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1 Introduction

In this study, we present Balancing Domain Decomposition by Constraints (BDDC)
preconditioners for three-dimensional scalar elliptic and linear elasticity problems in
which the direct solution of the coarse problem is replaced by a preconditioner based
on a smaller vertex-based coarse space. By doing so, the computational and memory
requirements can be reduced significantly. Although the use of standard coarse
spaces based on subdomain vertices (corners) alone has similar memory benefits,
the associated rate of convergence is not attractive as the number of elements per
subdomain grows [10]. This point is illustrated by a simple motivating example in
the next section.

There exists a rich theory for Finite Element Tearing and Interconnecting Dual
Primal (FETI-DP) and BDDC algorithms for scalar elliptic and linear elasticity
problems in three dimensions (see, e.g., [10], [9] or §6.4.2 of [15]). In many cases,
theoretical results for either FETI-DP or BDDC apply directly to the other because
of the equivalence of eigenvalues of the preconditioned operators [13, 11, 1]. This
equivalence does not hold in the present study because the basic FETI-DP algorithm
[6] is not easily adapted to use a preconditioner instead of a direct solver for the
symmetric and positive definite coarse problem. In contrast, such a change is accom-
modated easily by BDDC in both theory and practice [4]. Nevertheless, we expect
that our approach could find use in the irFETI-DP algorithm described in [8].

The approach to preconditioning the BDDC coarse problem is motivated in part
by more recent developments of small coarse spaces for domain decomposition
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algorithms [5]. Although that study was focused on overlapping Schwarz methods,
similar ideas can be used to construct coarse spaces for preconditioning the BDDC
coarse problem. Compared with larger edge-based or face-based coarse spaces, we
find that similar condition number bounds can be achieved at much lower cost under
certain assumptions on material property jumps between adjacent subdomains.

We note that three-level and multi-level BDDC algorithms [17, 16, 14] can also
be viewed as using an inexact solver for the coarse problem, but such approaches
are fundamentally different from ours. Namely, these algorithms construct and apply
(recursively for multi-level approaches) a BDDC preconditioner for the original two-
level coarse problem. In contrast, we do not introduce additional coarse levels and
make use of standard two-level additive Schwarz concepts for preconditioning the
coarse problem. One important result of using smaller coarse spaces is that larger
numbers of subdomains are feasible before needing to use a three- or multi-level
approach. Consequently, the number of coarse levels can potentially be reduced and
result in fewer synchronization points for parallel implementations. We also note that
approximate solvers of the coarse problem were introduced in [8] as in the context
of a saddle-point formulation for FETI-DP.

Reducing the size of the coarse problem while retaining favorable convergence
rates was also the subject of Algorithm D in [10]. The basic idea there was to use a
coarse space based on a subset of subdomain edges and corners (vertices) rather than
all of them. The authors note that their recipe for selecting such edges and corners is
relatively complicated, but it can effectively reduce the coarse problem dimension.
In contrast to their approach, the present one uses all subdomain edges, but replaces
the direct solver for the coarse problem with a preconditioner.

A motivating example is presented in the next section for the proposed approach
which is summarized in §3. Theoretical results for scalar elliptic and linear elasticity
problems are presented in §4. Complete proofs are provided in the article, [2], that
has appeared since this paper was submitted; it also contains implementation details,
extensions to face-based coarse spaces, and additional numerical examples. The
final section of this paper contains numerical results, which confirm the theory and
demonstrate the computational advantages of our approach.

2 Motivation

To help motivate the proposed approach, consider a unit cube domain partitioned
into 27 smaller cubic subdomains. Each of these subdomains is discretized using
H/h lowest order hexahedral elements in each coordinate direction for the Poisson
equation with constant material properties. Homogeneous essential boundary con-
ditions are applied to one side of the domain and a random load vector b is used for
the right-hand side of the linear system Ax = b. We note that our algorithm iterates
on the interface problem Su = g after eliminating residuals in subdomain interiors
(initial static condensation step). Here, S is the Schur complement matrix for the
interface problem.
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We first consider coarse spaces based on subdomain vertices alone or edges
alone. Table 1 shows the condition number estimates for the preconditioned operator
along with the number of iterations needed to achieve a relative residual tolerance
of 1078 using the conjugate gradient algorithm preconditioned using BDDC. The
fast growth of condition numbers in the third column is consistent with a condition
number bound proportional to (H/h)(1 +1log(H/h))? as given in Remark 2 of [10].
The shortcomings of using coarse spaces based on vertices alone were recognized
early in the history of FETI-DP [7]. Notice the results for the proposed approach
show significant improvements in comparison to the standard vertex (corner) based
coarse space.

