F. Gsell and Olaf Steinbach

1 Introduction

As model problem for a quasilinear partial differential equation we consider
the Richards equation, see, e.g., [2],

n
∂θ(p)

∂t
−∇ ·

(
K

µ
k(θ(p))∇(p− d)

)
= f

to find the unknown pressure p. This equation results from the principle of
mass balance and by using several laws from hydrology. The quantity n(x)
prescribes the porosity of the soil, K(x) is the permeability of the soil, µ
is just the constant viscosity of water, and d(x) := d(x1, . . . , xd) = ̺ g xd

with the constant water density ̺ and with the gravitational constant g.
The nonlinear parameter function θ describes the saturation of the soil in
dependency of the pressure p. k is the relative permeability of the soil which
depends on the saturation. There are several models available which describe
the shape of θ and k. In this work we use the model of Brooks and Corey [5]
where the saturation is given as

θ(p) :=





(
p

pb

)−λ

(θmax − θmin) + θmin for p ≤ pb,

θmax for p > pb.

Here, θmin and θmax are the minimal and maximal saturation level, pb < 0 is
the so called bubbling pressure, and λ > 0 is the pore size distribution factor.
The relative permeability is given as
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k(θ) :=

(
θ − θmin

θmax − θmin

)3+ 2
λ

.

Hence we conclude

k(θ(p)) =





(
p

pb

)−3λ−2

for p ≤ pb,

1 for p > pb.

The considerations made so far are valid for a single soil type only, see Fig. 1.
In the case of several layers of different soil types we have to consider parame-
ter functions θ and k which depend explicitely on x, see Fig. 2 where we have
a decomposition of Ω into N non–overlapping subdomains Ωi representing
a soil layer each with local parameter functions θi and ki. Hence we define

Ω

Fig. 1 Single soil type

Ω1

Ω2

Ω3

Fig. 2 Several soil layers

Ω1

Ω2

Ω3

Fig. 3 Decomposition

global parameter functions as

θ(x, p(x, t)) = θi(p(x, t)), k(x, θ(x, p(x, t))) = ki(θi(p(x, t))), x ∈ Ωi.

In what follows we will apply an implicit–explicit time discretization scheme
and local Kirchhoff transformations to end up with a domain decomposition
variational formulation of local linear elliptic partial differential equations,
but with nonlinear transmission conditions. For the discretization we then
use a mortar finite element approach.

2 Variational formulation

Let Ω ⊂ Rd, d = 2, 3, be a bounded Lipschitz domain with boundary ∂Ω
which is decomposed into two mutually disjoint parts ΓD and ΓN where
boundary conditions of Dirichlet and Neumann type are given, respectively.
We assume measΓD > 0, and let n be the outer unit normal. For T > 0 we
consider the initial boundary value problem to find p : Ω × (0, T ) → R such
that
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n
∂θ(p)

∂t
−∇ ·

(
K

µ
k(θ(p))∇(p− d)

)
= f in Ω × (0, T ), (1a)

p = pD on ΓD × (0, T ), (1b)

K

µ
k(θ(p))∇(p− d) · n = pN on ΓN × (0, T ), (1c)

p = p0 at Ω × {0} (1d)

is satisfied.
For M ∈ N let 0 = t0 < t1 < . . . < tM = T be a decomposition of the time

interval (0, T ). For an implicit time discretization we use a backward Euler
method to approximate the time derivative,

∂

∂t
θ(x, p(x, t))

∣∣∣
t=tm

≈ θ(pm)− θ(pm−1)

τm
, τm := tm−tm−1, pm(x) ≈ p(tm,x).

After time discretization, the variational formulation of (1a) is to find, for all
time steps 1 ≤ m ≤ M , pm ∈ H1(Ω), pm|ΓD

= pD(tm), such that

∫

Ω

n

τm
θ(pm)v dx+

∫

Ω

K

µ
k(θ(pm))∇(pm − d) · ∇v dx = 〈F̂ , v〉Ω

is satisfied for all v ∈ V := H1
0,ΓD

(Ω), where

〈F̂ , v〉Ω :=

∫

Ω

(
f(tm) +

n

τm
θ(pm−1)

)
v dx+

∫

ΓN

pN (tm) v dsx.

For the remaining nonlinear term we apply an explicit discretization step,

k(θ(pm))∇(pm − d) ≈ k(θ(pm))∇pm − k(θ(pm−1))∇d

where we keep the nonlinearity within the first term. Hence we end up with
a variational formulation to find pm ∈ H1(Ω), pm|ΓD

= pD(tm), such that

∫

Ω

n

τ
θ(pm)v dx+

∫

Ω

K

µ
k(θ(pm))∇pm · ∇v dx = 〈F, v〉Ω (2)

is satisfied for all v ∈ V , where

〈F, v〉Ω := 〈F̂ , v〉Ω +

∫

Ω

K

µ
k(θ(pm−1))∇d · ∇v dx .

Theorem 1. Assume n,K ∈ L+
∞(Ω) = {u ∈ L∞(Ω) | ess infx∈Ω u > 0},

τ, µ ∈ R+. Let θi = θ|Ωi
∈ C0,1(R) be monotonically increasing, and we

assume ki = k|Ωi
∈ C0,1(R) ∩ L∞(R) and k(s) ≥ c > 0 for all s ∈ R. Then

there exists a unique solution of the variational problem (2).
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To handle the nonlinear term in the variational formulation (2) we will ap-
ply the Kirchhoff transformation [1, 3] locally within the subdomains Ωi.
Since this results in nonlinear Dirichlet transmission conditions, we will use
a primal–hybrid formulation [4, 8] to split the global problem (2) into local
ones with suitable transmission conditions.

In what follows we will skip the dependence on the time step, and we
consider one time step only.

LetΩ = ∪N
i=1Ωi be a nonoverlapping domain decomposition which resolves

the different soil layers, see Fig. 3. When defining the primal space

X :=
{
p ∈ L2(Ω)

∣∣p|Ωi
∈ H1(Ωi)

}
,

the Lagrange multiplier space

M :=

{
µ ∈

N∏

i=1

H−1/2(∂Ωi)
∣∣∣ ∃ q ∈ H0,ΓN

(div, Ω) : q · ni = µ on ∂Ωi

}
,

and the bilinear form

b(p, ν) := −
N∑

i=1

〈p|Ωi
, ν〉∂Ωi

,

we obtain a variational problem to find (p, λ) ∈ X ×M such that

N∑

i=1

(∫

Ωi

n

τ
θ(p)v dx+

∫

Ωi

K

µ
k(θ(p))∇p · ∇v dx

)
+ b(v, λ) = 〈F, v〉Ω ,

b(p, ν) = −〈pD, ν〉∂Ω

is satisfied for all (v, ν) ∈ X × M . Now we are in the position to apply
local Kirchhoff transformations to shift the remaining nonlinearities from
the subdomains Ωi to the local boundaries ∂Ωi. We therefore introduce the
generalized pressure u ∈ X as u|Ωi

:= κi(p|Ωi
) which satisfies, see [7],

∇u|Ωi
= ki(θi(p|Ωi

))∇p|Ωi
.

The mapping κi is a superposition operator induced by κi : R → R which is
defined as

κi(r) =

∫ r

0

ki(θi(s)) ds.

It can be shown that the nonlinear operators κi : H1(Ωi) → H1(Ωi) are
continuous and bounded. If there exist positive constants ci > 0 such that
ki(s) ≥ ci for all s ∈ R, i.e. κi being monotone, then the inverse operators
κ−1
i exist and are again continuous and bounded. Using these local nonlinear

operators, we can define
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ιi := θi ◦ κ−1
i , c(u, ν) := −

N∑

i=1

〈κ−1
i (u|Ωi

), ν〉∂Ωi
,

and we finally obtain a variational problem to find (u, λ) ∈ X×M , such that

N∑

i=1

(∫

Ωi

n

τ
ι(u)v dx+

∫

Ωi

K

µ
∇u · ∇v dx

)
+ b(v, λ) = 〈F, v〉Ω ,

c(u, ν) = −〈pD, ν〉∂Ω
(3)

is satisfied for all (v, ν) ∈ X×M . The variational problem (3) is by construc-
tion equivalent to (2), and hence we conclude unique solvability of (3).

3 Mortar finite element discretization

For the discretization of the variational problem (3) we use the mortar finite
element method, see [9]. Let Th,i be a local triangulation of the subdomain
Ωi, i = 1, . . . , N , see Fig. 4. Note that the local triangulations do not have
to coincide at neighbouring interfaces. With ΓD,i := ΓD ∩ ∂Ωi we define for

Fig. 4 Triangulation

each subdomain Ωi the space

H1
⋆ (Ωi) :=

{
H1(Ωi) if measΓD,i = 0,

H1
0,ΓD,i

(Ωi) else.

We define the local finite element ansatz spaces
Xh,i := S1(Th,i) ∩ H1

⋆ (Ωi) as the space of all
piecewise linear and continuous functions in
Ωi. The global ansatz space is then defined as
Xh :=

∏N
i=1 Xh,i. To define a discrete ansatz

space for the Lagrange multiplier λ ∈ M we
consider each interface Γij with Γij := ∂Ωi ∩ ∂Ωj , i 6= j, separately. For
a nonempty interface Γij we have two neighbouring subdomains and their
triangulations Th,i and Th,j . In view of a better approximation property, we
choose the finer triangulation and denote its index by mij . The mesh Ih,ij
of the interface Γij is induced by Th,mij

, that is Ih,ij = Th,mij
|
Γij

. By I ′
h,ij

we denote a modified dual mesh, i.e. we define Mh,ij := S0(I ′
h,ij) to be the

space of all piecewise constant functions on the dual mesh, see Fig. 5. The
global ansatz space is then defined as the product spaceMh :=

∏
Γij

Mh,ij . By
construction, uh ∈ Xh satisfies uh = 0 on ΓD, and the discrete Lagrange mul-
tiplier λh ∈ Mh are just defined on the interfaces within Ω. If we assume, that
there exists a discrete extension uh,D, satisfying the inhomogeneous Dirichlet
boundary conditions, we obtain the following discrete nonlinear variational
problem to find (uh, λh) ∈ Xh ×Mh such that ũh := uh + uh,D satisfies
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Ω1

Ω2

ΓD

ΓN

Γ21Γ12

ϕ2,1 ϕ2,2 ϕ2,3 ϕ2,4 ϕ2,5

ψ1 ψ2 ψ3 ψ4

ϕ1,1 ϕ1,2 ϕ1,3

Fig. 5 Construction of ansatz space for Lagrange multiplier in R2

N∑

i=1

(∫

Ωi

n

τ
ι(ũh)vh dx+

∫

Ωi

K

µ
∇ũh · ∇vh dx

)
+ b(vh, λh) = 〈F, vh〉Ω ,

c(uh, νh) = 0

for all (vh, νh) ∈ Xh ×Mh. Since Mh,ij ⊂ L2(Γij), we can rewrite

b(vh, λh) := −
∑

Γij

(vh|Ωi
− vh|Ωj

, λh)Γij

as well as

c(vh, λh) := b(κ−1(vh), λh) = −
∑

Γij

(κ−1
i (vh|Ωi

)− κ−1
j (vh|Ωj

), λh)Γij
.

Since the discrete variational problem is still nonlinear, we apply Newton’s
method and obtain the linearized problem: For w̃h := wh + uh,D, wh ∈ Xh,
find (uh, λh) ∈ Xh ×Mh, such that

N∑

i=1

(∫

Ωi

n

τ
ι′(w̃h)uhvh dx+

∫

Ωi

K

µ
∇uh · ∇vh dx

)
+ b(vh, λh) = 〈F̃ , vh〉Ω ,

c′(w̃h, uh, νh) = 〈G̃, νh〉S
(4)

is satisfied for all (vh, νh) ∈ Xh × Mh. The linear forms of the discrete and
linearized variational problem (4) are

〈F̃ , vh〉Ω = 〈F, vh〉Ω + 〈F , vh〉Ω , 〈G̃, νh〉S := c′(w̃h, wh, νh)− c(w̃h, νh)

with c′(w̃h, uh, νh) := b
(
(κ−1)′(w̃h)uh, νh

)
and

〈F , vh〉Ω :=

N∑

i=1

(∫

Ωi

n

τ

(
ι′(w̃h)w̃h − ι(w̃h)

)
vh dx−

∫

Ωi

K

µ
∇uh,D · ∇vh dx

)
.
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The stability and error analysis of the mixed formulation (4) follows from
related stability conditions of the underlying bilinear forms and appropriate
finite element methods, see [6].

4 Numerical example

As an example we consider the domain Ω = (0, 1) × (0, 2) ⊂ R2, see Fig. 6,
with Dirichlet conditions on ΓD := (0, 1)×{2}, while on the remaining bound-
ary ΓN we have Neumann boundary conditions. The four layers behave like
sand, sandy loam, loam and sand, see [6]. We assume that there are no

Fig. 6 Triangulation

sources or sinks within Ω, i.e. f ≡ 0. On ΓD we pre-
scribe a pressure which increases in time, that is

pD(x, t) :=

{
−0.5 (10− t) t < 10,

0.0 t ≥ 10.

On ΓN we prescribe the no–outflow–condition
pN (x, t) ≡ 0. Since we approximate the solution of
the transformed variational problem (3), we have to
consider the Dirichlet datum uD for the generalized
pressure which is given as uD(x, t) = κi(pD(x, t)) for
x ∈ ΓD,i. The Neumann datum remains unchanged.
The following snapshots show contour lines of the
pressure p, which can be computed by the application

of the inverse transformation, that is p|Ωi
= κ−1

i (u|Ωi
). Due to the choice of

the data, the problem evolutes to a pure diffusion equation. That is why the
snapshots were taken at t = 0, 250, 500, 1000, 2000, 4000, 8000, 10000.
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Deflated Krylov Iterations in Domain
Decomposition Methods

Y.L.Gurieva1, V.P.Ilin1,2, and D.V.Perevozkin1

1 Introduction

The goal of this research is an investigation of some advanced versions of al-
gebraic approaches to parallel domain decomposition algorithms for solving
sparse large systems of linear algebraic equation (SLAEs) with nonsymmet-
ric sparse matrices arising from some approximation of the multi-dimension
boundary value problems (BVPs) in complicated computational domains on
non-structured grids.

Algebraic domain decomposition methods (DDMs) are the main tool to
provide high performance computing when solving very large SLAEs which
is the bottleneck of the modern interdisciplinary tasks. There are many pub-
lications on this topic, see Toselli and Widlund [2005], Dolean et al. [2015],
Dubois et al. [2012], Gurieva and Il’in [2015] and literature cited there, for ex-
ample. They present a manifold of mathematical and technological contradic-
tory problems. On the one hand, high convergence rate of iterative processes
leads to high computational complexity of algorithms. On the other hand,
performance of applied program packages depends on used data structures
and code adaptation to a particular parallel architecture.

We describe some essential aspects of the algorithms implemented on the
basis of the multi-preconditioned semi-conjugate residual method and the
coarse grid correction procedure with basic functions of different orders. In
some sense, the proposed approaches present a further development of the
ideas considered in papers by Saad [2003], Bridson and Greif [2006].

This paper is organized as follows. Section 2 contains the formulation of
the problems to be solved. Section 3 is devoted to the parallel structure of
algorithms. Section 4 deals with demonstration of the numerical results. In
conclusion, the results obtained are described.

1Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosi-
birsk, Russia ·2Novosibirsk State University
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2 Statement of the problem

Let us have a boundary value problem

Lu = f(r), r ∈ Ω, lu|Γ = g(r), (1)

in a computational open domain Ω with a boundary Γ and a closure Ω̄ =
Ω
⋃
Γ , where L and l are some linear differential operators. We suppose that

(1) has a unique solution u(r) which is smooth enough.
Let us decompose Ω into P subdomains (with or without overlapping):

Ω =
P⋃

q=1
Ωq, Ω̄q = Ωq

⋃
Γq,

Γq =
⋃

q′∈ωq

Γq,q′ , Γq,q′ = Γq

⋂
Ω̄q′ , q′ 6= q.

(2)

Here Γq is the boundary of Ωq which is composed from the segments Γq,q′ ,
q′ ∈ ωq, and ωq = {q1, . . . , qMq} is a set of Mq contacting, or conjuncted,
subdomains. We can denote also by Ω0 = Rd/Ω the external subdomain:

Ω̄0 = Ω0

⋃
Γ, Γq,0 = Γq

⋂
Ω̄0 = Γq

⋂
Γ, Γq = Γ i

q

⋃
Γq,0, (3)

where Γ i
q =

⋃
q′ 6=0

Γq,q′ and Γq,0 = Γ e
q mean internal and external parts of

the boundary of Ωq. We define also an overlapping ∆q,q′ = Ωq

⋂
Ωq′ of the

neighbouring subdomains. If Γq,q′ = Γq′,q and ∆q,q′ = 0 then overlapping of
Ωq and Ωq′ is empty.

