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1 Introduction

In this work, we are interested in solving a model elliptic optimal control problem
of the following form: Find (H, D) ∈ �1

0 (Ω) × !2 (Ω) that minimize the functional

� (H, D) = 1
2

∫
Ω

(H − 5 )23G + V
2

∫
Ω

D23G

subject to
−ΔH = D in Ω, H = 0 in mΩ, (1)

and H ≤ k inΩ, whereΩ is a convex polygon in R2 and 5 ∈ !2 (Ω).We also assume
k ∈ �2 (Ω) ∩ �3 (Ω) and k > 0 on mΩ.

Using elliptic regularity (cf. [7]) for (1), we can reformulate the model problem
as follows: Find H ∈  such that

H = argmin
E∈ 

[
1
2
0(E, E) − ( 5 , E)

]
, (2)

where  = {E ∈ �2 (Ω) ∩ �1
0 (Ω) : E ≤ k in Ω},

0(F, E) = V
∫
Ω

ΔFΔE3G +
∫
Ω

FE3G and ( 5 , E) =
∫
Ω

5 E3G.

Once H is calculated, then D can be determined by D = −ΔH.
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The minimization problem (2) is discretized in [4] by a partition of unity method
(PUM). The goal of this paper is to use the ideas in [5] for an obstacle problem
of clamped Kirchhoff plates to develop preconditioners for the discrete problems in
[4]. We refer to these references for technical details and only present the important
results here.

2 The Discrete Problem

We will use a variant of the PUM (cf. [11, 8, 1, 12]) to construct a conforming
approximation space +ℎ ⊂ �2 (Ω) ∩ �1

0 (Ω). Below we present an overview of the
construction of +ℎ .

Let {Ω8}=8=1 be an open cover of Ω̄ such that there exists a collection of nonnegative
functions {q8}=8=1 ∈ ,2∞ (R2) with the following properties:

supp q8 ⊂ Ω8 for 1 ≤ 8 ≤ =,
=∑
8=1

q8 = 1 on Ω,

|q8 |,<∞ (R2) ≤
�

(diamΩ8)< for 0 ≤ < ≤ 2, 1 ≤ 8 ≤ =.

For 1 ≤ 8 ≤ =, the local approximation space +8 consists of biquadratic polyno-
mials satisfying the Dirichlet boundary conditions of (1), i.e. E = 0 on mΩ for all
E ∈ +8 . Basis functions for +8 are tensor product Lagrange polynomials. Figure 1
(b) shows an illustration that depicts the interpolation nodes corresponding to the
interior degrees of freedom for a given discretization.

In this work the patches {Ω8}=8=1 are open rectangles and {q8}=8=1 are�
1 piecewise

polynomial tensor product flat-top partition of unity functions. Ωflat
8

= {G ∈ Ω8 :
q8 (G) = 1}. The interpolation nodes associated with +8 are distributed uniformly
throughout Ωflat

8
, this is the reason the global basis functions have the Kronecker

delta property. We will assume that the diameters of the patches are comparable to
a mesh size ℎ.We now define

+ℎ =

=∑
8=1

q8+8 .

Let Nℎ be the set of all interior interpolation nodes used in the construction of
+ℎ . The discrete problem is to find Hℎ ∈  ℎ such that

Hℎ = argmin
E∈ ℎ

[
1
2
0(E, E) − ( 5 , E)

]
, (3)

where  ℎ = {E ∈ +ℎ : E(?) ≤ k(?) ∀? ∈ Nℎ}.
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(b)

Fig. 1: (a) Ω8 (bounded by dotted lines) and Ωflat
8

(shaded in grey)
(b) nodes for the interior DOFs

By introducing a Lagrange multiplier _ℎ : Nℎ → R, the minimization problem
(3) can be rewritten in the following form: Find Hℎ ∈  ℎ such that

0(Hℎ , E) − ( 5 , E) = −
∑
?∈Nℎ

_ℎ (?)E(?) ∀ E ∈ +ℎ ,

_ℎ (?) = max(0, _ℎ (?) + 2(Hℎ (?) − k(?))) ∀ ? ∈ Nℎ ,

where 2 is a (large) positive number (2 = 108 in our numerical experiments).
This system can then be solved by a primal-dual active set (PDAS) algorithm (cf.
[2, 3, 9, 10]). Given the :-th approximation (H: , _: ), the (: + 1)-st iteration of the
PDAS algorithm is to find (H:+1, _:+1) such that

0(H:+1, E) − ( 5 , E) = −
∑
?∈Nℎ

_:+1 (?)E(?) ∀E ∈ +ℎ ,

H:+1 (?) = k(?) ∀? ∈ A: , (4)
_:+1 (?) = 0 ∀? ∈ Nℎ\A: ,

where A: = {? ∈ Nℎ : _: (?) + 2(H: (?) − k(?)) > 0} is the set of active nodes
determined from the approximations (H: , _: ). Below we present preconditioners for
the linear systems encountered in (4).

