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1 Introduction

Numerical simulation of wave phenomena is routinely used in seismic studies, where
simulated wave signals are compared against experimental ones to infer subterranean
information. Various wave systems can be used to model wave propagation in earth
media. Here, we consider the system of isotropic elastic wave equations described
in Section 2. Various numerical methods can be applied to discretize such a system,
amongwhich the finite differencemethods (FDMs) are still very popular, particularly
for seismic exploration applications, due to their simplicity and efficiency.

However, when discretized on uniform grids, heterogeneity of the earthmediawill
lead to oversampling in both space and time, undermining the efficiency of FDMs.
Specifically, since spatial grid spacing is usually decided on a point-per-wavelength
basis for wave simulations, uniform grid discretization will lead to oversampling in
space for regions with higher wave-speeds. On the other hand, temporal step length is
usually restricted by the Courant-Friedrichs-Lewy (CFL) stability condition for wave
simulations using explicit time stepping methods, which will lead to oversampling
in time for regions with lower wave-speeds.

For earth media, the wave-speeds tend to increase with depth due to sedimentation
and consolidation. Contrast between the smallest and largest wave-speeds in earth
media can be as high as fifty, cf. [1, p. 240], which entails significant oversampling for
discretizations on uniform grids. These observations motivate us to consider the grid
configuration illustrated in Figure 1, where two uniform grid regions are separated
by a horizontal interface. The staggered grid discretization approach, which dates
back to [12], is considered here, where different solution variables are discretized
on different subgrids. In Figure 1, ratio of the grid spacings of the two regions is
two. However, other ratios, not necessarily integers, can also be addressed with the
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methodology presented here. Furthermore, multiple grid layers can be combined
together in a cascading manner to account for larger wave-speed contrasts.

In this work, we recap one of the earliest motivations of domain decomposition
methods by demonstrating how to combine the two regions illustrated in Figure 1
without numerical artifacts. Specifically, we adopt the summation by parts (SBP) -
simultaneous approximation terms (SATs) approach, which utilizes discrete energy
analysis to guide the discretization. The overall semi-discretization is shown to be
discretely energy conserving, preserving the analogous property in the continuous
elastic wave system. The concept of SBP operators dates back to [7] while the
technique of SATs was introduced in [2]. The two review papers [11, 3] provide
comprehensive coverage of their developments. While the 2D elastic wave system is
considered here to demonstrate the methodology, we expect the presented procedure
to extend straightforwardly to the 3D case.

In the following, we describe the abstracted mathematical problem in Section 2,
present the interface treatment in Section 3, provide numerical examples in Section
4, and summarize in Section 5.

2 Problem Description

We consider the 2D isotropic elastic wave equations posed as the following first-order
dynamical system written in terms of velocity and stress:
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where EG and EH are particle velocities; fGG , fGH and fHH are stress components;
d, _ and ` are density, first and second Lamé parameters that characterize the
medium; S is the source term that drives the wave propagation. Lamé parameters _
and ` are related with the compressional and shear wave-speeds 2? and 2B through
_ = d(22

? − 222
B) and ` = d22

B . For simplicity, the source term S is omitted in the
upcoming discussion. All solution variables and their derivatives are assumed to be
zero at the initial time. We consider periodic boundary condition for left and right
boundaries and free-surface boundary condition for top and bottom boundaries.

The above system is equivalent to system (2), which is more natural for energy
analysis and derivation of the interface treatment. In (2), the Einstein summation
convention applies to subscript indices : and ;. Coefficients BGG:; , BGH:; and BHH:;
are components of the compliance tensor, which can be expressed in terms of _ and
`. However, their exact expressions are not needed for the upcoming discussion. As



Simultaneous Approximation Terms for Elastic Wave Equations on Nonuniform Grids 127

explained later in Section 3, system (1) is still the one used for implementation.
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The staggered grids illustrated in Figure 1 are used to discretize the above systems,
where two uniformgrid regions are separated by a horizontal interface,with a contrast
ratio 1:2 in grid spacing. Both regions include the interface in discretization.

Fig. 1: Illustration of the grid configuration.

3 Methodology

In this section, we demonstrate how to couple the discretizations of system (1) on
the two uniform grid regions illustrated in Figure 1 using the SBP-SAT approach. A
similar work has been presented in [4] for acoustic wave equations. We will follow
the methodology and terminology developed therein.

The continuous energy associated with system (2), and system (1) by equivalence,
can be expressed as:
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where Ω denotes a simply connected domain; the Einstein summation convention
applies to subscript indices 8, 9 , : and ;. The two integrals of (3) correspond to the
kinetic and potential parts of the continuous energy, respectively. Differentiating 4
with respect to time C and substituting the equations from (2), it can be shown that
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where mΩ denotes the boundary of Ω. For the free-surface boundary condition,
i.e., f8 9= 9 = 0, and periodic boundary condition considered in this work, we have
34/3C = 0, i.e., system (2) conserves energy 4.
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Spatially discretizing (2) with finite difference methods on a uniform grid leads
to the following semi-discretized system:
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where the Einstein summation convention applies only to : and ; in the subscripts,
but not to those appearing in the superscripts. Superscript such as +G indicates
the grid with which the underlying quantity or operator is associated. In (5), D
symbolizes a finite difference matrix, while A symbolizes a diagonal norm matrix
with its diagonal component loosely representing the area that the corresponding
grid point occupies. From the implementation perspective, the norm matrices in (5)
are redundant, but they will play an important role in deriving the proper interface
treatment. These 2D finite difference matrices and norm matrices are constructed
from their 1D counterparts via tensor product. Specifically,

A+G = A"G ⊗ A#H , A+H = A#G ⊗ A"H ,
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where I symbolizes a 1D identity matrix. Superscript # indicates the ‘normal’ grid
that aligns with the boundaries while " indicates the ‘modified’ grid that is staggered
with respect to the ‘normal’ grid. The specific forms of the 1D norm matrices and
1D finite difference matrices in (6) and (7) have been described in [5, p. 672]1. By
construction, they satisfy the following relations:
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where E'H and E!H are canonical basis vectors that select values of the solution
variables defined on the # grid at the top and bottom boundaries, respectively, while
P'H and P!H are projection vectors that extrapolate values of the solution variables
defined on the " grid to the top and bottom boundaries, respectively.