The idea of DDM includes the definition of sets of boundary value problems
for all subdomains which should be equivalent to the original problem (1):

Luq(r) = fq, r ∈ Ωq, lq,q′(uq)
∣∣
Γq,q′

= gq,q′ ≡ lq′,q(uq′)
∣∣
Γq′,q

,

q′ ∈ ωq, lq,0uq|Γq,0 = gq,0, q = 1, . . . , P.
(4)

At each segment of the internal boundaries of subdomains, the interface
conditions in the form of the Robin boundary condition are imposed:

αquq + βq
∂uq

∂nq

∣∣
Γq,q′

= αq′uq + βq′
∂uq′
∂nq′

∣∣
Γq′,q

,

|αq|+ |βq| > 0, αq · βq ≥ 0.
(5)

Here αq′ = αq, βq′ = βq and nq means the outer normal to the boundary
segment Γq,q′ of the subdomain Ωq.

We consider the iterative additive Schwarz method which can be inter-
preted as a sequential recomputation of the boundary condition:

Lun
q = fq, lq,q′u

n
q |Γq,q′ = lq′,qu

n−1
q′ |Γq′ ,q . (6)
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In order to solve the considered problem numerically we need to perform its
dicretization. We introduce the grid computational domain Ωh which consists
of a set of the numbered nodes Ql, l = 1, . . . , N , where N is the total number
of mesh points. Then we divide Ωh into P grid subdomains Ωh

q

Ω̄h =
⋃P

q=1 Ω̄
h
q , Ω̄h = Ωh

⋃
Γ h, Ω̄h

q = Ωh
q

⋃
Γ h
q , (7)

In the case of a non-overlapping decomposition, for q′ 6= q′′ we have
Ωh

q′
⋂
Ωh

q′′ = ∅, and Γ h
q′,q′′ = Ω̄h

q′
⋂
Ω̄h

q′′ is the common boundary (a grid

separator) between the contacting subdomains Ωh
q′ , Ω

h
q′′ .

After an approximation of the original continuous problem (1) on the non-
structured grid Ωh, one can obtain a SLAE

Au ≡ ∑
l′∈ω̄l

al,l′ul′ = f, A = {al,l′} ∈ RN,N , u = {ul}, f = {fl} ∈ RN ,

(8)
where the matrix A is supposed to be invertible and nonsymmetric in general.
We consider the nodal grid equations only, i.e. each vector component ul or
fl corresponds to some mesh point Ql ∈ Ωh. Here ω̄l is the stencil of the grid
point Ql, and Nωl

≪ N is the corresponding number of the neighbouring
nodes. Also, we denote by Nq and Nq,q′ the numbers of the grid nodes in the
grid subdomain Ωh

q and the boundary segment Γ h
q,q′ respectively.

3 Deflated DDM in Krylov subspaces

From here after, we consider a decomposition of the grid computational do-
main without mesh separators. It means that the continuous internal bound-
aries Γq,q′ for q 6= 0 do not contain mesh points, and Γ h

q,q′ 6= Γ h
q′,q.

If we denote by ûq, f̂q ∈ RNq , q = 1, . . . , P the subvectors corresponding
to a subdomain Ωq, the system (8) can be written in the following block form

Aq,qûq = fq −
∑

r∈ωq

Aq,rûr ≡ f̂q, Aq,r ∈ RNq,Nr , q = 1, . . . , P. (9)

The additive Schwarz method is then described by the following formula:

Bq,qû
n
q ≡ (Aq,q + Cq,q)û

n
q =

= fq + Cq,qû
n−1
q − ∑

r∈ωq

Aq,rû
n−1
r , n = 1, 2, . . . (10)

Here we suppose that the preconditioning matrices Bq,q are nonsingular ones
and hence for n → ∞ the iterative process (10) converges to a unique solu-
tion u = {ûq} of SLAE (8). The matrix Cq,q in (10) is responsible for the
interface condition between the subdomains and has nonzero entries for the
near-boundary nodes of Ωq only.
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In the case of a decomposition without overlapping, the global solution
vector is the direct sum of its subvectors, i.e. u = û1 ⊕ . . .⊕ ûP . In general,
the formulae of the iterative method within the Schwarz approach can differ
from that above, and we use RAS (Restricted Additive Schwarz, see Toselli
and Widlund [2005], Dolean et al. [2015]) for a definition of the iterative pro-
cess. Here we have to construct the grid domain decomposition in two steps.
Firstly, we define a decomposition into some non-intersected subdomains, see
(7). Let us denote by Γ 0

q the grid boundary of Ωh
q and define an extended sub-

domain Ω1
q = Ωh

q

⋃
Γ 0
q = Ω̄h

q . At the second step we extend each subdomain
layer-by-layer and define a set of the embedded subdomains:

Γq ≡ Γ 0
q = {l′ ∈ ωl, l ∈ Ωq, l′ /∈ Ωq, Ω1

q = Ω̄0
q = Ωq

⋃
Γ 0
q },

Γ t
q = {l′ ∈ ωl, l ∈ Ωt−1

q , l′ ∈ Ωt−1
q , Ωt

q = Ω̄t−1
q = Ωt−1

q Γ t−1
q },

t = 1, . . . , ∆q.
(11)

Here ∆q is a measure parameter of the extension of the subdomain Ω
∆q
q . The

RAS iterative process can be described as un
RAS = {un

l , l ∈ Ω0
q}.

The conventional additive Schwarz (AS) method can be rewritten in more
general form as

Bn(u
n − un−1) = f −Aun−1 ≡ rn−1, n = 1, 2, . . . , (12)

where the preconditioning matrix Bn = block-diag {Bn
q,q} may be chosen

differently at each iteration.
To solve SLAE (1), we apply a preconditioned iterative process in the

Krylov subspaces instead of (12) . In particular, we use multi-preconditioned
semi-conjugate residual (MPSCR) method (Gurieva and Il’in [2015]), which
is the unification of the ideas presented in (Bridson and Greif [2006], Il’in
and Itskovich [2007], Eisenstat et al. [1983], Yuan et al. [2004]). Let us have
some rectangular matrices and vectors of iterative parameters

Pn = (pn1 . . . p
n
mn

) = {pnk} ∈ RN,mn , ᾱn = (αn,1 . . . αn,mn)
T = {αn

k} ∈ Rmn .

Then MPSCR iterations are defined by the recursions for n = 0, 1, . . .:

r0 = f −Au0, un+1 = un + Pnᾱn, rn+1 = rn −APnᾱn. (13)

Let us suppose that at each n-th iteration we have mn different nonsingular

matrix preconditioners B
(k)
n , k = 1, . . . ,mn. In this case the initial search

vectors are chosen as p0k = (B
(k)
0 )−1r0. Let these vectors be linearly inde-

pendent and let the matrices Pn in (13) have full ranks mn. Then under the
orthogonality conditions

(Apnk , Ap
n′
k′ ) = ρn,kδk,k′ , ρn,k = (Apnk , Ap

n
k ), (14)

where δn,n′ is the Kronecker symbol, the formulas (13), with the coefficients
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αn
k = (rn, A(B

(k)
n )−1rn)/ρn,k, k = 1, . . . ,mn, (15)

provide the minimal norm ||rn|| of the residual in the block Krylov subspaces
Span{AP1, . . . , APn}. The matrices Pi, i = 1, . . . , n+ 1, are defined as

Pn+1 = Qn+1 −
n∑

k=0

mk∑
l=0

βn
k,lp

k
l , Qn+1 = {qn+1

k = (B
(k)
n+1)

−1rn+1},

βn
k,l = (Apkl , A(B

(k)
n )−1rn)ρn,l, k = 1, . . . ,mn.

(16)

We apply MPSCRmethod with two types of preconditioners (B
(s)
n and B

(c)
n )

at each iteration. The first one corresponds to the block Jacobi–Schwarz pre-
conditioner from (10) and (12), and the second one is responsible for a coarse
grid correction, or aggregation, or deflation approach (Toselli and Widlund
[2005], Dolean et al. [2015]). This procedure is based on the low rank approx-
imation of the original matrix A (Gurieva and Il’in [2015]):

(B
(c)
n )−1 ≡ Ãn = WnÂ

−1
n WT

n , Ân = WT
n AWn ∈ RN(c)

n ,N(c)
n ,

Wn = (w1 . . . wN
(c)
n

) ∈ RN,N(c)
n , N

(c)
n ≪ N.

(17)

Here Wn are some full rank rectangular matrices whose columns consist of
the entries presenting the values of the finite basis functions wq(r) defined

at some coarse grid with the number of the macro-nodes N
(c)
n ≪ N (this

number can have different value at different iterations). This macrogrid can

be independent of the domain decomposition, but we use N
(c)
n = P and wq(r)

with the entries equal one in Ωq and the zero entries in other subdomains.
One disadvantage of SCR is the long recursions and high memory require-

ments to compute the search vectors pnk . More lightweight approach is in an
application of the BiCGStab (Saad [2003]) with a deflation to improve the
residual at the first iteration only. Having initial guess u−1, we compute

u0 = u−1 + (B
(c)
0 )−1r−1, r−1 = f −Au−1,

r0 = f −Au0, p0 = r0 − (B
(c)
0 )−1r0,

(18)

where B
(c)
0 is defined by (17). This trick provides the orthogonality proper-

ties WT
0 r0 = 0, WT

0 Ap0 = 0. The next iterations are implemented by the
corresponding steps of the conventional BiCGStab method.

4 Numerical experiments

Consider solving a model Dirichlet boundary value problem for 2D and 3D
diffusion-convection equation with constant coefficients p, q, r:
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∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 + p∂u

∂x + q ∂u
∂y + r ∂u

∂z = f(x, y, z),

(x, y, z) ∈ Ω, u|Γ = g(x, y, z), Ω = [0, 1]3.
(19)

Problem (19) is discretized by the monotone exponential finite volume scheme
(Il’in [2003]) on a square (cubic) mesh with N = Nd

x degrees of freedom,
for different values of Nx. The stopping criterion for external iterations was
||rn|| ≤ εe = 10−7. All the experiments were carried out on the hybrid cluster
NKS-30T where every MPI process was run on Intel Xeon E5450 processor.

The implementation of DDM was made via the hybrid programming with
two levels of a parallelization. At the upper level, the iterative Krylov pro-
cess over P subdomains has been organized on the basis of MPI approach
which forms one MPI-process for every subdomain and provides data com-
munications. The auxiliary SLAEs in subdomains were solved by PARDISO
from Intel MKL which uses multithreading, thus giving one more level of
parallelism.

Table 1 presents the results for the 2D problem (19) solved by the deflated
BiCGStab-DDM method at the upper level of the iterative process with the
Dirichlet interface condition. Acceleration of the method was done only before
the iterations by the procedure (18). The boundary conditions and the right
hand side were chosen in accordance with the known exact solution u(x, y) =
3xy2−x3. The experiments were made on the square macro-grid of P 2 equal
subdomains, with the number of (N/P )2 mesh points in each subdomain.
Here the number of iterations are given for the grids with the numbers of their
points N = 642, 1282, 2562. Each four columns stand for the case without
deflation, the case with the piece-wise constant, the linear and the quadratic
basis functions wk taken for the deflation matrices W0 ∈ RN,P , respectively.
Zero initial guess and overlapping parameter ∆ = 0, 1, 2, 3 were taken.

Table 1 The numbers of iterations for BiCGStab method (2D problem) for different grids,
macrogrids and basis functions in the deflation matrix, ∆ = 0, 1, 2, 3, p = q = 4

N ∆
P 2

22 42 82

642 0 19 21 23 17 27 27 25 19 38 34 33 26
1 12 12 12 10 18 16 15 13 21 20 19 14
2 9 10 9 8 13 13 11 11 17 16 14 11
3 8 8 8 7 10 12 9 9 13 13 12 10

1282 0 27 29 31 22 43 41 36 26 51 46 44 38
1 16 18 18 14 24 22 21 17 30 27 25 16
2 13 14 13 12 19 18 17 14 23 21 21 15
3 11 12 11 10 15 15 14 12 19 18 16 11

2562 0 42 35 46 35 65 52 45 33 98 73 65 32
1 22 24 22 19 32 30 30 22 43 39 38 31
2 17 20 19 14 26 25 22 18 34 31 30 24
3 15 18 17 13 22 21 20 15 28 25 25 20
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As we can see from these results, an application of the coarse grid correc-
tion gives the considerable improvement of the BiCGStab method, for differ-
ent values of coefficients p, q for the single usage of the acceleration before
the first iteration only. Moreover, the efficiency of the deflation procedure
increases when the smoothness of the basis functions grows. Another way
to decrease the number of iterations is to use small subdomain overlapping,
∆ = 1, 2, 3. But for big ∆ values, the solution of BVPs in the subdomains
becomes too expensive, and so we have the optimal parameters ∆ ≈ 4, in
the sense of the run time. These effects are especially valuable for the big
numbers of subdomains and the degrees of freedom of the SLAE.

The second set of experiments is devoted to application of the SCR method

with two preconditioners B
(s)
n and B

(c)
n , the latter one formed using piecewise

constant basis functions. Here we solved 3D Laplace equation (p = q = r =
f = 0) in (19) with the exact solution u = x2 + y2 + z2 and the initial guess
u0 = 0. Also, the domain decomposition was carried out without overlapping
of the subdomains, with the Dirichlet interface conditions. In each cell of
Table 2 we present the number of iterations and the run time for the grids
N = 323, 643, 1283, and for the number of subdomains (it is equal to the
number of MPI-processes) P = 4, 8, 16, 32, 64. The results for the second set
of experiments indicate that it may not be advantageous to employ coarse
grid correction at every step of an iterative process, especially if low-order
basis functions are used. This observation also correlates with the results
obtained in the first set of experiments.

Table 2 The number of iterations and run times for SCR method with coarse grid cor-
rections at every 5-th iteration and for block algorithm MPSCR, p = q = r = 0, ∆ = 0

N Method
P
4 8 16 32 64

323 SCR 52 0.34 59 0.27 59 0.23 66 0.30 70 0.42
MPSCR 45 0.48 54 0.34 54 0.32 62 0.38 67 0.48

643 SCR 66 4.81 82 2.71 101 1.96 102 1.72 105 2.07
MPSCR 59 5.35 70 3.18 85 2.39 98 2.32 109 2.66

1283 SCR 114 217.2 132 72.5 133 33.1 151 22.3 150 20.6
MPSCR 101 226.3 111 79.1 134 43.2 156 32.8 159 30.7

5 Conclusion

The presented numerical results demonstrate that multi-preconditioned DDM
in the Krylov subspaces have reasonable efficiency. Our main goal is to investi-
gate the scalability of parallel DDM with application of multi-preconditioned
SCR iterative process and the coarse grid correction approach with differ-
ent order of basis functions. Our numerical experiments with the proposed
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approaches have shown the valuable impovement of the methods’ behaviour
for the test problems considered. However, further experimental investiga-
tions are needed to understand the properties of the algorithms and to arrive
at a robust high-performance code and to define a niche of the approaches
presented when used for some particular applied problems.
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Parallel Overlapping Schwarz with an
Energy-Minimizing Coarse Space

Alexander Heinlein1, Axel Klawonn1, and Oliver Rheinbach2

1 Introduction and Description of the Method

The GDSW preconditioner is a two-level overlapping Schwarz preconditioner
introduced in Dohrmann et al. [2008a] with a proven condition number bound
for the general case of John domains for scalar elliptic and linear elasticity
model problems. It is algebraic in the sense that it can be constructed from
the assembled system matrix. However, compared to FETI-DP (see Toselli
and Widlund [2005]) or BDDC methods, in GDSW the standard coarse space
is relatively large, especially in three dimensions. In Dohrmann and Widlund
[2010], a related hybrid preconditioner with a reduced coarse problem for
three-dimensional elasticity was introduced. Here, the degrees of freedom
(d.o.f.) corresponding to the faces are modified.

The GDSW preconditioner is a two-level additive overlapping Schwarz
preconditioner with exact local solvers; cf. Toselli and Widlund [2005]. It can
be written as

M−1
GDSW = Φ

(
ΦTAΦ

)−1
ΦT +

N∑

i=1

RT
i Ã

−1
i Ri, (1)

cf. Dohrmann et al. [2008b]. The matrix Φ is the essential ingredient of the
GDSW preconditioner. It is composed of coarse space functions which are dis-
crete harmonic extensions from the interface to the interior degrees of freedom
of nonoverlapping subdomains. The values on the interface are restrictions of
the nullspaces of the operator to the interface.

1Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany.
e-mail: {alexander.heinlein,axel.klawonn}@uni-koeln.de
2 Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und

Informatik, Technische Universität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg,
Germany. e-mail: oliver.rheinbach@math.tu-freiberg.de
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For Ω ⊂ R2 being decomposed into John domains, the condition number
of the GDSW preconditioner is bounded by

κ
(
M−1

GDSWK
)
≤ C

(
1 +

H

δ

)(
1 + log

(
H

h

))2

, (2)

cf. Dohrmann et al. [2008a,b]. Here, H is the size of a subdomain, h is the
size of a finite element, and δ is the overlap.
Implementation Our parallel implementation of the GDSW preconditioner
is based on Trilinos version 12.0; cf. Heroux et al. [2005]. For the mesh parti-
tioning, we use ParMETIS, cf. Karypis et al. [2011], the problems correspond-
ing to the local level are solved using UMFPACK, cf. Davis and Duff [1997]
(version 5.3.0), and the coarse level is solved using Mumps, cf. Amestoy et al.
[2001] (version 4.10.0), in parallel mode. For the finite element implementa-
tion, we use the library LifeV; see Formaggia et al. (version 3.8.8).

On the JUQUEEN BG/Q supercomputer, we use the clang compiler 4.7.2
and ESSL 5.1 when compiling Trilinos and the GDSW preconditioner imple-
mentation. On the Cray XT6m at Universität Duisburg-Essen, we use the
Intel compiler 11.1 and the Cray Scientific Library (libsci) 10.4.4.

2 Model Problems

We consider model problems in two and three dimensions, i.e. Ω = [0, 1]2 or
Ω = [0, 1]3. The domain is decomposed either in a structured way, i.e., into
squares or cubes, or in an unstructured way, using the ParMETIS.
Laplacian in 2D The first model problem is: find u ∈ H1 (Ω)

−∆u = 1 in Ω,

u = 0 on ∂Ω.
(3)

Linear Elasticity in 2D and 3D The second model problem is: find
u ∈ (H1 (Ω))2;

divσ = f in Ω,

u = 0 on ∂ΩD = ∂Ω ∩ {x = 0} (4)

where σ = 2µε+λtrace(ε)I is the stress and ε = 1
2 (∇u+(∇u)T ) the strain.

The Lamé parameters are λ = 1/2.6 and µ = 0.3/0.52.
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Fig. 1 Weak scaling for the Laplacian model problem in 2D, cf. (3), using P2 finite ele-
ments: number of iterations (left), runtimes (right). For the structured and the unstructured
decomposition (ParMETIS), we have approximately 40 000 d.o.f. per subdomain.
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Fig. 2 Weak scaling for the linear elastic model problem in 2D, cf. (4), using P2 finite
elements: number of iterations (left), runtimes (right). For the structured and the unstruc-
tured decomposition (ParMETIS), we have approximately 80 000 d.o.f. per subdomain.

3 Numerical Results

We first show parallel scalability results in two and three dimensions. Finally,
we show an application of the preconditioner within a block preconditioner
in monolithic fluid-structure interaction. The model problems are discretized
using piecewise quadratic (P2) finite elements. Our default Krylov method is
GMRES and will be used also for the symmetric positive definite model prob-
lems. Our stopping criterion is the relative criterion

∥∥r(k)
∥∥
2
/
∥∥r(0)

∥∥
2
≤ 10−7

with r(0) and r(k) being the initial and the k-th residual, respectively. In our
experiments, each subdomain is assigned to one processor core.
Weak Scalability in 2D We use five different meshes with H/h = 100
and an increasing number of subdomains; see Tables 1 and 2. The results of
weak scaling tests from 4 to 1 024 processor cores for both model problems
and an overlap δ = 1h or δ = 2h are presented in Fig. 1 and 2. The GDSW

Parallel Overlapping Schwarz with an Energy-Minimizing Coarse Space 315



# Subdomains 4 16 64 256 1024
Total problem, P2 finite elements 160 801 641 601 2 563 201 10 246 401 40 972 801
Avg. first level, P2, overlap 1h 41 207.5 41 612.6 41 815.7 41 917.3 41 968.1
Avg. first level, P2, overlap 2h 42 020 42 837.8 43 248.7 43 454.7 43 557.8
Coarse level 5 33 161 705 2 945
Avg. first level, P2, overlap 1h (ParMETIS) 41 581.5 41 841.9 42 101.8 42 225.7 42 263.1
Avg. first level, P2, overlap 2h (ParMETIS) 42 686.5 43 243.7 43 752.9 43 999.4 44 077.9
Coarse level (ParMETIS) 3 45 241 1 129 4 822

Table 1 Number of degrees of freedom of the total mesh, coarse and local space dimensions

of the GDSW preconditioner for the weak scaling tests in Fig. 1.

# Subdomains 4 16 64 256 1024
Total problem, P2 321 602 1 286 408 5 126 402 20 492 802 81 945 602
Avg. first level, P2, overlap 1h 82 415 83 225.2 83 631.3 83 834.6 83 936.3
Avg. first level, P2, overlap 2h 84 040 85 675.5 86 497.4 86 909.3 87 115.6
Coarse level 14 90 434 1 890 7 874
Coarse level, no rotations 10 66 322 1 410 5 890
Avg. first level, P2, overlap 1h (ParMETIS) 83 163 83 683.9 84 203.6 84 451.3 84 526.2
Avg. first level, P2, overlap 2h (ParMETIS) 85 373 86 487.4 87 505.8 87 998.7 88 155.9
Coarse level (ParMETIS) 9 120 633 2 950 12 567
Coarse level, no rotations (ParMETIS) 6 90 482 2 258 9 644

Table 2 Number of degrees of freedom of the total mesh, coarse and local space dimensions
of the GDSW preconditioner for the weak scaling tests in Fig. 2 and Fig. 3.

preconditioner is numerically and parallel scalable, i.e., the number of itera-
tions is bounded, both, for structured and unstructured decompositions, and
the time to solution grows only slowly. The one-level preconditioner (OS1)
does not scale numerically, and the number of iterations grows very fast. In-
deed, for the unstructured decomposition, no convergence is obtained for OS1
within 500 iterations for more than 256 subdomains for the scalar problem
and for more that 16 subdomains for elasticity. This is, of course, also due
to the comparably small overlap. As a result of the better constant in (??),
for the GDSW preconditioner, we observe better convergence for structured
decompositions. Note that for the case of four subdomains the overlapping
subdomains are significantly smaller.

A detailed analysis of different phases of the method is presented for linear
elasticity in 2D in Fig. 3. We consider the standard full GDSW coarse space
and the GDSW coarse space without rotations, i.e., the rotations are omitted
from the coarse space. This latter case is not covered by the bound (2), but
the results indicate numerical and parallel scalability.
Strong Scalability in 2D Results for strong parallel scaling tests are shown
in Fig. 4 for linear elasticity in 2D. We observe very good strong scalability for
structured and unstructured domain decompositions. Note that the number
of d.o.f. per subdomain decreases when increasing the number of processor
cores, and, to a certain extent, we thus benefit from an increasing speed of
the local sparse direct solvers.
Weak Scalability for Linear Elasticity in 3D We present results of weak
scalability runs for a linear elastic model problem in 3D from 8 to 4 096 cores.
We consider a structured decomposition of a cube and use the full GDSW
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Fig. 3 Weak parallel scalability using the GDSW preconditioner for the model problem
of linear elasticity in 2D, cf. (4): structured (left) and unstructured decomposition (right);
number of iterations (top), timings for overlap δ = 1h (middle), and timings for overlap δ =
2h (bottom). For the structured and the unstructured decomposition (ParMETIS) we use

a subdomain size of roughly 40 000 degrees of freedom.

coarse space in 3D. In Fig. 5, we present the number of iterations and the
timings using P2 elements using an overlap δ of one or two elements. The
number of iterations seems to be bounded by a constant number, whereas
the solution times increases, i.e., the cost of the (parallel) sparse direct solver
used for the coarse problem is noticeable in 3D.
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Fig. 4 Strong parallel scalability using the GDSW preconditioner for the model problem
of linear elasticity in 2D, cf. (4): structured decomposition (left), ParMETIS decomposition
(right).

# Cores
500 1000 1500 2000 2500 3000 3500 4000

G
M

R
E

S
 It

er
at

io
ns

0

10

20

30

40

50

60
P2, overlap 1h
P2, overlap 2h

# Cores
500 1000 1500 2000 2500 3000 3500 4000

T
im

e 
in

 s

0

100

200

300

400

500

600

700
Total time, P2, overlap 1h
First level time, P2, overlap 1h
Coarse level time, P2, overlap 1h
Total time, P2, overlap 2h
First level time, P2, overlap 2h
Coarse level time, P2, overlap 2h

Fig. 5 Weak parallel scalability using the GDSW preconditioner for the problem of linear
elasticity in 3D: number of iterations (left), timings (right). We use a subdomain size of
H/h = 6 and P2 finite elements.

Application in Fluid-Structure Interaction (FSI) We consider time-
dependent monolithic FSI as in Balzani et al. [2015] but using a fully implicit
scheme as in Deparis et al. [2015], Heinlein et al. [2015]. We apply a monolithic
Dirichlet-Neumann preconditioner applying the GDSW preconditioner for
the structural block; see Balzani et al. [2015], Heinlein et al. [2015] and the
references therein. We use a pressure wave inflow condition for a tube using
Mesh #1 from Heinlein et al. [2015]. We consider a Neo-Hookean material
for the tube; as opposed to Heinlein et al. [2015], we here use a fixed time
step of 0.0005s and show the runtimes during the simulation.

In Fig. 6, the runtimes of ten time steps using 128 cores of the Cray XT6m
at Universität Duisburg-Essen are shown. We compare IFPACK, a one-level
algebraic overlapping Schwarz preconditioner from Trilinos, our geometric
one-level Schwarz preconditioner (OS1), the GDSW preconditioner without
rotations (GDSW-nr), and the standard GDSW preconditioner for the struc-
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Fig. 6 Runtimes for the monolithic FSI simulation. For clarity, the runtimes of two sub-
sequent time steps of size ∆t = 0.0005s are combined. The monolithic system has approx-
imately 1.2 million d.o.f. We use a Neo-Hookean material. “OS1” is the one-level Schwarz
preconditioner, “GDSW-nr” is the GDSW preconditioner without rotations, and “GDSW”

is the GDSW preconditioner with full coarse space.

Fig. 7 Pressure and deformation at time t = 0.007s. The deformation is magnified by a

factor of 10.

tural block. We see that, although the computing times vary over the simu-
lation time, the combination of the geometric overlap and a sufficiently large
coarse space consistently reduces the runtime of the fully coupled monolithic
FSI simulation by a factor of about two compared to the baseline given by
IFPACK. Fig. 7 shows the pressure and the deformation at t = 0.007s where
we have the largest computation time per timestep, cf. Fig. 6.
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Volume locking phenomena arising in a
hybrid symmetric interior penalty
method with continuous numerical
traces

Daisuke Koyama1 and Fumio Kikuchi2

1 Introduction

When we compute numerical solutions of linear elasticity problems for nearly
incompressible materials by using the P1 conforming finite element method,
we need to use sufficiently fine meshes in order to get numerical solutions
with accuracy. This is referred to as volume locking Babuška and Suri [1992].
It is well-known that discontinuous Galerkin (DG) methods are effective in
eliminating locking (see, e.g., Hansbo and Larson [2002]).

We investigate locking effects in a hybrid version of a symmetric interior
penalty (SIP) method, which is one of DG methods, and is called the HSIP
method in this paper. Unknowns in the HSIP method are approximations
to the displacement of the elastic body and to the trace of the displace-
ment on the skeleton. The latter is called the numerical trace. We consider
two formulations of the HSIP method: the HSIP methods using discontin-
uous numerical traces (HSIP-D) and using continuous ones (HSIP-C). The
degrees of freedom of the continuous numerical traces are less than those of
the discontinuous ones. This gives the HSIP-C method an advantage over
the HSIP-D method in practical computations. However, in Kikuchi [2015],
it is numerically demonstrated that the HSIP-C method using P1 elements
for both the two unknowns causes volume locking phenomena. On the other
hand, in Koyama and Kikuchi [2016], it is established that the HSIP-D is
free from locking. In this paper, we mathematically prove that the HSIP-C
method shows locking in the case when P1 elements are employed to approx-
imate displacement and its trace on the skeleton.

We close this section with the introduction of several notations which will
be used throughout this paper. For an arbitrary open subset Ω of R2, we

The University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo,
Japan koyama@im.uec.ac.jp · Professor Emeritus, The University of Tokyo
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denote by L2(Ω) and by Hs(Ω) (s > 0) the usual space of real-valued square
integrable functions on Ω and the real Sobolev space on Ω, respectively (see,
e.g., Brenner and Scott [2008]). We denote by (·, ·)Ω and by ‖ · ‖Ω the inner
product of L2(Ω) and the associated norm, respectively. We equip Hs(Ω)
with the usual norm denoted by ‖ · ‖s,Ω. We denote by | · |s,Ω the usual semi-
norm of Hs(Ω). For the union Γ of arbitrary line segments in R2, we denote
by 〈·, ·〉Γ and by | · |Γ the inner product of L2(Γ ) and the associated norm,
respectively. We use the same notations of the norm, the semi-norm, and the
inner product for vector valued functions as well. In addition, C denotes a
generic positive constant, and can be a different value at each of different
places.

2 Linear plane strain problem

For the two-dimensional displacement u = [u1, u2]
T of an elastic body, the

strain tensor is given by ε(u) =
[
1
2 (∂ui/∂xj + ∂uj/∂xi)

]
1≤i,j≤2

. We use an

underline (resp. double underlines) to denote two dimensional vector (resp.
2 × 2 matrix) valued functions, operators, and their associated spaces. The
isotropic linear elastic stress-strain relation is written by

σ(u) = 2µ ε(u) + λ(div u) δ,

where λ (> 0) and µ (> 0) are the Lamé parameters, and δ is the identity

matrix. We consider the following linear plane strain problem:





−∂σ11(u)

∂x1
− ∂σ12(u)

∂x2
= f1 in Ω,

−∂σ21(u)

∂x1
− ∂σ22(u)

∂x2
= f2 in Ω,

u = 0 on ∂Ω,

(1)

where σ(u) = [σij(u)]1≤i,j≤2, and f = [f1, f2]
T is a distributed external

body force per unit in-plane area. We assume that Ω is a bounded polygonal
domain of R2. In addition we fix µ > 0.

3 The HSIP-D method

Let T h be a triangulation of Ω. We assume that T h has no hanging nodes.
The set of edges of T h is denoted by Eh. For each K ∈ T h, we define EK :={
e ∈ Eh | e ⊂ ∂K

}
. We define the skeleton Γ h of T h by Γ h :=

⋃
e∈Eh e. The

diameter of K is denoted by hK , and the length of an edge e ∈ EK by |e|.
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In addition, we set h := maxK∈T h hK . Assume that a family
{
T h
}
h∈(0, h̄]

of

triangulations is regular.
The HSIP-D method seeks approximations to the solution u of (1) and to

the trace of u on Γ h by using functions belonging to

Uh :=
∏

K∈T h

Pk(K) and Ûh :=
∏

e∈Eh

Pk(e),

respectively, where Pk denotes the set of polynomial functions of order at

most k ≥ 1. So we consider their product space: Uh := Uh× Û
h ⊂ H1(T h)×

L2(Γ h), where Hs(T h) :=
{
v ∈ L2(Ω) | v|K ∈ Hs(K) ∀K ∈ T h

}
(s > 0).

We will denote the first and the second components of v ∈ H1(T h)×L2(Γ h)
by v and v̂, i.e., v = {v, v̂}, unless specifically stated otherwise.

For each K ∈ T h and for each i = 1, 2, we define local lifting operator
RK

i : L2(∂K) −→ QK by (RK
i g, ϕ)K = 〈g, ϕni〉∂K for all g ∈ L2(∂K)

and for all ϕ ∈ QK , where QK := Pk−1(K) and ni is the ith component
of the outward unit normal n on ∂K. We further define lifting operators
RK

div : L2(∂K) −→ QK and RK
ε (g) : L2(∂K) −→ QK as follows Kikuchi

[2015]: RK
div g :=

∑2
i=1 R

K
i gi and RK

ε (g) :=
[
1
2

(
RK

i gj +RK
j gi

)]
1≤i, j≤2

for

g = [g1, g2]
T ∈ L2(∂K).

We introduce the following three bilinear forms: for u, v ∈ H2(T h) ×
L2(Γ h),

ãhη(u, v) := 2µ
∑

K∈T h

[(
ε(u), ε(v)

)
K
+
〈
ε(u)n, v̂ − v

〉
∂K

+
〈
û− u, ε(v)n

〉
∂K

+

(
RK

ε (û− u), RK
ε (v̂ − v)

)

K

]

+η
∑

K∈T h

∑

e∈EK

1

|e| 〈û− u, v̂ − v〉e ,

lh(u, v) :=
∑

K∈T h

[
(div u, div v)K + 〈(div u)n, v̂ − v〉∂K

+ 〈û− u, (div v)n〉∂K +
(
RK

div(û− u), RK
div(v̂ − v)

)
K

]
,

ahη(u, v) := ãhη(u, v) + λlh(u, v), (2)

where η is an interior penalty parameter≥ 0, and (σ, τ )K :=
∑2

i,j=1

∫
K σijτij dx

for σ = [σij ]1≤i,j≤2, τ = [τij ]1≤i,j≤2 ∈ L2(K).