3 The Preconditioners

The additive Schwarz preconditioners (cf. [6]) will be applied to a system associated
with a subset Ñℎ of Nℎ . Let )̃ℎ : +ℎ → +ℎ be defined by
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()̃ℎE) (?) =
{
E(?) if ? ∈ Ñℎ

0 if ? ∉ Ñℎ .

The approximation space for the subproblem is +̃ℎ = )̃ℎ+ℎ . The associated stiffness
matrix is a symmetric positive definite operator �̃ℎ : +̃ℎ → +̃ ′

ℎ
defined by

〈�̃ℎE, F〉 = 0(E, F) ∀ E, F ∈ +̃ℎ ,

where 〈·, ·〉 is the canonical bilinear form on +̃ ′
ℎ
× +̃ℎ .

AOne-LevelMethod Here we introduce a collection of shape regular subdomains
{� 9 }�9=1 with diam � 9 ≈ � that overlap with each other by at most X. Associated
with each subdomain is a function space + 9 ⊂ +̃ℎ whose members vanish at the
nodes outside � 9 . Let � 9 : + 9 → + ′

9
be defined by

〈� 9E, F〉 = 0(E, F) ∀E, F ∈ + 9 .

The one-level additive Schwarz preconditioner �OL : + ′
ℎ
→ +ℎ is defined by

�OL =

�∑
9=1

� 9�
−1
9 �

C
9 ,

where � 9 : + 9 → +̃ℎ is the natural injection.
Following the arguments in [5], we can obtain the following theorem.

Theorem 1 There exists a positive constant �OL independent of �, ℎ, �, X and #̃ℎ
such that

^(�OL �̃ℎ) ≤ �OLX
−3�−1.

Remark 1 The estimate given in Theorem 1 is identical to the one for the plate
bending problem without an obstacle, i.e., the obstacle is invisible to the one-level
additive Schwarz preconditioner.

ATwo-LevelMethod Let+� ⊂ �2 (Ω)∩�1
0 (Ω) be a coarse approximation space

based on the construction in Section 2 where � > ℎ.We assume the patches of +�
are of comparable size to the subdomains {� 9 }�9=1. Let Πℎ : �2 (Ω) ∩�1

0 (Ω) → +ℎ

be the nodal interpolation operator. We define +0 ⊂ +̃ℎ by +0 = )ℎΠℎ+� , and
�0 : +0 → + ′0 by

〈�0E, F〉 = 0(E, F) ∀ E, F ∈ +0.

The two-level additive Schwarz preconditioner �TL : + ′
ℎ
→ +ℎ is given by

�TL =

�∑
9=0

� 9�
−1
9 �

C
9 ,
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where �0 : +0 → +̃ℎ is the natural injection. Using the arguments in [5], we can
obtain the following theorem.

Theorem 2 There exists a positive constant �TL independent of �, ℎ, �, X and #̃ℎ
such that

^(�TL�ℎ) ≤ �TL min
((�/ℎ)4, X−3�−1).

Remark 2 The two-level method is scalable as long as �/ℎ remains bounded.

Remark 3 The estimate given in Theorem 2 is different from the estimate for the
plate bending problem without obstacles that reads

^ (�) !�ℎ) ≤ �
(
�

X

)3
.

This difference is caused by the necessity of truncation in the construction of +̃0
when the obstacle is present.

4 A Numerical Example

We consider Example 4.2 in [4], where Ω = (−0.5, 0.5)2, V = 0.1, k = 0.01,
and 5 = 10(sin(2c(G1 + 0.5)) + (G2 + 0.5)). We discretize (3) by the PUM with
uniform rectangular patches so that ℎ ≈ 2−ℓ , where ℓ is the refinement level. As ℓ
increases from 1 to 8, the number of degrees of freedom increases from 16 to 586756.
The discrete variational inequalities are solved by the PDAS algorithm presented in
Section 2, with 2 = 108.

