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1 Introduction

In this note we describe a parallel solver for the discretized weakly singular space-
time boundary integral equation of the spatially two-dimensional heat equation. The
global space-time nature of the systemmatrices leads to improved parallel scalability
in distributed memory systems in contrast to time-stepping methods where the
parallelization is usually limited to spatial dimensions. We present a parallelization
technique which is based on a decomposition of the input mesh into submeshes and
a distribution of the corresponding blocks of the system matrices among processors.
To ensure load balancing, the distribution is based on a cyclic decomposition of
complete graphs [8, 9]. In addition, the solution of the global linear system requires
an efficient preconditioner. We present a robust preconditioning strategy which is
based on boundary integral operators of opposite order [6, 14].

The parallelization of the discretized space–time integral equation in distributed
and shared memory is discussed in [5]. Here, we extend the parallel solver to the
preconditioned system.We demonstrate themethod for the spatially two-dimensional
case. However, the presented results, particularly the parallelization in distributed
memory and the stability results for the preconditioner, can be used to extend the
method to the three-dimensional problem.

Let Ω ⊂ R2 be a bounded domain with a Lipschitz boundary Γ := mΩ and ) > 0.
As a model problem we consider the initial Dirichlet boundary value problem for
the heat equation
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UmCD − ΔGD = 0 in & := Ω × (0, )), D = 6 on Σ := Γ × (0, )), D = D0 in Ω (1)

with a heat capacity constant U > 0, the given initial datum D0 ∈ !2 (Ω), and the
boundary datum 6 ∈ �1/2,1/4 (Σ). An explicit formula for the solution of (1) is given
by the representation formula for the heat equation [1], i.e. for (G, C) ∈ & we have

D(G, C) = ("̃0D0) (G, C) + (+̃F) (G, C) − (,6) (G, C)

=

∫
Ω

*★(G − H, C)D0 (H) dH + 1
U

∫
Σ

*★(G − H, C − g)F(H, g) dBH dg

− 1
U

∫
Σ

m

m=H
*★(G − H, C − g)6(H, g) dBH dg,

(2)

with F := m=D and *★ denoting the fundamental solution of the two-dimensional
heat equation given by

*★(G − H, C − g) =


U

4c(C − g) exp
(−U |G − H |2

4(C − g)

)
for g < C,

0 otherwise.

The yet unknown Neumann datum F ∈ �−1/2,−1/4 (Σ) can be found by applying
the interior Dirichlet trace operator to (2) and solving the resulting weakly singular
boundary integral equation

6(G, C) = ("0D0) (G, C) + (+F) (G, C) + (( 12 � −  )6) (G, C) for (G, C) ∈ Σ. (3)

The operators in (3) are obtained by composition of the heat potentials in (2) with
the Dirichlet trace operator. The ellipticity [2] and boundedness of the single-layer
operator + : �−1/2,−1/4 (Σ) → �1/2,1/4 (Σ) together with the boundedness of the
double-layer operator  : �1/2,1/4 (Σ) → �1/2,1/4 (Σ) and the initial Dirichlet oper-
ator "0 : !2 (Ω) → �1/2,1/4 (Σ) ensure unique solvability of (3).

We consider a space-time tensor product decomposition of Σ [2, 10, 11] and use
the Galerkin method for the discretization of (3). For a triangulation Γℎ = {W8}#Γ8=1
of the boundary Γ and a decomposition �ℎ = {g: }#�:=1 of the time interval � := (0, ))
we define Σℎ := {f = W8 × g: : 8 = 1, ..., #Γ; : = 1, ..., #� }, i.e. Σℎ = {fℓ }#ℓ=1 with
# = #Γ#� . In the two-dimensional case the space-time boundary elements f are
rectangular. A sample decomposition of the space-time boundary of & = (0, 1)3 is
shown in Fig. 1a.

We use the space -0,0
ℎ
(Σℎ) := span

{
i0
ℓ

}#
ℓ=1 of piecewise constant basis functions

and the space -1,0
ℎ
(Σℎ) := span

{
i10
8

}#
8=1 of functions that are piecewise linear and

globally continuous in space and piecewise constant in time for the approximations of
the Cauchy dataF and 6, respectively. The initial datum D0 is discretized by using the
space of piecewise linear and globally continuous functions (1

ℎ
(Ωℎ) := span

{
i1
9

}"Ω

9=1,

which is definedwith respect to a given triangulationΩℎ :=
{
l8

}#Ω
8=1 of the domainΩ.
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(a) Tensor product decomposition. (b) Submeshes.