We are now in a position to present a discrete problem, which provides
the HSIP-D method: find uh ∈ V h such that
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ahη(u
h, vh) =

(
f, vh

)
Ω

∀vh ∈ V h, (3)

where L2
D(Γ h) :=

{
v̂ ∈ L2(Γ h) | v̂ = 0 on ∂Ω

}
, V̂ h := Ûh ∩ L2

D(Γ
h), and

V h := Uh × V̂
h
.

Problem (3) has a unique solution for every f ∈ L2(Ω) and for every
η > 0 (see Koyama and Kikuchi [2016]). Moreover the HSIP-D method is
free from locking with respect to the solution set Bλ and the norm |||·|||h
in the sense of Babuška and Suri [1992] (see Koyama and Kikuchi [2016]),
where Bλ :=

{
v ∈ H2(Ω) ∩H1

D(Ω) | ‖v‖2,Ω + λ‖ div v‖1,Ω ≤ 1
}
, H1

D(Ω) :={
v ∈ H1(Ω) | v = 0 on ∂Ω

}
, and

|||v|||2h :=
∑

K∈T h


|v|21,K +

∑

e∈EK


 1

|e| |v̂ − v|2e + |e|
2∑

i,j=1

∣∣∣∣
∂vi
∂xj

∣∣∣∣
2

e




 .

We now introduce a semi-norm on H1(T h)× L2(Γ h) as follows:

|v|2h :=
∑

K∈T h

(
|v|21,K +

∑

e∈EK

1

|e| |v̂ − v|2e

)
∀v ∈ H1(T h)× L2(Γ h).

This semi-norm can be a norm on V h equivalent to |||·|||h, that is, there exists
a positive constant C such that for all h ∈ (0, h̄] and for all vh ∈ V h,

C
∣∣∣∣∣∣vh

∣∣∣∣∣∣
h
≤ |vh|h ≤

∣∣∣∣∣∣vh
∣∣∣∣∣∣

h
. (4)

We define εh : Uh −→ L2(Ω) and divh : Uh −→ L2(Ω) as follows

Kikuchi [2015]: for every vh ∈ Uh and for every K ∈ T h,

εh(vh)|K := ε(vh|K) +RK
ε (v̂h − vh),

(
divh vh

)
|K := div(vh|K) +RK

div(v̂
h − vh). (5)

For all uh, vh ∈ Uh, we have

ãh0 (u
h, vh) = 2µ

(
εh(uh), εh(vh)

)
Ω
, (6)

lh(uh, vh) =
(
divh uh, divh vh

)
Ω

(see Kikuchi [2015]). (7)

For all λ > 0, for all η > 0, for all h ∈ (0, h̄], and for all vh ∈ V h,

ahη(v
h, vh) ≥ αmin{1, η}

∣∣∣∣∣∣vh
∣∣∣∣∣∣2

h
, (8)
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where α is a positive constant independent of λ, η, h, and vh (see Koyama
and Kikuchi [2016]). Note that (8) holds for all η > 0 because bilinear form
ahη includes the terms defined by lifting operators RK

ε and RK
div.

4 Volume locking phenomena in the HSIP-C method

In this section, we fix η and assume that k = 1.
We introduce finite element spaces:

Uh
c := Uh ∩H1(Ω), V h

c := Uh ∩H1
D(Ω),

Ûh
c := Ûh ∩C0(Γ h), V̂ h

c := Ûh
c ∩ L2

D(Γ h),

Uh
c := Uh × Û

h

c , V h
c := Uh × V̂

h

c .

Replacing V h by V h
c in (3), we can obtain the HSIP-C method.

We mathematically demonstrate that the HSIP-C method shows locking
by following the method of proof due to Brenner and Scott [2008].

We can naturally identify Û
h

c with Uh
c , that is, there uniquely exists a

linear operator J from Û
h

c onto Uh
c such that J v̂hc = v̂hc on ∂K for every

v̂hc ∈ Û
h

c and for every K ∈ T h.

Lemma 1. There exists a positive constant C such that for all h ∈ (0, h̄],
for all v ∈ H1(Ω), and for all vh ∈ Uh

c ,

|v − J v̂h|1,Ω ≤ C|v − vh|h, (9)

where v = {v, v|Γh}, and C is independent of h, v, and vh.

Proof. The usual scaling argument leads to that there exists a positive con-
stant C such that for all h ∈ (0, h̄], for all K ∈ T h, and for all v ∈ P1(K),

‖v‖1,K ≤ C

(∑

e∈EK

1

|e| |v|
2
e

)1/2

, (10)

where C is independent of h,K, and v. For all v ∈ H1(Ω) and for all vh ∈ Uh
c ,

|v − J v̂h|21,Ω ≤ 2
∑

K∈T h

(
|v − vh|21,K + |vh − J v̂h|21,K

)

(by the triangle and the Schwarz inequalities)

≤ C
∑

K∈T h

(
|v − vh|21,K +

∑

e∈EK

1

|e| |v
h − v̂h|2e

)
(by (10)).
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This yields (9). ⊓⊔
We now pose a hypothesis:

{
vh ∈ V h

c | div vh = 0
}
= {0}. (L)

We understand from the following lemma that many triangulations satisfy
(L) (cf. [Brenner and Scott, 2008, Exercise 11.x.14]).

Lemma 2. Let K1 andK2 be triangular elements whose vertices are {A, B, C}
and {B, C, D}, respectively. Let vhj (j = 1, 2) be continuous piecewise linear

functions on K1 ∪K2. Set v
h := [vh1 , v

h
2 ]

T . Assume that div vh = 0 and that
vh = 0 on the sides AB and BD. If A, B, and D are not collinear, then
vh ≡ 0 on K1 ∪K2.

We leave the proof to readers.

Lemma 3. If (L) holds, then

Ker(divh |V h
c
) =

{
{vh, 0} ∈ V h

c | vh ∈ Uh
}
, (11)

where divh |V h
c
denotes the restriction of divh to V h

c .

Proof. We see from the Green formula that for every v ∈ P 1(K),

div v = RK
div(v) in R. (12)

It follows from (5) and (12) that for all vh ∈ Uh,

(
divh vh

)∣∣∣
K

= RK
div(v̂

h) ∀K ∈ T h. (13)

This implies that divh
(
{vh, 0}

)
= 0 for every vh ∈ Uh. Thus the right-hand

side of (11) is included in Ker(divh |V h
c
).

Conversely, we suppose that vh ∈ V h
c satisfies divh vh = 0. We find from

(13) and (12) that for each K ∈ T h,

0 =
(
divh vh

)∣∣∣
K

= RK
div(v̂

h) = RK
div

(
(J v̂h)|∂K

)
= div

(
(J v̂h)|K

)
,

and hence div
(
J v̂h

)
= 0 in Ω. Since J v̂h ∈ V h

c , it follows from hypothesis

(L) that J v̂h = 0 in Ω. This implies that v̂h = 0 on Γ h. Thus vh belongs to
the right-hand side of (11). ⊓⊔

We now define mapping divh
1 : V h

c /Ker(divh |V h
c
) −→ L2(Ω) by

divh
1 [v

h] := divh vh ∀vh ∈ V h
c ,

where [vh] is the set of equivalence class of vh ∈ V h
c . Since divh

1 is injective
and V h

c /Ker(divh |V h
c
) is finite dimensional, there exists a positive constant
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C(h) such that for all vh ∈ V h
c ,

inf
χh∈Uh

∣∣∣∣∣∣vh + {χh, 0}
∣∣∣∣∣∣

h
≤ C(h)

∥∥∥divh vh
∥∥∥
Ω
. (14)

Using (9) with v ≡ 0 and (4), we get

∣∣∣J v̂h
∣∣∣
1,Ω

≤ C inf
χh∈Uh

∣∣∣∣∣∣vh + {χh, 0}
∣∣∣∣∣∣

h
∀vh ∈ V h

c . (15)

Combining (14) and (15) gives us

∣∣∣J v̂h
∣∣∣
1,Ω

≤ C(h)
∥∥∥divh vh

∥∥∥
Ω

∀vh ∈ V h
c . (16)

Proposition 1. Let u ∈ H2(Ω) ∩H1
D(Ω) satisfy

div u = 0. (17)

For each λ > 0, let uh
λ ∈ V h

c satisfy

ahη(u
h
λ, v

h) = ahη(u, v
h) ∀vh ∈ V h

c , (18)

where u := {u, u|Γh}. Assume that (L) holds. Then we have

∣∣∣J ûh
λ

∣∣∣
1,Ω

−→ 0 (λ −→ ∞). (19)

Proof. We first introduce the following trace inequality: for all h ∈ (0, h̄], for
all K ∈ T h, for all e ∈ EK , and for all v ∈ H1(K),

|v|2e ≤ C
(
|e|−1‖v‖2K + |e||v|21,K

)
, (20)

where C is a positive constant independent of h, K, e, and v.
It follows from (18), (17), and (20) that we have

ahη(u
h
λ, u

h
λ) = ahη(u, u

h
λ)

= 2µ
∑

K∈T h

[ (
ε(u), ε(uh

λ)
)
K
+
〈
ε(u)n, ûh

λ − uh
λ

〉
∂K

]

≤ C‖u‖2,Ω
∣∣∣∣∣∣uh

λ

∣∣∣∣∣∣
h
, (21)

where C is a positive constant independent of h, λ, and u. Using (8), we
obtain ∣∣∣∣∣∣uh

λ

∣∣∣∣∣∣
h
≤ C‖u‖2,Ω. (22)

Combining (6), (7), (2), (21), and (22) leads us to

‖divh uh
λ‖2Ω ≤ λ−1C‖u‖22,Ω −→ 0 (λ −→ ∞),
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and thus, by (16), we get (19). ⊓⊔

Theorem 1. Assume that (L) holds for every h ∈ (0, h̄]. There exists a
positive constant C independent of h such that

lim inf
λ−→∞

sup
w∈Bλ

∣∣∣∣∣∣w −wh
λ

∣∣∣∣∣∣
h
≥ C ∀h ∈ (0, h̄], (23)

where w := {w, w|Γh} and wh
λ ∈ V h

c is the solution of (18) after replacing
u by w.

Proof. There exists a u ∈ H2(Ω) ∩ H1
D(Ω) such that ‖u‖2,Ω = 1 and (17)

holds Brenner and Scott [2008]. Then u ∈ Bλ for all λ > 0. For every h ∈
(0, h̄] and for every λ > 0,

sup
w∈Bλ

∣∣∣∣∣∣w −wh
λ

∣∣∣∣∣∣
h
≥
∣∣∣∣∣∣u− uh

λ

∣∣∣∣∣∣
h
≥ C

∣∣∣u− J ûh
λ

∣∣∣
1,Ω

(by (9))

≥ C

(
|u|1,Ω −

∣∣∣J ûh
λ

∣∣∣
1,Ω

)
, (24)

where C is independent of h and λ.
We can conclude from (19) and (24) that (23) holds. ⊓⊔

Remark 1. For a meaning of (23), see Brenner and Scott [2008]. Using (23),
we can also prove that the HSIP-C method with k = 1 shows locking of order
h−1 with respect to the solution set Bλ and the norm |||·|||h in the sense of
Babuška and Suri [1992] (see Koyama and Kikuchi [2016]).
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Dual-Primal Domain Decomposition
Methods for the Total Variation
Minimization

CHANG-OCK LEE1 and CHANGMIN NAM1

1 Introduction

Image denoising problem is one of classical problems in imaging science. In
1992, Rudin et al. [9] proposed the following denoising model,

min
u∈BV (Ω)

{
λ

2

∫

Ω

(u− f)2 dx+

∫

Ω

|∇u| dx
}
, (1)

where Ω is the domain of image and f is an observed image corrupted by
noise. Here, the space of functions of bounded variation is defined as

BV (Ω) =

{
u ∈ L1(Ω) : sup

φ∈C1
c (Ω,R2),‖φ‖∞≤1

∫

Ω

u(x) divφ(x) dx < ∞
}
.

This model has an anisotropic diffusion property so that the edge of the image
is preserved.

Recently, as the number of CPUs and cores in a computer are increased,
there have been attempts to solve this problem parallely using the domain
decomposition technique. For example, see [3, 4, 5, 6, 7, 8, 11]. Since the
problem is nonsmooth and not separable, it is not easy to show the conver-
gence of the domain decomposition algorithm. Tseng [10] showed that if the
function is separable, block Gauss-Seidel algorithm converges to the mini-
mizer, but (1) is not of this case. Fornasier et al.[6] and Xu et al.[11] used
overlapping domain decomposition methods to overcome this difficulty. Also,
Fornasier and Schönlieb [5] proved the convergence of nonoverlaping domain
decomposition method under certain assumptions.

Department of Mathematical Sciences, KAIST, Daejeon 34141, Korea (colee@kaist.edu,

ncm2200@kaist.ac.kr)
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The main point of the domain decomposition approach is that instead
of solving one large problem, several small problems are solved in parallel to
reduce the computing time. In [4], Fornasier pointed out that the subproblems
should reproduce the original problem at smaller dimensions, but it is difficult
to satisfy this requirement since the boundary conditions of local subdomain
problems should be considered.

In this paper, we propose new domain decomposition techniques consider-
ing this requirement. First we decompose the domain of the dual form of (1),
discovered by Chambolle [1], into nonoverlapping rectangular subdomains.
Then we change the local dual problems into the equivalent primal forms so
that our methods use same algorithms to solve the original problem and local
problems which can be solved in parallel.

2 Preliminaries

We assume that the image domain Ω consists of N ×N discrete points, i.e.,

Ω = [1, 2, ..., N ]× [1, 2, ..., N ].

We define the function space V as a set of functions from Ω into R and V ∗

as a set of functions from Ω into R2 with the usual Euclidean inner product.
The operator ∇: V → V ∗ is defined by

(∇u)1ij =

{
ui+1,j − uij for i = 1, ..., N − 1,

0 for i = N,

(∇u)2ij =

{
ui,j+1 − uij for j = 1, ..., N − 1,

0 for j = N.

We define an operator div: V ∗ → V by −∇∗ (the adjoint of ∇).
For simplicity, we decompose the image domain Ω into two subsets Ω1

and Ω2 such that

Ω1 = [1, ..., N ]× [1, ..., N1],

Ω2 = [1, ..., N ]× [N1, ..., N ].

Then the interface Γ is

Γ = [1, ..., N ]× [N1].

For each subdomain, we define the local function spaces

Dual-Primal Domain Decomposition Methods for the Total Variation Minimization 331



V1 = {u ∈ V | supp(u) ⊂ Ω1},
V2 = {u ∈ V | supp(u) ⊂ Ω2},
V ∗
1 = {p ∈ V ∗ | supp(p) ⊂ Ω1\Γ},

V ∗
2 = {p ∈ V ∗ | supp(p) ⊂ Ω2}.

Note that V = V1 + V2, and V ∗ = V ∗
1 ⊕ V ∗

2 .
We also define the local operators as the restriction of global operators

∇ and div to these spaces. More precisely, the operator ∇Ω1
: V1 → V ∗

1 is
defined as

(∇Ω1
u)1ij =

{
ui+1,j − uij for i = 1, ..., N − 1,

0 for i = N,

(∇Ω1
u)2ij =

{
ui,j+1 − uij for j = 1, ..., N1 − 1,

0 for j = N1, ..., N.

We define ∇Ω2
: V2 → V ∗

2 with similar manner. We define divΩ1
: V ∗

1 → V1 by
−∇∗

Ω1
and divΩ2

: V ∗
2 → V2 by −∇∗

Ω2
.

3 Proposed Algorithms

We consider the following discrete version of (1),

min
u∈V

{
λ

2
‖u− f‖2V +

∑

Ω

|∇u|
}

for f ∈ V. (2)

Our result is based on the following two propositions which are summarized
in Section 2 of [1].

Proposition 1. The following two statements are equivalent.

(i) ū = argmin
u∈V

{
λ

2
‖u− f‖2V +

∑

Ω

|∇u|
}

(ii) There exists p ∈ V ∗ such that





f − 1
λdivp = ū

p = arg min
|p|≤1

∥∥∥∥
1

λ
divp− f

∥∥∥∥
2

V

Proposition 2 (Optimality Condition). The following two statements
are equivalent.
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(i) p = arg min
|p|≤1

∥∥∥∥
1

λ
divp− f

∥∥∥∥
2

V

(ii)

{
−∇( 1λdivp− f) + |∇( 1λdivp− f)|p = 0 in Ω
|p| ≤ 1

Now, we propose the block Gauss-Seidel algorithm for the primal problem (2).