For the purpose of comparison, we first solve the auxiliary systems in each
iteration of the PDAS algorithm by the conjugate gradient (CG) method without a
preconditioner. The average condition number during the PDAS iteration and the
time to solve the variational inequality are presented in Table 1. The PDAS iterations
fail to stop (DNC) within 48 hours beyond level 6.

Table 1: Average condition number (^) and time to solve (Csolve) in seconds by the CG algorithm

ℓ ^ Csolve
1 3.1305×10+2 2.6111×10−2

2 9.1118×10+3 1.0793×10−1

3 2.0215×10+5 9.7842×10−1

4 3.3705×10+6 3.3911×10+1
5 6.4346×10+7 6.2173×10+2
6 1.0537×10+9 8.8975×10+3
7 DNC DNC
8 DNC DNC
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We then solve the auxiliary systems by the preconditioned conjugate gradient
(PCG) method, using the additive Schwarz preconditioners associated with � sub-
domains. The mesh size � for the coarse space +� is ≈ 1/√�. We say the PCG
method has converged if ‖�A ‖2 ≤ 10−15‖1‖2, where � is the preconditioner, A is
the residual, and 1 is the load vector. The initial guess for the PDAS algorithm is
taken to be the solution at the previous level, or 0 if 22ℓ = �. To obtain a good initial
guess for the two-level method, the one-level method is used when 22ℓ = �. The
subdomain problems and the coarse problem are solved by a direct method based on
the Cholesky factorization on independent processors.

Small Overlap Here we apply the preconditioners in such a way that X ≈ ℎ.
The average condition numbers of the linear systems over the PDAS iterations are
presented in Table 2. We can see that these condition numbers are significantly
smaller than those for the unpreconditioned case and the condition numbers for the
two-level method are smaller than those for the one-level method. For each ℓ, as
� increases the condition numbers for the two-level method are decreasing, which
demonstrates the scalability of the two-level method (cf. Remark 2).

Table 2: Average condition number for small overlap: one-level (left) and two-level (right)

ℓ � = 4 � = 16 � = 64 � = 256 � = 4 � = 16 � = 64 � = 256
1 1.00×10+0 - - - 1.00×10+0 - - -
2 4.94×10+0 7.40×10+0 - - 5.46×10+0 7.40×10+0 - -
3 1.51×10+1 4.41×10+1 6.61×10+1 - 1.22×10+1 1.14×10+1 6.61×10+1 -
4 7.82×10+1 1.90×10+2 5.35×10+2 8.19×10+2 2.85×10+1 2.79×10+1 1.26×10+1 8.19×10+2
5 6.47×10+2 1.64×10+3 3.17×10+3 9.50×10+3 6.29×10+1 9.19×10+1 4.61×10+1 1.98×10+1
6 5.07×10+3 1.31×10+4 2.58×10+4 5.04×10+4 3.67×10+2 3.48×10+2 1.31×10+2 5.77×10+1
7 4.07×10+4 1.06×10+5 2.10×10+5 4.15×10+5 2.74×10+3 2.11×10+3 1.03×10+3 2.86×10+2
8 3.26×10+5 8.55×10+5 1.70×10+6 3.38×10+6 2.16×10+4 1.48×10+4 9.19×10+3 1.87×10+3

The times to solve the problem for each method are presented in Table 3. By
comparing them with the results in Table 1, we can see that both of the two methods
represents progress. For comparison purposes, the faster time of the two methods is
highlighted in red for each ℓ and �. As ℎ decreases and � increases, the two-level
method performs better than the one-level method. These results are consistent with
Theorems 1 and 2.

Generous Overlap Here we apply the preconditioners in such a way that X ≈ �.
When � = 4 and � = 16 both methods fail to converge at ℓ = 8 within 48 hours
due to the large size of the local problems. The average condition numbers of the
linear systems over the PDAS iterations are presented in Table 4. They agree with
Theorems 1 and 2. We can also see that these condition numbers are smaller than
those in the case of small overlap.

The times to solve the problem for each method are presented in Table 5. Again
both methods are superior to the unpreconditioned method and the scalability of the
two-level method is observed.
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Table 3: Time to solve in seconds for small overlap: one-level (left) and two-level (right). Times
highlighted in red are the fastest between the two methods.