Table 1: Poisson equation results. Number of iterations (iter) and condition number estimates
(cond) are shown for a unit cube domain constrained on one side and decomposed into 27 smaller
cubic subdomains. In this table and others, H / h denotes the number of elements in each coordinate
direction for each subdomain. More generally, H /h refers to the maximum ratio of subdomain
diameter H; to smallest element diameter h; for any subdomain ;.

standard approach |proposed approach
vertices | edges
H /h|iter|cond |iter|cond |iter cond
4 |28(27.1|12]2.36|14 2.50
8 |38(752(14(2.93]|16 3.13
12 |45]132|16|3.37|18 3.59
16 |471195|17|3.73|19 3.97

Results are shown in Table 2 for increasing numbers of subdomains N and fixed
H/h = 8. Notice the dimensions n. of the coarse space for edge-based coarse spaces
are significantly larger than those for the proposed approach. Again, the advantages
of the new approach are evident in the final three columns of the table where the
number of iterations and condition numbers are much smaller than those for the
standard vertex-based coarse space.

Table 2: Poisson equation results. Coarse space dimension n. and convergence results are shown
for increasing numbers of subdomains N and fixed H /h = 8.

standard approach proposed approach
vertices edges
N | n. |iter|cond| n. |iter|cond| n. |iter| cond
64 |27 (55|74.5| 108 [15]2.98|27 | 17| 3.25
216 (125|170 |73.7| 450 | 15 (2.94[125(17| 3.26
512 (343|74|73.6 1176 15 (2.95(343| 17| 3.30
1000(729(75173.6|2430( 15]2.95|729| 17| 3.32

A primary goal of this study is to present an approach that combines the best
of both worlds. That is, an approach that has the attractive convergence rates of
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edge-based coarse spaces and the more streamlined computational requirements of
a smaller vertex-based coarse space.

3 Overview of BDDC and Our Inexact Approach

The domain Q for the problem is assumed to be partitioned into nonoverlapping
subdomains Qp,...,Qp. The set of interface points that are common to two or
more subdomain boundaries is denoted by I', and the set of interface points for Q; is
denoted by I'; := " N 9Q;. Finite element nodes on I'; are partitioned into different
equivalence classes such as those of subdomain vertices, edges, or faces depending
on which subdomain boundaries contain them (see, e.g., [3] or [5] for more details).
A two-level BDDC preconditioner (see, e.g., [3] can be expressed concisely in

additive form as
M =M}

loca

,+OpK ol (1)

where K, is the coarse matrix and ®@p, is a weighted interpolation matrix. We note
that the application of the local component M, lca ; Tequires solutions of problems
local to each subdomain, which can be done in parallel.

The coarse matrix is obtained from the assembly of coarse subdomain matrices

and given by
N

T
Ke =) Rl KR,
i=1
where K. is the coarse matrix for Q; and u;. = R;.u. is the restriction of a coarse
vector u. to €;. Let M ! denote a preconditioner for K. which satisfies the bounds
T -1 T 5 s-1 T -1
Pru K. uc u. M. ue < pou. K. 'uc Vue, 2)

where 0 < 81 < 3. Defining the approximate BDDC preconditioner M, ! as

M =M

local

+Op MO,
we find from (1) and (2) that
pTM ' p=pt (M7 +@p (M - K HOD)p
< pT (M~ + (B - DOpK'®D)p
< max(1,B2)p" M~'p. 3)

Similarly,
pIM;'p = min(1,8)p" M7 p. 4)

Let « denote the condition number of the original BDDC preconditioned operator.
It then follows from (3) and (4) that
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< max(l,ﬂz)K
~ min(1,81)

®)

where «,, is the condition number of the approximate BDDC preconditioned operator.
Here we only consider preconditioners for the coarse matrix K., but approximations
for other components of the BDDC preconditioner have also been studied [12, 4].

The construction of the preconditioner M_! for K. was inspired in part by our
recent work on small coarse spaces [5]. What we have called vertices thus far here
are generalized there and called coarse nodes. We recall that the coarse degrees
of freedom for BDDC or FETI-DP are often associated with average values over
the different equivalence classes. The basic idea of the coarse component of the
preconditioner M ! is to approximate these averages using adjacent vertex values.

Using the notation of [5], let Cx denote the set of ancestor vertices for a nodal
equivalence class NV (e.g. N may be the nodes of a subdomain edge or face). Let uy
denote a vector of vertex values. We introduce the coarse interpolation u.o = Puy
between vertex values and nodal equivalence class averages such that each of these
averages equals the average of its ancestor vertex values. Thus, a row of ¥ associated
with an edge of the center subdomain in the motivating example has two entries
of 1/2 (one entry for each vertex at its ends), while all other entries are 0. Notice
that the number of rows in ¥ is the number of active coarse degrees of freedom for
the original BDDC preconditioner. For instance, if only edges are used this number
equals the total number of subdomain edges.