Algorithm: Block Gauss-Seidel

Initialize u
(0)
2 := 0, f

(0)
2 := 0

For n = 0, 1, ...

(f
(n+1)
1 )ij = (u

(n)
2 − f

(n)
2 + f)ij for (i, j) ∈ Ω1

u
(n+1)
1 = arg min

u1∈V1





λ

2
‖u1 − f

(n+1)
1 ‖2V1

+
∑

Ω1\Γ
|∇Ω1

u1|





(f
(n+1)
2 )ij = (u

(n+1)
1 − f

(n+1)
1 + f)ij for (i, j) ∈ Ω2

u
(n+1)
2 = arg min

u2∈V2





λ

2
‖u2 − f

(n+1)
2 ‖2V2

+
∑

Ω2

|∇Ω2
u2|





u(n+1) = f − f
(n+1)
1 − f

(n+1)
2 + u

(n+1)
1 + u

(n+1)
2

end

Theorem 1. The sequence u(n) of the block Gauss-Seidel algorithm converges
to the minimizer of the problem (2).

Proof. By the proposition 1, u
(n)
1 , u

(n)
2 , f

(n)
1 , f

(n)
2 , and u(n) are bounded

sequences. Suppose that u(∞) is the limit point of the sequence u(n). Then
there exists a subsequence u(nk) which converges to u(∞). Now we claim that
u(∞) is the solution of (2).

By the propositions 1 and 2, there exists p
(n)
1 ∈ V ∗

1 , p
(n)
2 ∈ V ∗

2 for all
n ≥ 1 such that in Ω1\Γ ,





f
(n)
1 − 1

λdivΩ1
p
(n)
1 = u

(n)
1 ,

−∇Ω1
( 1λdivΩ1

p
(n)
1 − f

(n)
1 ) + |∇Ω1

( 1λdivΩ1
p
(n)
1 − f

(n)
1 )|p(n)

1 = 0 ,

|p(n)
1 | ≤ 1,

and in Ω2,





f
(n)
2 − 1

λdivΩ2
p
(n)
2 = u

(n)
2 ,

−∇Ω2
( 1λdivΩ2

p
(n)
2 − f

(n)
2 ) + |∇Ω2

( 1λdivΩ2
p
(n)
2 − f

(n)
2 )|p(n)

2 = 0 ,

|p(n)
2 | ≤ 1.
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By refining the subsequences, we can assume that f
(nkj

)

1 → f
(∞)
1 , f

(nkj
)

2 →
f
(∞)
2 , p

(nkj
)

1 → p
(∞)
1 , p

(nkj
)

2 → p
(∞)
2 , p

(nkj
−1)

2 → p̃
(∞)
2 , u

(nkj
)

1 → u
(∞)
1 , and

u
(nkj

)

2 → u
(∞)
2 . By the proposition 2, the following monotone property holds

for all n ≥ 1;

∥∥∥∥
1

λ
div(p

(n)
1 + p

(n)
2 )− f

∥∥∥∥ ≥
∥∥∥∥
1

λ
div(p

(n+1)
1 + p

(n)
2 )− f

∥∥∥∥

≥
∥∥∥∥
1

λ
div(p

(n+1)
1 + p

(n+1)
2 )− f

∥∥∥∥

so that div(p
(∞)
1 + p

(∞)
2 ) = div(p

(∞)
1 + p̃

(∞)
2 ). As j → ∞, in Ω1\Γ ,





f∞
1 − 1

λdivΩ1
p
(∞)
1 = u

(∞)
1 ,

−∇Ω1
( 1λdivΩ1

p
(∞)
1 − f

(∞
1 )) + |∇Ω1

( 1λdivΩ1
p
(∞)
1 − f

(∞)
1 )|p(∞)

1 = 0 ,

|p(∞)
1 | ≤ 1,

(3a)
and in Ω2,





f
(∞)
2 − 1

λdivΩ2
p
(∞)
2 = u

(∞)
2 ,

−∇Ω2
( 1λdivΩ2

p
(∞)
2 − f

(∞)
2 ) + |∇Ω2

( 1λdivΩ2
p
(∞)
2 − f

(∞)
2 )|p(∞)

2 = 0 ,

|p(∞)
2 | ≤ 1.

(3b)

Let p(∞) = p
(∞)
1 + p

(∞)
2 . We claim that

(i) f − 1

λ
divp(∞) = f − f

(∞)
1 − f

(∞)
2 + u

(∞)
1 + u

(∞)
2 .

(ii) −∇
( 1

λ
divp(∞) − f

)
+

∣∣∣∇
( 1

λ
divp(∞) − f

)∣∣∣p(∞) = 0.

(iii) |p(∞)| ≤ 1.

The statement (i) is established by adding (3a) and (3b) and the state-
ment (iii) is trivial. We have

∇Ω1

( 1

λ
divΩ1

p
(∞)
1 − f

(∞)
1

)
= ∇

( 1

λ
divΩ1

p
(∞)
1 +

1

λ
divΩ2

p̃
(∞)
2 − f

)

= ∇
( 1

λ
divp(∞) − f

)
in Ω1\Γ ,

∇Ω2

( 1

λ
divΩ2

p
(∞)
2 − f

(∞)
2

)
= ∇

( 1

λ
divΩ1

p
(∞)
1 +

1

λ
divΩ2

p
(∞)
2 − f

)

= ∇
( 1

λ
divp(∞) − f

)
in Ω2,

which proves the statement (ii) and u(∞) is the solution of (2). Since the
solution of (2) is unique, the result follows. ⊓⊔
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Next, we propose the relaxed block Jacobi algorithm as a parallel algorithm.

Algorithm: Relaxed Block Jacobi

Initialize v
(0)
1 := 0, v

(0)
2 := 0.

For n = 0, 1, ...

(f
(n+1)
1 )ij = (−v

(n)
2 + f)ij for (i, j) ∈ Ω1

(f
(n+1)
2 )ij = (−v

(n)
1 + f)ij for (i, j) ∈ Ω2

ũ
(n+1)
1 = arg min

u1∈V1





λ

2
‖u1 − f

(n+1)
1 ‖2 +

∑

Ω1\Γ
|∇Ω1

u1|





ũ
(n+1)
2 = arg min

u2∈V2





λ

2
‖u2 − f

(n+1)
2 ‖2 +

∑

Ω2

|∇Ω2
u2|





v
(n+1)
1 =

v
(n)
1 + f

(n+1)
1 − ũ

(n+1)
1

2

v
(n+1)
2 =

v
(n)
2 + f

(n+1)
2 − ũ

(n+1)
2

2

u(n+1) = f − v
(n+1)
1 − v

(n+1)
2

end

Lemma 1. In the relaxed block Jacobi algorithm, we have ‖v(n+1)
1 −v

(n)
1 ‖V1

→
0 and ‖v(n+1)

2 − v
(n)
2 ‖V2

→ 0 as n → ∞.

Sketch of Proof. By the proposition 1, there exist p̃
(n+1)
1 ∈ V ∗

1 and p̃
(n+1)
2 ∈

V ∗
2 such that

p̃
(n+1)
1 = arg min

p1∈V ∗
1

∥∥∥∥
1

λ
divΩ1

p1 + v
(n)
2 − f

∥∥∥∥
V1

,

p̃
(n+1)
2 = arg min

p2∈V ∗
2

∥∥∥∥
1

λ
divΩ2

p2 + v
(n)
1 − f

∥∥∥∥
V2

.

By the triangle inequality and minimization property, the result follows. ⊓⊔
With this lemma, one can easily prove the following theorem.

Theorem 2. The sequence u(n) of the relaxed block Jacobi algorithm con-
verges to the minimizer of the problem (2).

4 Numerical Results

In this section, we compare our domain decomposition algorithms with the
first order primal dual algorithm in [2]. We used the following stop criterion
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to the relaxed block Jacobi algorithm and Algorithm 2 in [2] solving the full
dimension problem (2):

‖u(n+1) − u(n)‖V
‖u(n+1)‖V

< 10−5

with the parameters τ = 1/
√
8, σ = 1/

√
8, γ = 0.7λ, which are used to run

Algorithm 2 in [2]. We choose the weight parameter λ in (1) as 7 empirically.
For the local problems, we also used Algorithm 2 in [2] with the following
stop criterion

‖u(n+1)
i − u

(n)
i ‖V

‖u(n+1)
i ‖V

< 10−6.

We tested two images of size 512 × 512 and 2048 × 3072, corrupted by
additive zero mean Gaussian noise with variance 0.03. Table 1 shows the
performance of the algorithm with the varying number of subdomains.

Peppers 512× 512 Boat 2048× 3072

domain iter
virtual wall-clock

PSNR iter
virtual wall-clock

PSNR
time (sec) time (sec)

1x1 1 3.59 27.39 1 115.48 28.79

2x2 54 6.69 27.39 39 324.12 28.79

4x4 66 2.26 27.39 52 153.13 28.79

8x8 81 1.44 27.39 63 24.83 28.79

16x16 96 1.12 27.39 75 10.28 28.79

Table 1 Results of the proposed algorithm. The results for 1× 1 domain are from Algo-

rithm 2 in [2].

(a) (b) (c)

Fig. 1 (a) Original clean image of size 512 × 512, (b) Noisy image with Gaussian noise

with zero mean and 0.03 variance (PSNR=15.66), (c) Denoised image with weight λ = 7

in (2).
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(a) (b) (c)

Fig. 2 (a) Original clean image of size 2048× 3072, (b) Noisy image with Gaussian noise

with zero mean and 0.03 variance (PSNR=15.66), (c) Denoised image with weight λ = 7

in (2).
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A parallel two-phase flow solver on
unstructured mesh in 3D

Li Luo1,3, Qian Zhang1, Xiao-Ping Wang1 and Xiao-Chuan Cai2

The simulation of two-phase flow is important in many scientific and engineer-
ing processes, for instance, wetting, coating, painting, etc. There are many
publications on phase field modelling of two-phase flows. Gao and Wang [Gao
and Wang, 2014] proposed a gradient stable semi-implicit finite difference
scheme in 2D and 3D by using the convex splitting method for the Cahn-
Hilliard equation and a projection method for the Navier-Stokes equations.
Bao et al. [Bao et al., 2012] presented a finite element method for phase field
problems on 2D domains with rough boundary using unstructured meshes.
The free interface problem is computationally very expensive especially in 3D;
some parallelization strategies were adopted to accelerate the computation
of certain two-phase flows. Shin et al. [Shin et al., 2014] presented a parallel
implementation of the Level Contour Reconstruction Method (LCRM) on
structured meshes for simulating the splash of a drop onto a film of liquid,
in which a weak scaling efficiency of 48% on 32768 processors was reported.

In this paper, we present a new parallel finite element solver on unstruc-
tured 3D meshes and its implementation on a massively parallel computer.
In order to construct a stable and efficient solver for the case of large density
and viscosity ratio, we combine the stabilized schemes for the Cahn-Hilliard
equation and projection-type schemes for the Navier-Stokes equations to fully
decouple the phase function, the velocity, and the pressure. The resulting de-
coupled systems are discretized by a piecewise linear finite element method in
space and solved by a Krylov subspace method. Specifically, systems arising
from implicit discretization of the Cahn-Hilliard equation and the velocity
equation are solved by a restricted additive Schwarz preconditioned GMRES
method, and the pressure Poisson system is solved by an algebraic multigrid
preconditioned CG method. We show numerically that the proposed strategy
works well for 3D problems with complex geometry and is highly scalable in

1Department of Mathematics, The Hong Kong University of Science and Technology, Hong
Kong lluoac@ust.hk · 2Department of Computer Science, University of Colorado Boulder,

Boulder, USA · 3Shenzhen Institutes of Advanced Technology, Shenzhen, China
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terms of the number of iterations and the total computing time on a super-
computer with nearly 10,000 processors.

The paper is organized as follows. In Section 1, a phase field model is
described. The fully decoupled scheme with a finite element discretization
is also presented in this section. The domain decomposition techniques and
scalable solvers are discussed in Section 2. In Section 3, we show two numer-
ical experiments. Performance results of the parallel implementation are also
reported. The paper is concluded in Section 4.

1 Mathematical models and discretization schemes

Let Ω be a bounded domain in R3. The system of interest can be described
by a coupled Cahn-Hilliard-Navier-Stokes equations, as follows:

∂φ

∂t
+ u · ∇φ = Ld∆µ, in Ω, (1)

µ = −ǫ∆φ− φ

ǫ
+

φ3

ǫ
, in Ω, (2)

Reρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · (ηD(u)) + Bµ∇φ, in Ω, (3)

∇ · u = 0, in Ω. (4)

Here, a phase-field variable φ is introduced to describe the transition between
the two homogeneous equilibrium phases φ± = ±1. µ is the chemical poten-
tial, ǫ is the ratio between interface thickness and characteristic length, and
µ∇φ is the capillary force. The mass density ρ and the dynamic viscosity η
are interpolation functions of φ between fluid 1 and fluid 2, ρ = 1+φ

2 +λρ
1−φ
2 ,

η = 1+φ
2 + λη

1−φ
2 , where λρ = ρ2/ρ1 is the ratio of density between the two

fluids and λη = η2/η1 is the ratio of viscosity. u = (ux, uy, uz) where ux, uy, uz

are the velocity components along x, y, z directions, D(u) = ∇u+ (∇u)T is
the rate of stress tensor, p is the pressure, Ld is the phenomenological mobili-
ty coefficient, Re is the Reynolds number and B measures the strength of the
capillary force comparing to the Newtonian fluid stress (and B is inversely
proportional to the capillary number). The motion of the contact line at solid
boundaries Γw can be described by a relaxation boundary condition for the
phase function and the generalized Navier boundary condition (GNBC) for
velocity:

∂φ

∂t
+ uτ1∂τ1φ+ uτ2∂τ2φ = −VsL(φ), on Γw, (5)

(Lsls)
−1uτ1 = BL(φ)∂τ1φ/η − n ·D(u) · τ1, on Γw, (6)

(Lsls)
−1uτ2 = BL(φ)∂τ2φ/η − n ·D(u) · τ2, on Γw, (7)
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where τ1 and τ2 are two unit tangent directions that are orthogonal to each
other along the solid surface, τ1 · τ2 = 0. n is the unit outward normal
direction of the solid surface. Vs is a phenomenological parameter. L(φ) =

ǫ∂nφ + Q(φ), Q(φ) = ∂γwf (φ)/∂φ and γwf (φ) = −
√
2
3 cos θs sin(

π
2φ), θs is

the static contact angle. uτ1 = u · τ1 and uτ2 = u · τ2. Ls is the slip length
of liquid, ls = 1+φ

2 + λls
1−φ
2 is an interpolation between two different wall-

fluid slip length, and λls = ls2/ls1 the ratio of slip length. In addition, the
following impermeability conditions un := u · n = 0, and ∂nµ = 0 are also
imposed on the solid boundaries.

We present a semi-implicit finite element method for solving the above
coupled systems on unstructured meshes in 3D. We apply a convex splitting
of the free energy functional and treat the nonlinear term explicitly so that the
resulting matrix does not change in time, and therefore can be pre-computed.
In addition, we consider a pressure stabilized formulation [Guermond and
Salgado, 2009] to decouple the Navier-Stokes equations into a convection-
diffusion equation for velocity and a Poisson equation for pressure. Then,
both of them can be easily approximated by the piecewise linear finite element
methods.

Let Ωh be a conforming mesh of Ω, and Γh
w is the solid boundary of Ωh.

In this paper, we only consider tetrahedral elements and P1 functions. We
define the following finite element spaces

Wh =
{
wh ∈ H1(Ω); wh|E ∈ P1(E), ∀E ∈ Ωh

}
,

Uh =
{
uh ∈

[
H1(Ω)

]3
; uh · n = 0 on Γh

w; uh|E ∈ P1(E)3, ∀E ∈ Ωh

}
,

Mh =
{
qh ∈ Wh; ∂nqh = 0 on Γh

w

}
.