Fig. 1: Sample space-time boundary decompositions for & = (0, 1)3 [5].

This leads to the system of linear equations

+ℎw = ( 1
2
"ℎ +  ℎ)g − "0

ℎu0 (4)

with
+ℎ [ℓ, :] := 〈+i0

: , i
0
ℓ〉!2 (Σ) ,  ℎ [ℓ, 8] := 〈 i10

8 , i
0
ℓ〉!2 (Σ) ,

"0
ℎ [ℓ, 9] := 〈"0i

1
9 , i

0
ℓ〉!2 (Σ) , "ℎ [ℓ, 8] := 〈i10

8 , i
0
ℓ〉!2 (Σ) ,

for 8, :, ℓ = 1, . . . , # and 9 = 1, . . . , "Ω. Due to the ellipticity of the single-layer
operator + the matrix +ℎ is positive definite and therefore (4) is uniquely solvable.

2 Operator Preconditioning

The boundary element discretization is done with respect to the whole space-time
boundary Σ and since we want to solve (4) without an application of time-stepping
schemes to make use of parallelization in time, we need to develop an efficient
iterative solution technique. The linear system (4) with the positive definite but
non-symmetric matrix +ℎ can be solved by a preconditioned GMRES method. Here
we will apply a preconditioning technique based on boundary integral operators of
opposite order [14], also known as operator or Calderon preconditioning [6].

First, we introduce the hypersingular operator �, which is defined as the negative
Neumann trace of the double layer potential, in (2), i.e. (�E) (G, C) = −m= (,E) (G, C)
for (G, C) ∈ Σ. The single-layer operator + : �−1/2,−1/4 (Σ) → �1/2,1/4 (Σ) and the
hypersingular operator � : �1/2,1/4 (Σ) → �−1/2,−1/4 (Σ) are both elliptic [2] and the
composition �+ : �−1/2,−1/4 (Σ) → �−1/2,−1/4 (Σ) defines an operator of order zero.
Thus, following [6], the Galerkin discretization of � allows the construction of a
suitable preconditioner for+ℎ . While the discretization of the single-layer operator+
is done with respect to -0,0

ℎ
(Σℎ), for the Galerkin discretization of the hypersingular
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operator� we need to use a conforming trial space.ℎ = span {k8}#8=1 ⊂ �1/2,1/4 (Σ),
see also [4] for the spatially one-dimensional problem.

Theorem 1 ([6, 14]) Assume that the discrete stability condition

sup
0≠Eℎ ∈.ℎ

〈gℎ , Eℎ〉!2 (Σ)
‖Eℎ ‖� 1/2,1/4 (Σ)

≥ 2"1 ‖gℎ ‖�−1/2,−1/4 (Σ) for all gℎ ∈ -0,0
ℎ
(Σℎ) (5)

holds. Then there exists a constant 2^ > 1 such that ^
(
"−1
ℎ
�ℎ"

−>
ℎ
+ℎ

) ≤ 2^ where,
for :, ℓ = 1, . . . , # ,

�ℎ [ℓ, :] = 〈�k: , kℓ〉Σ , "ℎ [ℓ, :] = 〈i0
: , kℓ〉!2 (Σ) .

Thus we can use �−1
+
= "−1

ℎ
�ℎ"

−>
ℎ

as a preconditioner for the matrix +ℎ . For the
computation of the matrix �ℎ we use an alternative representation of the associated
bilinear form which is attained by applying integration by parts, see [2, Theorem
6.1]. Note that the boundary element space .ℎ is chosen to have the same dimension
as -0,0

ℎ
(Σℎ) and thus, "ℎ is a square matrix. It remains to define a suitable boundary

element space .ℎ such that the mass matrix "ℎ is invertible and that the stability
condition (5) is satisfied. In what follows we will discuss a possible choice.