The reduced coarse matrix is defined as K., := W7 K. ¥. The number of rows
and columns in K., is the number of vertices for scalar problems. We consider the
following preconditioner for K.

M =YKW +diag(Ko)™, 6)

where diag denotes the diagonal of the matrix (for elasticity problems the second
term on the right hand side of (6) is block diagonal). Notice M_! is simply a
Jacobi preconditioner with an additive coarse correction. Thus, since the number
of subdomains incident to an edge is bounded, a uniform upper bound on §, for
M! can be obtained using a standard coloring argument. Therefore, the analysis
focuses on obtaining lower bound estimates for 8. We comment that higher quality
local preconditioning can be used (e.g., replacing Jacobi smoothing by symmetric
Gauss-Seidel). Indeed, the numerical results in §5 were obtained using such an

approach.

4 Main Results

We presently restrict our attention to edge-based BDDC coarse spaces for both scalar
elliptic and linear elasticity problems (cf. §4 and §5 of [5] for problem specifica-
tions). For the scalar case, we assume quasi-monotone edge-connected paths as in
Assumptions 4.5 of [5]. For elasticity problems, we must make the stronger assump-
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tion of quasi-monotone face-connected paths as in Assumption 4.4 of [5]. We also
assume that material properties are constant within each subdomain and that the
ratio (Hj/h;)/(Hy/hk) is uniformly bounded for any two subdomains Q; and Q
sharing any subdomain vertex.

Theorem 1 For edge-based BDDC coarse spaces and with quasi-monotone edge-
connected paths, the condition number of the preconditioned operator that is ob-
tained by replacing the direct solver for the coarse problem by the preconditioner
M defined in (6) is bounded by

kg < C(1+log(H/h))?
for scalar elliptic problems.

Theorem 2 For edge-based BDDC coarse spaces and with quasi-monotone face-
connected paths, the condition number of the preconditioned operator that is ob-
tained by replacing the direct solver for the coarse problem by the preconditioner
M defined in (6) is bounded by

kg < C(1+log(H/h))?
for compressible linear elasticity problems.

The proofs of these theorems use classical additive Schwarz theory, an estimate
in Lemma 4.2 of [17], and a variety of standard domain decomposition estimates.
Further, the analysis for linear elasticity relies on Korn inequalities and on rigid body
fits of subdomain face deformations (cf. [9] for a related approach).

5 Numerical Results

The results in Tables 1 and 2 are in good agreement with the theory for the scalar case,
and demonstrate that comparable performance to the standard edge-based BDDC
preconditioner can be obtained more efficiently. Notice in Table 2 that the coarse
space dimension n. is approximately 3 times smaller for the proposed approach than
that of the standard edge-based approach for larger numbers of subdomains. Similar
results were obtained for linear elasticity (not shown), but the reductions in coarse
space dimension were more modest.

The next example deals with a cubic domain decomposed into 64 smaller cubic
subdomains and constrained on its left side. Three different distributions of material
properties are considered as shown in Figure 1. The leftmost one has quasi-monotone
face-connected paths, the middle one has quasi-monotone edge-connected paths, and
the rightmost one has a checkerboard arrangement which is not covered by our theory.

The material properties in the lighter colored regions are given by p = 1 for the
scalar case and E = 1, v = 0.3 for elasticity. Likewise, the other regions have p = 103,
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E =10%, and v = 0.3. Results for the scalar case and elasticity are shown in Table 3.
Consistent with the theory, condition numbers for the scalar case grow sublinearly
with respect to H/h for both face-connected and edge-connected paths. As expected,
similar growth in condition numbers is observed for linear elasticity in the case of
face-connected paths. Recall that the case of edge-connected paths is not covered
by our theory for elasticity, and much larger condition numbers are apparent in the
table. Remarkably, very good results are obtained for the checkerboard arrangement
of material properties for both the scalar case and linear elasticity.

Fig. 1: Material property distributions for a cube decomposed into 64 smaller cubic subdomains.
The leftmost figure has quasi-monotone face-connected paths while the middle one only has
quasi-monotone edge-connected paths. The rightmost figure shows a checkerboard arrangement of
material properties.