We denote by (·, ·) the L2(Ωh)-inner product and by 〈·, ·〉Γh
w
the L2(Γh

w)-inner
product. Next, we introduce a time step δt > 0. The first-order temporal
discretization in the weak form can be described in the following four steps:

Step 1: Solve the Cahn-Hilliard equation using a convex-splitting method:
find (φn+1

h , µn+1
h ) ∈ Wh ×Wh, such that for ∀ wh ∈ Wh,

(
φn+1
h − φn

h

δt
, wh

)
+ (un

h · ∇φn
h , wh) = −Ld(∇µn+1

h ,∇wh), (8)

(µn+1
h , wh) = ǫ(∇φn+1

h ,∇wh) +
s

ǫ
(φn+1

h , wh) +
1

ǫ

(
(φn

h)
3 − (1 + s)φn

h , wh

)

+

〈(
1

Vs

(
φn+1
h − φn

h

δt
+ un

τ1,h
∂τ1φ

n
h + un

τ2,h
∂τ2φ

n
h

)
+Q (φn

h)

)
, wh

〉

Γw

. (9)

Step 2: Update ρn+1
h , ηn+1

h and ls
n+1
h ∈ Wh:

(ρn+1
h , ηn+1

h , ls
n+1
h ) =

1 + φn+1
h

2
+ (λρ, λη , λls )

1− φn+1
h

2
. (10)
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Step 3: Solve the velocity system of Navier-Stokes equations using a pres-
sure stabilization scheme: find un+1

h ∈ Uh, such that for ∀ vh ∈ Uh,

Re

((
1
2
(ρn+1

h + ρnh)u
n+1
h − ρnhu

n
h

δt
+ ρn+1

h (un
h · ∇)un+1

h +
1

2

(
∇ · (ρn+1

h un
h)
)
un+1
h

)
,vh

)

= −
(
ηn+1
h

(
∇un+1

h + (∇un+1
h )T

)
,∇vh

)
+ B(µn+1

h ∇φn+1
h ,vh)− (2∇pnh −∇pn−1

h ,vh)

−
〈
ηn+1
h

(
Lsls

n+1
h

)−1
un+1
τ1,h

, vτ1,h

〉
Γw

−
〈
ηn+1
h

(
Lsls

n+1
h

)−1
un+1
τ2,h

, vτ2,h

〉
Γw

+ B
〈(

ǫ∂nφ
n+1
h +Q

(
φn+1
h

))
∂τ1φ

n+1
h , vτ1,h

〉
Γw

+ B
〈(

ǫ∂nφ
n+1
h +Q

(
φn+1
h

))
∂τ2φ

n+1
h , vτ2,h

〉
Γw

. (11)

Step 4: Solve the pressure system of Navier-Stokes equations: find pn+1
h ∈

Mh, such that for ∀ qh ∈ Mh,

(
∇(pn+1

h − pnh),∇qh
)
= − ρ̄

δt
Re(∇ · un+1

h , qh). (12)

In the above scheme, s is a stabilization parameter. vn,h = vh · n, vτ1,h =
vh · τ1, vτ2,h = vh · τ2, and ρ̄ = min(1, λρ).

Remark 1. The time discretization scheme constructed above leads to a de-
coupled system for the phase function, the velocity, and the pressure. At
each time step, we solve a convection-diffusion equation for u, a system of
convection-diffusion/elliptic equations for (φ, µ), and a Poisson equation for
p. The matrices from the last two equations do not change in time, and can
then be pre-computed for computational efficiency.

2 Scalable solvers based on domain decomposition and
algebraic multigrid techniques

In the scheme formulated in the previous section, there are three linear sys-
tems of equations to be solved at each time step. For the nonsymmetric
problems in Step 1 and Step 3, we employ a restricted additive Schwarz
preconditioned GMRES method to solve the linear systems of phase func-
tion and velocity. The choice of subdomain solver is critical to the Schwarz
preconditioner. One of the popular choices is the incomplete LU (ILU) factor-
ization. A large number of fill-ins levels helps in reducing iterations, but leads
to an expensive solver in terms of the compute time and the memory usage.
The impact of these factors will be discussed in numerical experiments. To
solve the symmetric positive definite problem in Step 4, we employ an alge-
braic multigrid (AMG) preconditioned CG method. A scalable AMG solver
BoomerAMG [Henson and Yang, 2002] is used as a preconditioner to effec-
tively solve the pressure Poisson equation.
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3 Numerical experiments

In this section, we present some numerical experiments and analyze the par-
allel performance of the proposed algorithm. The algorithm is implemented
using a finite element package libMesh [Kirk et al., 2006] for generating the
stiffness matrices, and a parallel scientific computing library PETSc [Balay
et al., 2016] for the preconditioned Krylov subspace solvers. The compu-
tational mesh is generated using Gmsh [Geuzaine and Remacle, 2009] and
partitioned using MeTiS [Karypis and Kumar, 1995]. Two numerical exper-
iments will be presented including a droplet spreading over a rough surface
and a two-phase flow in a bumpy channel.

We first consider a droplet spreading over a rough solid surface with par-
allel stripped texture. Along the y-axis the bottom surface is parametrized
by a wave function x = 0.025sin(40y) with y ∈ [−0.025π, 0.5π], and along the
z-axis the function is translated from z = 0 to z = 0.5π. The height of the
domain is 1.2. A spherical drop is initially located at (0.35, 0.2375π, 0.25π)
with radius 0.3. The initial speed is (−1, 0, 0). A nonuniform mesh is gener-
ated such that near the bottom boundary the mesh is finer. The mesh has
3,055,992 elements and 535,509 vertices. The average mesh size near the bot-
tom surface is h = 5.64× 10−2 and the time step size is δt = 2× 10−4. Other
parameters used are as follows: λρ = 0.001, λη = 0.1, λls = 1, Re = 1000,
θs = 50◦, ǫ = 0.02, B = 12, Ld = 5 × 10−4, Vs = 500, Ls = 0.038, and
s = 1.5. The initial condition and the droplet spreading at t = 0.4 as well as
a sample partition are shown in Fig 1.

(a) (b) (c)

Fig. 1 (a) Initial condition, (b) the evolution of interface at t = 0.4, and (c) a sample

partition into 16 subdomains for the droplet spreading case.

We next consider a flow of two immiscible fluids (red represents fluid 1 and
blue represents fluid 2) in a bumpy channel is driven by the pressure gradient
between the inflow boundary (x = −0.5, p = 4000) and the outflow boundary
(x = 0.5, p = 0). The other boundaries are solid surfaces. The computational
domain is [−0.5, 0.5]× [−0.075, 0.075]× [−0.075, 0.075], and the radius of the
cylinder bumps is 0.05. The mesh has 588,696 elements and 113,457 vertices.
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The average mesh size is h = 9.15×10−3 and the time step size is δt = 10−4.
Other parameters are as follows: λρ = 0.1, λη = 0.1, λls = 10, Re = 100,
θs = 120◦, ǫ = 0.005, B = 12, Ld = 5 × 10−4, Vs = 200, Ls = 0.0025, and
s = 1.5. The initial condition and the evolution of interface at t = 0.28 as
well as a sample partition are shown in Fig 2.

(a) (b) (c)

Fig. 2 (a) Initial condition, (b) the evolution of interface at t = 0.28, and (c) a sample

partition into 8 subdomains for the bumpy channel flow case.

3.1 Parallel performance

In this subsection, we focus on the bumpy channel flow case and report the
parallel performance of the proposed solution algorithm. The scalability tests
are performed on the Tianhe 2 supercomputer which ranks # 2 on the latest
Top 500 list. Each node of Tianhe 2 has 24 processors and 64 GB memory.
For the rest of the section, “np” denotes the number of processors, “GMRES”
and “CG” denote the average number of GMRES and CG iterations per time
step, respectively. “sp.” represents the speedup. All timings are reported in
seconds. The restart value of GMRES is fixed at 50. 10−6 is used as the
relative stopping condition for linear solvers.

The unstructured mesh has 301,412,352 elements and 51,270,353 vertices.
We focus on how different levels of ILU fill-ins in the subdomain solver of
Schwarz preconditioner affect the parallel efficiency. The overlapping size is
fixed to 1. The number of processors increases from np = 1,920 to 5,760
to 9,600. The results for different levels of ILU fill-ins at different np are
summarized in the first 8 columns in Table 1. The results show that at least
2 levels of ILU fill-ins are needed for the Cahn-Hilliard system. Increasing the
level of fill-ins helps reducing the number of GMRES iterations, this effect
is more obvious for the Cahn-Hilliard system. However, higher level of fill-
ins may cost more computation time. The table also suggests that ILU(3) is
the best choice for the Cahn-Hilliard system and ILU(1) is the best choice
for the velocity system. We have also considered the effect of varying the
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Table 1 The average number of iterations, compute time per time step, and speed up for

solving Cahn-Hilliard system, the velocity system, and the pressure system.“-” means the
case fails to converge.

Cahn-Hilliard system velocity system pressure system

#unknowns=102,540,706 #unknowns=153,811,059 #unknowns=51,270,353

np subsolve GMRES time sp. GMRES time sp. sweep CG time sp.

1,920 ILU(1) 441.4 21.36 1 35 13.72 1 1 24.1 2.74 1

1,920 ILU(2) 39.9 4.36 1 26.7 17.18 1 2 20.2 3.31 1
1,920 ILU(3) 12.7 3.60 1 17.2 25.61 1 3 19.8 3.92 1

5,760 ILU(1) - - - 30 4.57 3.00 1 24.1 1.15 2.38

5,760 ILU(2) 42.2 1.80 2.42 13.1 6.06 2.83 2 20.7 1.42 1.63

5,760 ILU(3) 13.4 1.43 2.52 7 9.38 2.73 3 19.7 1.66 2.36

9,600 ILU(1) - - - 29.8 3.38 4.06 1 24.8 0.95 2.88

9,600 ILU(2) 40.6 1.29 3.38 14.3 4.27 4.02 2 21 1.13 2.92

9,600 ILU(3) 13.7 1.09 3.30 9.8 6.63 3.86 3 19.9 1.34 2.93

number of sweeps of the smoother in the AMG preconditioner for solving the
pressure system. The last 4 columns in Table 1 shows that the number of CG
iterations seems to be independent of np for all cases. However, increasing the
number of sweeps does not improve the convergence of the linear solver much
but requires more computational time, therefore one sweep of smoother is
preferable for the multigrid method. Combining the above choices, we present
the speedups and computational time for each system (marked as “total”
including Step 1, 3, and 4 of the algorithm) starting from 1,440 processors
in Fig 3. Excellent speedup is achieved when np is up to 2,880 and the final
speedup is 4.39 out of 6.67 on a fixed-size system which is reasonably good.
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Fig. 3 Speedup (a) and distribution of total compute time (b) for the two-phase flow in

a bumpy channel.

344 Li Luo, Qian Zhang, Xiao-Ping Wang, Xiao-Chuan Cai



4 Conclusions

In this paper we introduce a parallel finite element method on 3D unstruc-
tured meshes for the two-phase flow problem modelled by a phase-field model
consisting of the coupled Cahn-Hilliard and Navier-Stokes equations. A re-
stricted additive Schwarz preconditioned GMRES method is used to solve the
systems arising from implicit discretization of the Cahn-Hilliard equation and
the velocity equation, and an algebraic multigrid preconditioned CG method
is used to solve the pressure Poisson system. Numerical experiments suggest
that the overall algorithm scales well on unstructured meshes for problem-
s with up to 150 millions unknowns and on machines with close to 10,000
processors.
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Two new enriched multiscale coarse
spaces for the Additive Average
Schwarz method

Leszek Marcinkowski1 and Talal Rahman2

1 Introduction

We propose additive Schwarz methods with spectrally enriched coarse spaces
for the standard finite element discretization of second order elliptic problems
with highly varying and discontinuous coefficients. Such discontinuities may
occur arbitrarily both inside and across subdomains. The convergence of the
proposed methods depend linearly on the mesh parameter ratio H/h, and is
independent of the distribution of the coefficient in the model problem when
the coarse space is large enough. For similar work on domain decomposition
methods addressing such problems, we refer to Galvis and Efendiev [2010],
Spillane et al. [2014] and references therein.

The present method is an extension of a classical and an almost twenty
years old additive Schwarz method, also known as the additive average
Schwarz method, which was first proposed and analyzed in Bjørstad et al.
[1997] for problems where the coefficients are constant in each subdomain,
and later analyzed for varying coefficients in Dryja and Sarkis [2010]. The
condition number bound as shown in the last paper, depends quadratically
on the mesh parameter ratio, and linearly on the contrast, that is the ratio
between the maximum and the minimum value of the coefficient, in each
subdomain boundary layer. Recently, the additive average Schwarz method
has been extended to the case of Crouzeix-Raviart finite volume elements
where, again, demonstrating that the method is robust with respect to coeffi-
cients varying inside the subdomain but not along the subdomain boundary;
cf. Loneland et al. [2015a,b]. It is clear that, with standard coarse spaces
it is hard to make an additive Schwarz method robust with respect to the
contrast, unless some way of enrichment of the coarse spaces has been made.

1. Faculty of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland,

Leszek.Marcinkowski@mimuw.edu.pl · 2. Faculty of Engineering, Bergen University Col-
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Additive Schwarz methods for solving elliptic problems discretized by the
finite element method have been studied extensively; see Toselli and Widlund
[2005] for an overview. There are now several works on the additive average
Schwarz method which exist in the literature, see e.g. Bjørstad et al. [1997],
Dryja and Sarkis [2010].In the present work, borrowing some of the main
ideas of Bjørstad and Krzyżanowski [2002], Chartier et al. [2003], Spillane
et al. [2014], Galvis and Efendiev [2010], Klawonn et al. [2015], we propose
to enrich the classical coarse space of the additive average Schwarz method
by using a set of eigenfunctions of specially designed generalized eigenvalue
problem in each subdomain. Those functions correspond to the eigenvalues
that are larger than a given threshold. The analysis shows that the condition
number bounds of the enriched method depend only on the threshold and the
mesh parameter ratio. So, by enriching the coarse space, we are able to make
the condition number to be independent of the contrast, thereby restore the
bound which is known to be true for the case of piecewise constant coefficients.

The remainder of the paper is organized as follows: in Section 2, we in-
troduce our model problem, and the finite element discrete formulation. Sec-
tion 3 describes the classical Additive Average Schwarz method. In Section 4,
we propose the two locally generalized eigenvalue problems in each subdo-
main, and show how we use their eigenfunctions to enrich the average coarse
space of the method. In Section 5, we discuss the convergence of the method
with the enrichment, and present some of the numerical results in Section 6.

2 Discrete Problem

In this paper we consider the following model elliptic partial differential equa-
tion:

−∇ · (α(x)∇u) = f in Ω, u = 0 on ∂Ω, (1)

where Ω is a polygonal domain in R2 and f ∈ L2(Ω).
Let Th be a quasi-uniform triangulation of Ω consisting of closed triangle

elements such that Ω̄ =
⋃

K∈Th
K. Let hK be the diameter of K, and define

h = maxK∈Th
hK as the largest diameter of the triangles K ∈ Th. We assume

that there exists a nonoverlapping partitioning of Ω into open and connected
Lipschitz polytopes {Ωi}, such that Ω =

⋃N
i=1Ωi, which are aligned with

the fine triangulation implying that an element of Th can only be contained
in one of the substructures Ωi. Each subdomain then inherits a unique local
triangulation Th(Ωk) from Th. We also assume that the set of these subdo-
mains form a coarse triangulation of the domain, which is shape regular in
the sense of Brenner and Sung [1999]. We define the sets of nodal points Ωh,
∂Ωh, Ωih and ∂Ωih as the sets of vertices of the elements of Th belonging to
the regions Ω, ∂Ω, Ωi and ∂Ωi, respectively.
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Let Sh be the standard continuous piecewise linear finite element space
defined on the triangulation Th,

Sh = Sh(Ω) := {u ∈ C(Ω) ∩H1
0 (Ω) : v|K ∈ P1, K ∈ Th}.

The finite element approximation uh of (1) is then defined as the solution to
the following discrete problem: Find u∗h ∈ Sh such that

a(u∗h, v) = (f, v) , ∀v ∈ Sh, (2)

where a(u, v) =
∑

K∈Th

∫
K
α∇u∇v dx. Through scaling we can assume

that α(x) ≥ 1. Also, since ∇u and ∇v are both piecewise constant on
the elements of Th, a(u, v) restricted to each element K can be written as∫
K
α∇u∇v dx = (∇u)|K(∇v)|K

∫
K
α(x) dx, and hence we can assume that α

is piecewise constant on each element of Th.

3 The classical Additive Average Schwarz method

In this section we introduce the Additive Average Schwarz method for the
discrete problem (2).

We first introduce the average coarse space. For u ∈ Sh(Ω), we define the
average operator Iavu ∈ Sh(Ω) as

Iavu :=

{
u(x), x ∈ ∂Ωih,

ūi, x ∈ Ωih,
i = 1, . . . , N, (3)

where

ūi :=
1

ni

∑

x∈∂Ωi,h

u(x). (4)

Here, ni is the number of nodal points on ∂Ωi, i.e., ūi is the discrete average
of u over the boundary of the subdomain Ωi.

The coarse space V0 is defined as the image of the operator Iav, i.e.,

V0 := Im(Iav). (5)

Now, to introduce the local spaces, let Sh,k be the restriction to Ωk of the
function space Sh, i.e., Sh,k = {v ∈ C(Ωk) : v|τ ∈ P1, τ ∈ Th(Ωk), v|∂Ω =
0},and the corresponding local subspace with zero boundary condition be
S0
h,k = Sh,k ∩H1

0 (Ωk). Then we let the local spaces Vk to be equal to S0
h,k.