ℓ � = 4 � = 16 � = 64 � = 256 � = 4 � = 16 � = 64 � = 256
1 1.78×10+0 - - - 1.78×10+0 - - -
2 3.04×10−1 1.55×10+1 - - 1.06×10+0 1.55×10+1 - -
3 3.84×10−1 1.07×10+1 6.08×10+1 - 1.08×10+0 1.42×10+1 6.08×10+1 -
4 2.60×10+0 4.18×10+1 9.18×10+1 3.55×10+2 5.51×10+0 5.83×10+1 7.09×10+1 3.55×10+2
5 2.57×10+1 1.11×10+2 1.53×10+2 3.54×10+2 3.09×10+1 1.14×10+2 1.42×10+2 1.46×10+2
6 2.82×10+2 2.69×10+2 4.00×10+2 4.63×10+2 2.81×10+2 2.06×10+2 1.63×10+2 1.50×10+2
7 5.25×10+3 1.91×10+3 1.48×10+3 1.58×10+3 4.43×10+3 1.18×10+3 4.68×10+2 2.98×10+2
8 1.09×10+5 2.90×10+4 1.16×10+4 6.85×10+3 9.05×10+4 2.04×10+4 3.12×10+3 8.80×10+2

Table 4: Average condition number for generous overlap: one-level (left) and two-level (right)

ℓ � = 4 � = 16 � = 64 � = 256 � = 4 � = 16 � = 64 � = 256
1 1.00×10+0 - - - 1.00×10+0 - - -
2 1.00×10+0 7.40×10+0 - - 1.25×10+0 7.40×10+0 - -
3 1.00×10+0 7.84×10+0 6.61×10+1 - 1.25×10+0 6.27×10+0 6.61×10+1 -
4 1.00×10+0 7.56×10+0 8.47×10+1 8.19×10+2 1.25×10+0 6.47×10+0 1.32×10+1 8.19×10+2
5 1.00×10+0 8.29×10+0 9.67×10+1 1.48×10+3 1.25×10+0 7.15×10+0 1.75×10+1 1.73×10+1
6 1.00×10+0 8.36×10+0 9.86×10+1 1.47×10+3 1.25×10+0 7.45×10+0 2.06×10+1 2.03×10+1
7 1.00×10+0 8.43×10+0 1.00×10+2 1.49×10+3 1.25×10+0 7.63×10+0 2.22×10+1 2.59×10+1
8 DNC DNC 1.01×10+2 1.51×10+3 DNC DNC 2.44×10+1 2.82×10+1

We now compare the generous overlap methods with the small overlap methods.
In Table 5, the times in red are the ones where the method with generous overlap
outperforms the method with small overlap. It is evident from Table 5 that the
performance of the two-level method with generous overlap suffers from a high
communication cost for small ℎ and large �.

Table 5: Time to solve in seconds for generous overlap: one-level (left) and two-level (right). Times
highlighted in red are faster than the corresponding method with small overlap.

ℓ � = 4 � = 16 � = 64 � = 256 � = 4 � = 16 � = 64 � = 256
1 1.33×10−1 - - - 1.33×10−1 - - -
2 1.90×10−1 1.66×10+1 - - 4.71×10−1 1.66×10+1 - -
3 2.88×10−1 7.17×10+0 6.14×10+1 - 6.47×10−1 1.03×10+1 6.14×10+1 -
4 5.86×10+0 2.54×10+1 4.57×10+1 3.55×10+2 6.73×10+0 3.45×10+1 6.33×10+1 3.55×10+2
5 1.02×10+2 7.34×10+1 6.88×10+1 1.57×10+2 1.06×10+2 8.17×10+1 8.70×10+1 1.48×10+2
6 1.32×10+3 5.21×10+2 1.09×10+2 1.50×10+2 1.32×10+3 5.46×10+2 1.15×10+2 1.12×10+2
7 2.41×10+4 8.12×10+3 7.74×10+2 3.00×10+2 2.31×10+4 8.41×10+3 7.51×10+2 1.97×10+2
8 DNC DNC 1.16×10+4 1.64×10+3 DNC DNC 1.19×10+4 1.13×10+3
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5 Conclusion

In this paper we present additive Schwarz preconditioners for the linear systems that
arise from the PDAS algorithm applied to an elliptic distributed optimal control
problem with pointwise state constraints discretized by a PUM. Based on the con-
dition number estimates and the numerical results, the two-level method with small
overlap appears to be the best choice for small ℎ and large �.
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