Table 3: Results for the models in Figure 1.

scalar case

face-connected |edge-connected |checkerboard
H /h|iter| cond [iter| cond |iter| cond

4 |14 2.41 16 3.58 9 1.45

8 |16 2.95 20 4.81 11| 1.71

12 |18 3.40 22 5.65 12| 1.99

16 |19 3.75 24 6.32 13| 2.19
linear elasticity
H / h|face-connected |edge-connected | checkerboard
iter| cond [iter| cond |iter| cond
4 125 6.10 40 72.9 24| 6.55

8 133 11.1 53 113 31| 111
12 |38 14.8 61 137 35| 144
16 |42 17.8 68 154 38| 169

Additional numerical results have been generated for face-based rather than edge-
based coarse spaces, for unstructured meshes, and performance tests are given which
show reduced compute times. They are reported in the article, [2], which has appeared
since this conference paper was submitted.



In closing, we expect that the approach presented here could be combined with
an adaptive coarse space to handle problems where material properties vary greatly
within a subdomain. The basic idea would be to use existing adaptive approaches
for challenging subdomains, while using the present approach for less problematic
ones.

References

1. Brenner, S.C., Sung, L.Y.: BDDC and FETI-DP without matrices or vectors. Comput. Methods
Appl. Mech. Engrg. 196(8), 1429-1435 (2007). DOI:10.1016/j.cma.2006.03.012
2. Dohrmann, C., Pierson, K., Widlund, O.: Vertex-based preconditioners for the coarse problem
of BDDC. SIAM J. Sci. Comput. 41(5), A3021-A3044 (2019). DOI:16.1137/19M1237557
3. Dohrmann, C.R.: A preconditioner for substructuring based on constrained energy minimiza-
tion. SIAM J. Sci. Comput. 25(1), 246-258 (2003). DOI:10.1137/S1064827502412887
4. Dohrmann, C.R.: An approximate BDDC preconditioner. Numer. Linear Algebra Appl. 14(2),
149-168 (2007). DOI:10.1002/nla.514
5. Dohrmann, C.R., Widlund, O.B.: On the design of small coarse spaces for domain de-
composition algorithms. SIAM J. Sci. Comput. 39(4), A1466-A1488 (2017). DOI:
10.1137/17M1114272
6. Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified
FETI method. I. A faster alternative to the two-level FETI method. Internat. J. Numer. Methods
Engrg. 50(7), 1523-1544 (2001). DOI:10.1002/nme.76
7. Farhat, C., Lesoinne, M., Pierson, K.: A scalable dual-primal domain decomposition method.
Numer. Linear Algebra Appl. 7(7-8), 687-714 (2000). DOI:10.1002/1099-1506(200010/
12)7:7/8<687::AID-NLA219>3.0.C0;2-S. Preconditioning techniques for large sparse
matrix problems in industrial applications (Minneapolis, MN, 1999)
8. Klawonn, A., Rheinbach, O.: Inexact FETI-DP methods. Internat. J. Numer. Methods Engrg.
69(2), 284-307 (2007). DOI:10.1002/nme.1758
9. Klawonn, A., Widlund, O.B.: Dual-primal FETI methods for linear elasticity. Comm. Pure
Appl. Math. 59(11), 1523-1572 (2006). DOI:16.1002/cpa.20156
10. Klawonn, A., Widlund, O.B., Dryja, M.: Dual-primal FETI methods for three-dimensional
elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal. 40(1), 159-179
(2002). DOI:10.1137/S0036142901388081
11. Li, J., Widlund, O.B.: FETI-DP, BDDC, and block Cholesky methods. Internat. J. Numer.
Methods Engrg. 66(2), 250-271 (2006). DOI:10.1002/nme. 1553
12. Li,J., Widlund, O.B.: On the use of inexact subdomain solvers for BDDC algorithms. Comput.
Methods Appl. Mech. Engrg. 196(8), 1415-1428 (2007). DOI:10.1016/j.cma.2006.03.
011
13. Mandel, J., Dohrmann, C.R., Tezaur, R.: An algebraic theory for primal and dual substructuring
methods by constraints. Appl. Numer. Math. 54(2), 167-193 (2005). DOI:10.1016/j . apnum.
2004.09.022
14. Mandel, J., Sousedik, B., Dohrmann, C.R.: Multispace and multilevel BDDC. Computing
83(2-3), 55-85 (2008). DOI:10.1007/s00607-008-0014-7
15. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory, Springer
Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin (2005). DOI:10.1007/
b137868
16. Tu, X.: Three-level BDDC in three dimensions. SIAM J. Sci. Comput. 29(4), 1759-1780
(2007). DOI:10.1137/050629902
17. Tu, X.: Three-level BDDC in two dimensions. Internat. J. Numer. Methods Engrg. 69(1),
33-59 (2007). DOI:10.1002/nme. 1753