We decompose the finite element space Sh into Sh(Ω) = V0 +
∑N

k=1 Vk.
Note that this is a direct sum of the subspaces. However, only the local

spaces are a-orthogonal to each other.
For i = 0, . . . , N we define projection like operators Ti : Sh → Vi, as
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a(Tiu, v) = a(u, v) ∀v ∈ Vi. (6)

Now introducing T := T0 +
∑N

k=1 Tk, we can replace the original problem by
the equation

Tu∗h = g, (7)

where g =
∑N

i=0 gi and gi = Tiu. gi is computed without knowing the solution
u∗h of (2):

ai(gi, v) = (f, v) ∀v ∈ Vi.

The bilinear form ai(·, ·) is the restriction of a(·, ·) to Ωi.

4 Eigenvalue problems

In this section, we introduce the two generalized eigenvalue problems. We
propose an extension of the coarse space by including some extensions of se-
lected eigenfunctions of those problems in order to obtain better convergence
properties of the method.

Ωk

Ωk,δ

Fig. 1 The layer corresponding to the subdomain Ωk, consisting of elements (triangles)

of Th(Ωk) touching the subdomain boundary ∂Ωk.

The layer corresponding to the subdomain Ωk, consisting of elements of
Th(Ωk) touching the boundary ∂Ωk, is denoted by Ωk,δ, cf. Fig.1. For each
subdomain and its layer, we define the maximum and the minimum values
of the coefficient α as the following:

αk,δ := sup
x∈Ω̄k,δ

α(x), αk,δ := inf
x∈Ω̄k,δ

α(x),

αk := sup
x∈Ω̄k

α(x), αk := inf
x∈Ω̄k

α(x).
(8)
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The generalized eigenvalue problem is then defined as follows, with p as a
superscript referring to the type of the problem: Find (λk,pj , ψk,p

j ) ∈ R+×S0
h,k

such that

ak(ψ
k,p
j , v) = λk,pj b

(p)
k (ψk,p

j , v), ∀v ∈ S0
h,k, p = 1, 2, (9)

where the bilinear forms are defined as

ak(u, v) = a|Ωk
(u, v) =

∫

Ωk

α∇u∇v dx, (10)

b
(1)
k (u, v) = αk(∇u,∇v)L2(Ωk), (11)

b
(2)
k (u, v) = αk,δ

∫

Ωk,δ

∇u∇v dx+

∫

Ωk\Ωk,δ

α∇u∇v dx, (12)

with αk and αk,δ being defined as in (8). Further, we extend ψk,p
j to the rest of

Ω by zero, and denote it by the same symbol; cf. also (13). We order the eigen-
values in the decreasing order as λk1 ≥ λk2 ≥ . . . λkMk

where Mk = dim(S0
h,k).

Then those bounds on the eigenvalues are true: 1 ≤ λk,pj ≤ Cp,where C1 = αk

αk

and C2 =
αk,δ

αk,δ
. Now define the local spectral component of the coarse space

by
V p
k,0 = Span(ψk,p

j )nk
j=1 k = 1, . . . , N, p = 1, 2, (13)

where nk ≤ Mk = dim(S0
h,k) is preset by the user or chosen adaptively for

each subdomain. By adding this spectral component to the average coarse

space, we propose a new and enriched coarse space defined as V
(p)
0 = V0 +∑N

k=1 V
p
k,0, p = 1, 2.Accordingly, the new coarse operator T

(p)
0 : Sh → V p

0 is
defined as

a(T
(p)
0 u, v) = a(u, v) ∀v ∈ V

(p)
0 , p = 1, 2. (14)

With the local operators Tk, k = 1, . . . , N from the previous section, the new

additive Schwarz operator T (p) becomes T (p) = T
(p)
0 +

∑N
k=1 Tk. The problem

(2) is then replaced by the following ones:

T (p)u∗h = g(p) p = 1, 2, (15)

where gp = g
(p)
0 +

∑
k gk with g

(p)
0 = T

(p)
0 u∗h and gk = Tku

∗
h for k = 1, . . . , N .

5 Condition number estimates

In this section, we provide theoretical bounds on the condition number of our
method. The bounds are formulated in the following theorem.

Theorem 1. For p = 1, 2 it holds that
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c

(
min
k

1

λk,pnk+1

)
h

H
a(u, u) ≤ a(T (p)u, u) ≤ C a(u, u), ∀u ∈ Sh,

where C, c are positive constants independent of the coefficient α, h and H =
maxk=1,...,N diam(Ωk).

The proof is based on the abstract framework for the additive Schwarz
method, cf. e.g. Toselli and Widlund [2005].

Remark 1. In the original paper, cf. Bjørstad et al. [1997], where the authors
assume that α is constant in each subdomain, the bound obtained for the
Additive Average Schwarz method has the form: cond(T ) ≤ CH

h . For the
multiscale problem, the bound as given in the paper Dryja and Sarkis [2010]

has the following form: cond(T ) ≤ Cmaxk
αk

αk

(
H
h

)2
.

Remark 2. If α is piecewise constant in each subdomain Ωk, both eigenvalue
problems become trivial, having only one eigenvalue which is equal to one.
If the coefficient is constant in the boundary layers Ωk,δ, although varying

inside, in which case
αk,δ

αk,δ
= 1, the only eigenvalue of the second type of

eigenvalue problem (p = 2) is also equal to one.

6 Numerical experiments

For the numerical experiment we choose our model elliptic problem to be
defined on a unit square, with homogeneous boundary condition and f(x) =
2π2 sin(πx)sin(πy). For the coefficient α, we chose the following distribution,
consisting of a background, channels crossing inside and stretching out of a
subdomain, and inclusions along the boundary of a subdomain placed at the
corners, where α takes different values. αb, αc, and αi are the values of α
respectively in the background, in the channels, and in the inclusions. We
have chosen one particular distribution of the coefficient for this paper, cf.
Fig. 2.

❅
❅h

H
1/3 1/6 1/12 1/3 1/6 1/12

1/24 34 (5.73e1) 16 (1.46e1)
1/48 56 (1.31e2) 49 (5.32e1) 28 (3.30e1) 25 (1.36e1)

1/96 76 (2.80e2) 84 (1.20e2) 55 (5.35e1) 37 (7.04e1) 44 (3.03e1) 28 (1.36e1)

Table 1 Number of iterations and a condition number estimate (in parentheses) for each

case, for the average Schwarz method, is shown. The left block of results correspond to
the additive version, while the right block corresponds to the multiplicative version of the

average Schwarz method. αb = 1, αc = 1e4, and αi = 1e6.
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Fig. 2 Discretization and coarse partitioning of the unit square with different mesh sizes.

The mesh size ratio H
h

are the same in this figure. Coefficient distribution includes both

crossing channels and inclusions on the subdomain boundary.

none 2 4 6 8 10

Add 299 (2.72e6) 321 (7.98e5) 197 (1.36e4) 118 (7.10e3) 46 (4.48e1) 46 (4.44e1)

Mlt 159 (6.79e5) 163 (2.00e5) 99 (3.38e3) 59 (1.78e3) 23 (1.15e1) 23 (1.14e1)

Table 2 Number of iterations and a condition number estimate (in parentheses) for each

case is shown. The first line (Add) of results correspond to the additive version, while the

second line (Mlt) corresponds to the multiplicative version of the method. αb = 1, αc = 1e4,

and αi = 1e6. Each column corresponds to the number of eigenfunctions (preset) used in

each subdomain for the test.

The results are presented in tables 1-2 using the average Schwarz method
with the type 2 generalized eigenvalue problem. The tables show the number
of iterations required to reduce the residual norm by 5e-6, and a condition
number estimate (in parentheses), in each test case. Both the additive and
the multiplicative version of the average method have been tried, the latter
one converges twice as fast as the former one.

As seen from the first table, the proposed method is scalable and the
condition number grow as the ratio H

h . For this table the eigenfunctions were
chosen adaptively in each subdomain, those corresponding to the eigenvalues
greater than 100. As we know it from the analysis that there is a minimum
number of eigenfunctions (corresponding to the bad eigenvalues) that should
be added in the enrichment for the method to be robust with respect to the
contrast. For the distribution shown in Fig. 2, this number is eight as seen
from the second table. In the adaptive version, cf. the same test case in Table
1, the maximum number of eigenfunctions that were used in this particular
case was also eight.
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Relaxing the roles of corners in BDDC
by perturbed formulation

Santiago Badia1,3 and Hieu Nguyen2,3

1 Introduction

The Balancing Domain Decomposition by Constraints (BDDC) method was
first introduced by Dohrmann [2003]. Compared to its parent, the BDD
method by Mandel [1993], one of the advances in BDDC method is the use of
constraints to enforce equality of averages across faces, edges, or at individual
dofs on substructure boundaries called corners. These constraints serve two
purposes. First, they ensure that the coefficient matrix of the coarse problem
is always invertible. Second, they induce a natural coarse space leading to fast
convergence. While corner constraints do not have significant contribution in
serving the second purpose, they are mainly responsible for the first one.
In addition, in order to use positive definite sparse direct solvers, which are
faster and more robust than their indefinite counterparts, the corners should
be chosen so that the local matrix sub-assembled for all dofs in each substruc-
ture except corners is positive definite. Here we do not consider a change of
basis, cf. Li and Widlund [2006], as it destroys good sparsity pattern of local
matrices and is more complicated to implement.

Different corner selection algorithms have been proposed by Dohrmann
[2003], Lesoinne [2003], Klawonn and Widlund [2006], Š́ıstek et al. [2012] to
guarantee such choices of corners. However, based on our experience, the im-
plementation of this type of algorithms is an involved and time-consuming
task, which does depend on the physical problem to be solved and also the
type of FE formulation being used. Furthermore, the situation becomes far
more complicated when subdomains are disconnected, or only connected by
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Spain.
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corners or edges. Unfortunately, the currently available parallel mesh parti-
tioners, ParMETIS by Karypis et al. [1997] and PT-Scotch by Chevalier and
Pellegrini [2008], cannot guarantee connected subdomains.

In this paper, we present a perturbed formulation of the BDDC method
where the coarse coefficient matrix and the local stiffness matrices are guar-
anteed to be positive definite. For this new formulation, corner constraints are
optional and should be selected only for convergence purpose. Consequently,
one can consider much smaller coarse problems, only involving faces and/or
edges. This is particularly important when dealing with unstructured meshes
and partitions generated by mesh partitioners, due to the proliferation of cor-
ners. Since the coarse problem is the bottleneck that can destroy scalability,
these strategies are better suited for large scale simulations.

The presentation of this paper is concise, engineering-friendly and useful to
quickly absorb the of essential ideas of the method for implementation. For a
full mathematical treatment with complete analysis and additional numerical
experiments, we refer the reader to Badia and Nguyen [2016].

2 BDDC Overview

Even though our results do apply for linear elasticity, our presentation, due
to limited space, only features Poisson’s equation: find u(x) ∈ H1

0 (Ω), for a
given polygonal (polyhedral) domain Ω ⊂ Rn, n = 2, 3 and a source term
f(x) ∈ L2(Ω), such that

∫

Ω

∇u(x) · ∇v(x) dx

︸ ︷︷ ︸
≡a(u,v)

=

∫

Ω

f(x)v(x) dx

︸ ︷︷ ︸
≡(f,v)

, for all v(x) ∈ H1
0 (Ω). (1)

Let Th be a shape-regular mesh of size h of Ω. Discretizing (1) using the
space Vh ⊂ H1

0 (Ω) of linear piecewise polynomials defined on Th, we arrive
at the following system of equations:

Au = f. (2)

Let us also consider a nonoverlapping partition of Ω into subdomains,
also known as substructures, Ω̄ = ∪J

j=1Ω̄j with the inter-subdomain interface

Γ = ∪J
j=1∂Ωj\∂Ω. We assume that the partition is quasi-uniform, and the

subdomains are obtained by aggregation of elements in Th. We denote Hi, or
generically H, the size of Ωi.

Let K(i) be the stiffness matrix associated with substructure Ωi. It should
be noted that K(i) is symmetric positive semidefinite and is singular when
Ωi is a floating subdomain (∂Ωi ∩ ∂Ω = ∅).
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Denote by Ri the global to local mapping that restrict any vector u to its
local counterpart ui, i.e., ui = Ru. It follows that

A = RTKR, where R = [RT
1 . . . RT

N ]T , K = diag(K(1), . . . ,K(N)).

For simplicity, we assume that interior dofs are always ordered before
interface dofs, namely

u = [uT
I uT

Γ ]
T , uI = RIu, uΓ = RΓu.

This leads to the following reordered block structures

A =

[
AII AIΓ

AΓI AΓΓ

]
, K =

[
AII KIΓ

KΓI KΓΓ

]
, and K(i) =

[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI K

(i)
ΓΓ

]
.

The BDDC preconditioner for solving the linear system (2) is completely
defined by a weight matrix W = diag(W (1), . . . ,W (N)) and a constraint
matrix C. The matrix W forms a partition of unity, namely

RTWR =
N∑

i=1

RT
i W

(i)Ri = I.

We can now find the matrix of energy minimizing coarse basis functions
Ψ and obtain the coefficient matrix of the coarse space Kc as follows

[
K Ct

C 0

]

︸ ︷︷ ︸
Kbig

[
Ψ
Λ

]
=

[
0
Rc

]
, Kc = ΨTKΨ. (3)

Finally, the BDDC preconditioner is formulated as

PBDDC = P1 + (I − P1A)P2(I −AP1), (4)

P1 = RT
I A

−1
II RI , P2 = RTW (ΨK−1

c ΨT + P3)WR, (5)

where P3 is defined by

[
K Ct

C 0

] [
P3v
λ

]
=

[
v
0

]
, ∀v. (6)

For more details of the formulation and implementation of the BDDC
method, we refer the reader to Dohrmann [2003, 2007], Badia et al. [2014].
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3 Perturbed BDDC

Preconditioner formulation. Let K̃ = diag(K̃(1), . . . , K̃(N)) be a pertur-

bation of K. Assume that K̃ satisfies the following assumptions:

Assumption 1 There exists two constant CL and CU which are independent
of the size of the domain (d), the size of the subdomains (H), and the number
of the subdomains (N) such that

CL vTKv ≤ vT K̃v ≤ CU vTKv, for all v of appropriate size.

Assumption 2 The matrix K̃(i) is symmetric positive definite (s.p.d) for
all i.

Assumption 3 There exists a constant Cℓ which is independent of the size
of the domain (d), the size of the subdomains (H), and the number of the
subdomains (N) such that:

Cℓ v
T
i K

(i)vi ≤ vTi K̃
(i)vi, for all vi of appropriate size.

Let Ψ̃ , K̃c, P̃3 be defined similarly to Ψ,Kc, P3 as in (3) and (6), but with

K replaced by K̃. Then the perturbed BDDC preconditioner is given as

P̃BDDC = P1 + (I − P1A)P̃2(I −AP1),

P̃2 = RTW (Ψ̃ K̃−1
c Ψ̃T + P̃3)WR,

Remark 1. If Assumption 2 holds, the matrix K̃ is s.p.d. From (3), it follows

that the coarse matrix K̃c is also s.p.d, thus is invertible. In addition, (3)
and (6) can be solved using positive definite sparse direct solvers when K

is replaced by K̃. Consequently, corner constraints are not required in the
perturbed formulation of BDDC.

Choices of perturbation. We present here two practical choices of per-
turbed local stiffness matrices K̃(i). The first one uses M (i), the mass matrix
associated with subdomain Ωi:

K̃(i) = K(i) +
1

d2
M (i). (7)

The second choice is to use

K̃(i) = K(i) +
Hn−1

i

dn
M

(i)
ΓΓ , (8)

where M
(i)
ΓΓ is the stiffness matrix associated with subdomain Ωi assembled

only for dofs on the interface. We call this choice Robin perturbation because
the local Neumann problem in this case can be posed with Robin boundary
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condition (Hn−1
j /Dn)u+∂u/∂ni = 0, where ni is the outward normal vector

of ∂Ωi.
It is not difficult to verify that the choices of K̃(i) in (7) and (8) satisfy

Assumption 1, Assumption 2 and Assumption 3 with Cℓ = CL = 1 and
CU = 1 + CΩ , where CΩ depends only on the shape of Ω. Details can be
found in Badia and Nguyen [2016].

4 Convergence results

In this section, we present (without proofs) two main convergence results of
the perturbed BDDC method. For detailed mathematical analysis, we refer
the reader to Badia and Nguyen [2016].

Theorem 4. There exist a positive constant C, independent of h, H, N , CU,
CL and Cℓ such that

κ(P̃BDDCA) ≤ C
(CU)

2

CL min{Cℓ, CL}

(
1 + ln

H

h

)2

=
αM

αm
,

where αm = C−1
U and αM is consistently defined.

The proof of this theorem uses the fact that the spectrum of the precondi-
tioned matrix of the whole system P̃BDDCA is the same as the the spectrum
of the preconditioned matrix of the Schur complement B̃BDDCS plus addi-
tional eigenvalues equals 1, cf. Dohrmann [2007], Li and Widlund [2006]. The

estimates for eigenvalues in the spectrum of B̃BDDCS is documented in detail
in Badia and Nguyen [2016].