We assume that the decompositions Γℎ and �ℎ are locally quasi-uniform. For the
given boundary element mesh Γℎ we construct a dual mesh Γ̃ℎ := {W̃ℓ }#Γℓ according
to [7, 13] and assume, that Γ̃ℎ is locally quasi-uniform as well. For the discretization
of the operator � we choose .ℎ = -1,0

ℎ
(Σ̃ℎ) ⊂ �1/2,1/4 (Σ), which denotes the space

of functions that are piecewise linear and globally continuous in space and piecewise
constant in time, defined with respect to the decomposition Γ̃ℎ and �ℎ , respectively.
In order to prove the stability condition (5) we establish the �1/2,1/4 (Σ)-stability of
the !2 (Σ)-projection &̃1,0

ℎ
: !2 (Σ) → .ℎ ⊂ !2 (Σ) defined by

〈&̃1,0
ℎ
E, gℎ〉!2 (Σ) = 〈E, gℎ〉!2 (Σ) for all gℎ ∈ -0,0

ℎ
(Σ). (6)

The Galerkin-Petrov variational problem (6) is uniquely solvable since the trial and
test spaces satisfy a related stability condition [3]. When assuming appropriate local
mesh conditions of Γℎ and Γ̃ℎ , see [12, 13], we are able to establish the stability
of &̃1,0

ℎ
: �1/2,1/4 (Σ) → �1/2,1/4 (Σ), see [3] for a detailed discussion. Hence, there

exists a constant 2( > 0 such that&̃1,0
ℎ
E


� 1/2,1/4 (Σ)

≤ 2( ‖E‖� 1/2,1/4 (Σ) for all E ∈ �1/2,1/4 (Σ). (7)

The stability estimate (7) immediately implies the stability condition (5). Hence the
condition number ^(�−1

+
+ℎ) with �−1

+
= "−1

ℎ
�ℎ"

−>
ℎ

is bounded.
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3 Distributed Memory Parallelization

Distributed memory parallelization of the solver is based on the scheme presented
in [8, 9] for spatial problems. In [5] we have extended the approach to support time-
dependent problems for the heat equation. Let us briefly describe the method and
refer the more interested readers to the above-mentioned papers.

To distribute the system among % processes the space-timemeshΣ is decomposed
into % slices in the temporal dimension (see Fig. 1b) which splits the matrices
� ∈ {+ℎ ,  ℎ , �ℎ} into % × % blocks

� =


�0,0 0 · · · 0
�1,0 �1,1 · · · 0
...

...
. . .

...

�%−1,0 �%−1,1 · · · �%−1,%−1


.

The matrices are block lower triangular with lower triangular blocks on the main
diagonal due to the properties of the fundamental solution and the selected discrete
spaces. We aim to distribute the blocks among processes such that the number of
shared mesh parts is minimal and each process owns a single diagonal block. For this
purpose we consider each block �8, 9 as an edge (8, 9) of a complete graph  % on %
vertices. The distribution problem corresponds to finding a suitable decomposition of
 % into % subgraphs�0, �1, . . . , �%−1. In [5, 8] we employ a cyclic decomposition
algorithm – first, a generator graph �0 on a minimal number of vertices (corre-
sponding to blocks to be assembled by the process 0) is constructed; the remaining
graphs �1, . . . , �%−1 are obtained by a clock-wise rotation of �0 along vertices of
 % placed on a circle. An example of the generating graph and the corresponding
matrix decomposition for four processes is depicted in Fig. 2. In the case of the initial
matrix "0

ℎ
we distribute block-rows of the matrix among processes. Similarly, since

the matrix "ℎ is block diagonal, each process owns exactly one block of the matrix.

0

1

2

3

(a) Generating graph.
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rank
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(b) Block distribution.

Fig. 2: Distribution of the system matrix blocks among four processes [5].

In addition to the distributed memory parallelization by MPI, the assembly of the
matrices is parallelized and vectorized in shared memory using OpenMP [5, 15].
Therefore, in our numerical experiments we usually employ hybrid parallelization
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using one MPI process per CPU socket and an appropriate number of OpenMP
threads per process.

4 Numerical Experiments

The presented examples refer to the initial Dirichlet boundary value problem (1) in
the space-time domain & := (0, 1)3. The heat capacity constant is set to U = 10. We
consider the exact solution

D(G, C) := exp
(
− C
U

)
sin

(
G1 cos

c

8
+ G2 sin

c

8

)
for (G, C) = (G1, G2, C) ∈ &

and determine the Dirichlet datum 6 and the initial datum D0 accordingly. The linear
system (4) is solved by the GMRES method with a relative precision of 10−8.

Operator Preconditioning

As a preconditioner we use the discretization�−1
+
= "−1

ℎ
�ℎ"

−>
ℎ

of the hypersingu-
lar operator � in the space -1,0

ℎ
(Σ̃ℎ), while the Galerkin discretization of the integral

equation (3) is done with respect to -0,0
ℎ
(Σℎ). Instead of using "ℎ in the precondi-

tioner we computed a lumped mass matrix. Thus, the matrix becomes diagonal and
the inverse can be applied efficiently.

The example corresponds to a globally uniform boundary element mesh with
the mesh size ℎ = O(2−!). Table 1 shows the iteration numbers of the non-
preconditioned and preconditionedGMRESmethod. As expected, the iteration num-
bers of the preconditioned version are bounded due to the boundedness of ^(�−1

+
+ℎ).

For numerical results in the case of an adaptive refinement we refer to [3].

Table 1: Iteration numbers of the non-preconditioned GMRES method (It.) and the preconditioned
GMRES method (It. prec.) in the case of uniform refinement. # denotes the number of boundary
elements on level !.

! # It. It. prec.

2 64 14 17
3 256 19 18
4 1 024 24 20
5 4 096 35 20
6 16 384 50 20
7 65 536 67 20
8 262 144 91 19
9 1 048 576 122 19
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Table 2: Assembly of �ℎ for 65 536, 262 144, and 1 048 576 space-time elements.

nodes ↓ �ℎ assembly [s] �ℎ speedup �ℎ efficiency [%]
mesh→ 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 184.1 — — 1.0 — — 100.0 — —
2 92.0 — — 2.0 — — 100.1 — —
4 46.8 — — 3.9 — — 98.4 — —
8 23.8 373.6 — 7.7 1.0 — 96.7 100.0 —
16 11.8 186.1 — 15.6 2.0 — 97.3 100.4 —
32 5.9 91.9 — 31.0 4.1 — 96.7 101.7 —
64 3.0 47.0 747.0 60.5 7.9 1.0 94.6 99.3 100.0
128 — 24.0 376.9 — 15.6 2.0 — 97.3 99.1
256 — — 193.5 — — 3.9 — — 96.5

Scalability in Distributed Memory

The numerical experiments for the scalability were executed on the Salomon cluster
at IT4Innovations National Supercomputing Center in Ostrava, Czech Republic.
The cluster is equipped with 1008 nodes with two 12-core Intel Xeon E5-2680v3
Haswell processors and 128 GB of RAM. Nodes of the cluster are interconnected
by the InfiniBand 7D enhanced hypercube network.

We tested the assembly of the BEM matrix �ℎ . Computation times for the
assembly of the matrices +ℎ ,  ℎ , "0

ℎ
, the related matrix-vector multiplication, and

the evaluation of the solution in & can be found in [5]. Strong scaling of the parallel
solver was tested using a tensor product decomposition of Σ into 65 536, 262 144
and 1 048 576 space-time surface elements. We used up to 256 nodes (6 144 cores)
of the Salomon cluster for the computations and executed two MPI processes per
node. Each MPI process used 12 cores for the assembly of the matrix blocks.

In Table 2 the assembly times for �ℎ including the speedup and efficiency are
listed. We obtain almost optimal parallel scalability. Note that the number of nodes is
restricted by the number of elements of the temporal decomposition �ℎ . Conversely,
for fine meshes we need a certain number of nodes to store the matrices.

5 Conclusion

In this note we have described a parallel space-time boundary element solver for
the two-dimensional heat equation. The solver is parallelized using MPI in the dis-
tributed memory. The distribution of the system matrices is based on [5, 8, 9]. The
space-time boundary mesh is decomposed into time slices which define blocks in
the system matrices. These blocks are distributed among MPI processes using the
graph decomposition based scheme. For a detailed discussion on shared memory



A Parallel Solver for a Preconditioned Space-Time BEM for the Heat Equation 115

parallelization see [5]. Moreover, we have introduced an efficient preconditioning
strategy for the space-time system which is based on the use of boundary integral op-
erators of opposite order. The preconditioner was then distributed with the presented
parallelization technique.

The numerical experiments for the proposed preconditioning strategy confirm
the theoretical findings, i.e. the boundedness of the iteration number of the iterative
solver. We also tested the efficiency of the parallelization scheme for the precondi-
tioner. The results show almost optimal scalability.
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