Remark 2. Theorem 4 indicates that the perturbed BDDC method has the
same polylogarithmic bound for the condition number as the standard one.
The precondition number depends on the local problem size but not on the
number of subdomains. In other word, the method is weakly scalable.

In order to be well-posed, the standard BDDCmethod need to have enough
constraints to exclude all subdomain-wise constant functions for Poisson’s
equation and all rigid body modes for linear elasticity. This is no longer
necessary for the perturbed BDDC method as its well-posedness is automat-
ically guaranteed. However, the perturbed BDDC method still need to have
sufficient constraints to achieve fast convergence.

The following theorem concerns the spectrum of the preconditioned system
of the perturbed BDDC method when not all the subdomain-wise constant
functions or the rigid body modes are excluded.

Theorem 5. Assume that ker(Kbig) 6= ∅ then the spectrum of the precondi-
tioned system, counting multiplicities, can be decomposed as

358 Hieu Nguyen, Santiago Badia



σ(P̃BDDCA) = A1 ∪ A2, (9)

where |A1| ≤ dim(ker(Kbig)), A1 ⊂ [αm, α̂M ] and A2 ⊂ [αm, αM ]. Here, the
constants αm and αM are defined in Theorem 4, and α̂M > αM .

Remark 3. When the constraints fail to eliminate a small number of subdomain-
wise constant functions or rigid body modes, namely ker(Kbig) 6= ∅ and
dim(ker(Kbig)) is small, Theorem 5 indicates that most of the eigenvalues of
the preconditioned system can still be bounded by the usual bounds as in the
case with sufficient constraints. Some of the remaining eigenvalues might be
larger than the usual upper bound. However, they are isolated (the number
of them is bounded from above by dim(ker(Kbig)). As large isolated eigenval-
ues can only delay the convergence of the CG method by few iterations, cf.
Axelsson and Lindskog [1986], the perturbed BDDC method is still scalable.

5 Numerical Experiments

Both the standard and the perturbed BDDC preconditioners with different
options of constraints will be used to solve (2) by the CGmethod. The number
of CG iterations and the time (in second) to reduce the residual by at least
a factor of 1e-6 will be reported.

In figures, legends C, E and F are used to indicate corner, edge and face
constraints, respectively. The suffix 0 is for the standard BDDC formulation
(no perturbation). The suffix CD is to emphasize that the corner selection
algorithm by Š́ıstek et al. [2012] and the standard BDDC formulation are
used. If the legend is without a suffix, it represents a result with a perturbed
BDDC formulation and that no corner selection algorithm is involved.

We present only results for perturbation by full mass matrices. For results
using a Robin perturbation, we refer to Badia and Nguyen [2016]. It is worth
noting that the results of the two choices are very close.

We consider (1) with Ω being the unit cube and elasticity of a beam
[0 2] × [0 0.5] × [0 0.5]. For the latter, (homogeneous) Dirichlet boundary
condition is only imposed on one side of the beam (the plane x = 0).

We use uniform structured hexahedral meshes which are partitioned into
k × k × k, k = 3, . . . , 11 (Poisson’s problem) and 4k × k × k, k = 2, . . . , 11
(elasticity) cubic subdomains. For weak scability tests, when k increases ( H
decreases), we use smaller mesh size, h, to keep H/h constant.

From Fig. 1 and Fig. 2, we can conclude that the perturbed BDDCmethod,
for all the considered choices of constraints, is weakly scalable, namely the
numbers of iterations are almost constant when the number of subdomains
increases. The performance of the perturbed BDDC method in both iteration
number and time are also very close to those of the standard BDDC method.

Among different choices of constraints, the ones with larger coarse spaces,
cf. Fig. 3, requires fewer number of iterations, as expected. However, when N ,
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the number of subdomains is large, options with smaller coarse spaces, such
as E or F, perform better in time. This is due to the fact that the size of the
coarse problem increases as N increases. Consequently, when N increases,
the cost of solving the coarse problem become more and more dominant and
eventually dictates the time performance as coarse tasks and fine tasks are
overlapped in advanced implementation of BDDC methods, cf. Badia et al.
[2014]. This phenomena exhibits earlier for smaller local problem size (H/h)
and options with larger coarse spaces. Therefore, options with edge or/and
face constraints only are better suited for solving large scale problems. We
emphasize that these options are only available for perturbed BDDC method.
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Fig. 1 Poisson’s equation: Perturbation with full mass matrices.
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Fig. 2 Elasticity of a beam: Perturbation with full mass matrices.
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Simulation of Blood Flow in
Patient-specific Cerebral Arteries with
a Domain Decomposition Method

Wen-Shin Shiu1, Zhengzheng Yan1, Jia Liu1, Rongliang Chen1, Feng-Nan
Hwang2 and Xiao-Chuan Cai3

1 Introduction

The high morbidity and mortality of stroke has caused a social and economic
burden in contemporary society. The underlying mechanisms of stroke are
not fully understood. Changes of cerebral hemodynamics might be one of the
critical factors that cause stroke. There are several techniques to detect the
hemodynamic alterations, one of which is through computer simulation by
solving partial differential equations that describe the physics of the blood
flow. For example, there are some numerical studies of blood flow through a
total cavopulmonary connection (Bazilevs et al. [2009]), the coronary (Taylor
et al. [2013]), cerebral aneurysms (Boussel et al. [2009], Cebral et al. [2005],
Takizawa et al. [2011]), and cerebrovascular arteries, which is the focus of
this paper (Moore et al. [2005]). In general, solving a fluid flow problem
with complex geometry in 3D is difficult. In this work, we employ a Newton-
Krylov-Schwarz (NKS) algorithm for solving large nonlinear systems arising
from a fully implicit discretization of the incompressible Navier-Stokes equa-
tions using the Galerkin/least squares (GLS) finite element method. NKS has
been applied for simple blood flow model problems previously (Hwang et al.
[2010]). In this work, we apply the algorithm to a patient-specific cerebrovas-
cular problem that is more complicated, since the cerebrovascular artery has
ischaemic stenosis, and the vessel wall is atherosclerotic. The rest of the pa-
per is organized as follows. In the next section, we provide a description of
the governing equations of blood flow in cerebral arteries, the finite element
discretization, and the parallel NKS based solution algorithm. In Section 3,

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen,
Guangdong, 518055, China whsin5@gmail.com, {zz.yan,jia.liu,rl.chen}@siat.ac.cn ·
2Department of Mathematics, National Central University, Jhongli District, Taoyuan City

32001, Taiwan hwangf@math.ncu.edu.tw · 3Department of Computer Science, University
of Colorado, Boulder, CO 80309, USA cai@cs.colorado.edu
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numerical results and parallel performance study are presented. Some con-
cluding remarks are given in Section 4.

2 Blood flow model, discretization, and solution
algorithm

We assume that the blood flow is isothermal, incompressible, Newtonian and
laminar, and modeled by the unsteady Navier-Stokes equations,





ρ

(
∂u

∂t
+ u · ∇u

)
−∇ · σ = 0 in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),
u = 0 on Γwall × (0, T ),
u = g on Γin × (0, T ),
σ · n = 0 on Γout × (0, T ),
u = u0 in Ω at t = 0,

(1)

where u=(u1, u2, u3)
T is the velocity field, ρ is the fluid density, and σ is the

Cauchy stress tensor defined as σ = −pI + 2µD, where p is the pressure,
I is the identity tensor, µ is dynamic viscosity, and the deformation rate
tensor D = 1

2 [∇u + (∇u)T ]. Ω ∈ R3 is the computational domain, with
three boundaries Γin, Γout and Γwall; Γin is the surface of the inlet, Γout

contains the surfaces of all outlets, and Γwall is the vessel wall. To close
the flow system, some proper boundary conditions need to be imposed. We
impose a uniform velocity, g, for the velocity on Γin; a stress-free boundary
condition on Γout, and a no-slip boundary condition on Γwall.

To discretize (1), we employ a P1 − P1 GLS finite element method for
the spatial domain, and an implicit first-order backward Euler scheme for
the temporal domain (Wu and Cai [2014]). The GLS finite element takes the

following form (Franca and Frey [1992]): Find u
(n+1)
h ∈ V g

h and p
(n+1)
h ∈ Ph,

such that
B(u

(n+1)
h , p

(n+1)
h ; v , q) = 0, ∀(v , q) ∈ V 0

h × Ph

with

B(u , p; v , q) =

(
u − u (n)

∆t
+ (∇u)u , v

)
+ (ν∇u ,∇v)− (∇ · v , p)

+
∑

K∈T h

(
u − u (n)

∆t
+ (∇u)u +∇p, τGLS((∇v)u −∇q)

)

K

−(∇ · u , q) + (∇ · u , δGLS∇ · v),

where V 0
h and V g

h are the weighting and trial velocity function spaces respec-
tively. Ph is a linear finite element space for the pressure and used for both
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the weighting and trial pressure function spaces. u (n) is the velocity vector
at the current time step, and u and p (we drop the superscript (n+ 1) here
for simplicity) are unknown velocity and pressure at the next time step. ν
is the kinematic viscosity. ∆t is the time step size. Note that T h = {K}
is a tetrahedral mesh. We use the stabilization parameters τGLS and δGLS

suggested in Franca and Frey [1992]. The GLS formulation can be written as
a nonlinear algebraic system

F (x) = 0, (2)

where x is the vector of nodal values of the velocity and the pressure.
We apply NKS to solve (2). NKS is an inexact Newton method in which the

Jacobian systems are solved by an one-level Schwarz preconditioned Krylov
subspace method, briefly described as follows: Let x(k) be the current approx-
imation of x, and x(k+1) the new approximation computed by the substeps:

Step 1: Solve the following preconditioned Jacobian system approximately
by GMRES to find a Newton direction s(k),

JkM
−1
k y = −F (x(k)), with s(k) = M−1

k y, (3)

where Jk is the Jacobian of F evaluated at Newton step k, and M−1
k is a

right preconditioner.
Step 2: Obtain the new approximation with a linesearch method,

x(k+1) = x(k) + λ(k)s(k), (4)

where λ(k) is a step length parameter.

We define the additive Schwarz preconditioner in the matrix form as

M−1
k =

N∑

i=1

(Rh
i )

TJ−1
i Rh

i ,

where J−1
i is the inverse of the subspace Jacobian Ji = Rh

i J(R
h
i )

T . We denote
Rh

i as the global-to-local restriction operator and (Rh
i )

T as the local-to-global
prolongation operator. The multiplication of J−1

i with a vector is solved by
a direct solver such as sparse LU decomposition or an inexact solver such as
ILU with some level of fill-ins.

3 A case study and discussions

We consider a pair of patient-specific cerebrovascular geometries provided
by the Beijing Tiantan Hospital, as shown in Figure 1. The pair of cerebral
arteries belongs to the same patient before and after the cerebral revascular-
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ization surgery respectively. In Figure 1, the left artery has a stenosis in the
middle, the right figure shows the same artery after the stenosis is surgically
removed. Our numerical simulations provide a valuable tool to understand
the change of the dynamics of the blood flow in the patient and the impact
of the surgery. For convenience, let us denote the artery with a stenosis as
“pre” and the repaired artery as “post”. Table 1 lists the number of vertices,
elements and unknowns of the finite element meshes that we generate for
solving the flow problems.

The blood flow is characterized with density ρ = 1.06 g/cm3, and viscosity
µ = 0.035 g/(cm · s). The inflow velocity profile is shown in Figure 2. The
time step size is ∆t = 10−2 s. For the algorithm parameters, the overlap-
ping size for the Schwarz preconditioner is set to be δ = 1, and subdomain
linear system is solved by ILU(1). The Jacobian system is solved inexactly
by using an additive Schwarz preconditioned GMRES with relative stopping
condition 10−4. We define Newton convergence with a relative tolerance of
10−6 or an absolute tolerance of 10−10. To observe the behavior of the blood
flow in systolic and diastolic phases, we respectively plot the numerical so-
lutions at t = 2.54 s and t = 3.2 s. Figure 3 shows the relative pressure
distributions, and Figure 4 shows the streamlines whose color indicates the
velocity magnitude. We focus on the comparison between the “pre” and

Fig. 1 3D tetrahedral meshes before and after the surgery. The narrowing cerebral artery
with a local refinement at the stenosed segment (left) and the repaired cerebral artery
(right).

Table 1 Mesh information for two cerebrovascular geometries.

Mesh # of vertices # of elements # of unknowns

pre 441,475 2,208,337 1,765,900

post 287,936 1,360,588 1,151,744

“post” cases. Figure 3 shows that the range of the relative pressure value of
the “pre” case is more than double that of the “post” case at the systolic and
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diastolic phases. Moreover, as shown in the same figure, the relative pressure
ratio between the anterior and posterior parts of the stenosed portion in the
“pre” case is large, and the relative pressure value of the “post” case at the
repaired portion has a smaller variation. From the streamline plots, the blood
flow is more disordered in the “pre” case than in the “post” case during both
the diastolic period and the systolic period. In addition, the maximum of the
velocity occurs at the stenosed portion in the “pre” case, and the variation
of the velocity distributions in the repaired portion is quite small. Similar to
the pressure distribution, the range of velocity magnitude of the “pre” case
is wider than the “post” case.

Fig. 2 Inflow velocity profile for 5 cardiac cycles discretized with 500 time steps.

We use the “post” case to test the parallel performance, and the simulation
is carried out for 10 time steps. Numerical results are summarized in Table 2.
“np” is the number of processor cores. “NI” denotes the number of Newton
iterations per time step, “LI” denotes the average number of GMRES itera-
tions per Newton step, “T” represents the total compute time in seconds and
“EFF” is the parallel efficiency. It is clear that for the iteration counts, the
algorithm is not sensitive to the overlapping size δ. For fixed np, the number
of average GMRES iterations decreases as the levels of fill-ins increases. The
number of Newton iterations is almost independent of the overlapping size
for the Schwarz preconditioner and levels of fill-ins of subdomain solvers, and
the average number of GMRES iterations increases slightly as the number of
processor cores grows. Hence, we claim that NKS is quite robust for the test
cases presented in this paper. For the best algorithmic parameter selection
of ILU fill level 2, and small overlap of 0 or 1, about 70% relative efficiency
is achieved in strong scaling between 32 and 128 processor cores.
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Fig. 3 Relative pressure distributions at t = 2.54 s (top) and t = 3.2 s (bottom) for pre
(left) and post (right).

Fig. 4 Streamlines at t = 2.54 s (top) and t = 3.2 s (bottom) for pre (left) and post
(right).
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Table 2 Parallel performance of NKS with up to 128 processor cores.

np subsolver δ NI LI T EFF

32

ILU(0)

0 3 820.5 2860 100 %
1 3 814.1 2650 100 %

2 3 832.3 2805 100 %
3 3 838.2 2761 100 %

ILU(1)

0 2.9 351.8 1698 100 %
1 2.9 351.9 1717 100 %

2 2.9 360.7 1741 100 %
3 2.9 366.5 1805 100 %

ILU(2)

0 2.8 248.2 1563 100 %
1 2.8 248.1 1666 100 %

2 2.8 247.1 1600 100 %
3 2.8 251.2 1663 100 %

64

ILU(0)

0 2.9 828.1 1438 99 %
1 2.9 828.1 1413 94 %

2 3 839.3 1495 94 %
3 3 845.1 1527 90 %

ILU(1)

0 2.9 384.2 966 88 %
1 2.9 384.4 973 88 %

2 2.9 372.0 970 90 %
3 2.9 388.2 1042 87 %

ILU(2)

0 2.8 289.5 931 84 %
1 2.8 290.1 920 91 %

2 2.8 266.3 906 88 %
3 2.8 266.3 941 88 %

128

ILU(0)

0 3 842.9 845 85 %
1 3 843.0 836 79 %

2 3.6 876.5 1089 64 %
3 3.9 914.0 1584 44 %

ILU(1)

0 2.9 428.7 610 70 %
1 2.9 428.2 617 70 %

2 2.9 437.1 719 60 %
3 2.9 443.1 932 48 %

ILU(2)

0 2.8 324.8 570 69 %
1 2.8 324.8 572 73 %

2 2.8 300.9 583 69 %
3 2.8 286.2 596 70 %

4 Concluding remarks

We simulated blood flows in a pair of patient-specific cerebral arteries during
5 cardiac cycles by a fully implicit finite element discretization method and a
Newton-Krylov-Schwarz algebraic solver. The simulations show clearly that
the physics of the blood flow is more complicated before the surgery than
after the surgery, and the stenosis causes a large variation of the pressure and
velocity field. As to the NKS algorithm itself, we showed that the algorithm
is robust with respect to the overlapping size for the Schwarz preconditioner
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and levels of fill-ins of subdomain solvers. A reasonably good scalability is
observed with up to 128 processor cores.
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