The discrete energy associated with semi-discretized system (5) is defined as:
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where, as in (5), the Einstein summation convention applies only to 8, 9 , : , and ; in
the subscripts. Differentiating � with respect to time C and substituting the equations

1Weuse this specific set of operators here to demonstrate themethodology, while alternative choices
exist (e.g., [9]), for which the presented methodology can still be applied with minor modifications.
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from (5), it can be shown that
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where the first two terms are associatedwith the top boundarywhile the last two terms
are associated with the bottom boundary, as indicated by the respective selection
and projection operators appearing in these terms. With the above discrete energy
analysis result, we can now modify system (5) accordingly to account for boundary
and interface conditions.

In the following, we use superscripts + and − to distinguish systems or terms from
the upper and lower regions of Figure 1, respectively. To account for the free-surface
boundary condition on the top boundary, i.e., fGH = fHH = 0, the first two equations
in the upper region system are appended with penalty terms, i.e., SATs, as follows:
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where [+
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= −1 are penalty parameters. The forms of the penalty terms and
values of the penalty parameters are chosen so that the energy-conserving property
from the continuous system is preserved. To see this, we differentiate � from (9)
with respect to time C as before. After substitution, the penalty terms in (11) bring
two extra terms into 3�/3C, i.e.,
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By setting [+
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= −1, these extra terms cancel out the first two terms in (10),
which are associated with the top boundary. Similar modifications presented later
in (12)-(14) are obtained by following the same procedure and rationale. It is worth
mentioning that such procedure and rationale for deriving the proper boundary and
interface treatment, particularly the usage of the energy method, is very similar to
that for flux specification in discontinuous Galerkin methods, cf., for example, [6].

Similarly, to account for the free-surface boundary condition on the bottombound-
ary, the first two equations of the lower region system are modified as follows:
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To account for the interface conditions (cf. [10, p. 52]), i.e., f+GH =f−GH , f+HH =f−HH ,
E+G = E−G , and E+H = E−H , the upper and lower region systems are further modified by
appending additional SATs as follows:
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chosen penalty parameters. Moreover, T"+− , T# +− in (13) and T"−+ , T#−+ in (14) are
interpolation operators that satisfy the following relations:
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They operate on the interface only, e.g., T# +− interpolates from lower region #

grid points on the interface to upper region # grid points on the interface. Their
derivations are usually assisted by symbolic computing software. For the interface
illustrated in Figure 1, which has a 1 : 2 contrast in grid spacing, the operators
T# +− and T"+− that we use here are characterized by the formulas in (16) and (17),
respectively, for the collections of grid points illustrated in Figure 2; moreover, T#−+
and T"−+ can be derived from T# +− and T"+− , respectively, via the relations in (15).
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As in the case of SBP operators, these interpolation operators are not unique, either.

Fig. 2: Illustration of grid points involved for interpolation operators T# +− (left) and T"+− (right).
5 (G+0 ) ← 5 (G−0 ); 5 (G+1 ) ← − 1

16 5 (G−−1) + 9
16 5 (G−0 ) + 9

16 5 (G−1 )− 1
16 5 (G−2 ); 5 (G+2 ) ← 5 (G−1 ) .

(16)
5 (G+0 ) ← 5

32 5 (G−0 ) + 15
16 5 (G−1 ) − 3

32 5 (G−2 ); 5 (G+1 ) ← − 3
32 5 (G−0 ) + 15

16 5 (G−1 ) + 5
32 5 (G−2 ) .

(17)
With the above choices on the SATs, it can be verified that the overall semi-

discretization conserves the discrete energy � from (9). Now that the proper SATs
have been derived, we can remove the norm matrices by dividing them from both
sides of the equations in (11-14). From the implementation perspective, the appended
SATs amount to modifying the corresponding derivative approximations, e.g., the
SAT in the first equation of (14)modifies DΣ−GH

H Σ−GH .Written in terms of thesemodified
derivative approximations, the above discretizations for system (2) can be easily
reverted to forms that conform to system (1).

4 Numerical examples

The first example concerns a homogeneous medium characterized by parameters
d = 1 kg/m3, 2? = 2m/s and 2B = 1m/s. The grid spacings of the upper and lower
regions are chosen as 0.004m and 0.008m, respectively, while the time step length
is chosen as 0.001 s, which is ∼ 0.707 of the CFL limit associated with an infinite
uniform grid with 0.004m grid spacing. The rest of the numerical setup is the same
as that for the first example of [4, p. 435], including sizes of the grids, source and
receiver locations, and source profile.

Fig. 3: Seismogram (left) and evolvement of discrete energy (right); Homogeneous media.

The recorded seismogram and evolvement of discrete energy for the first 6 s are
displayed in Figure 3, where we observe good agreement between the uniform grid
simulation result and the nonuniform grid simulation result using the presented SBP-
SAT approach. The source term S, cf. (1), which is omitted from the analysis, is
responsible for the initial ‘bumps’ in the evolvement of discrete energy. After the
source effect tapers off at around 0.5 s (cf. [5, p. 684]), the discrete energy remains
constant as expected (at a value ∼0.0318).

The second example concerns a heterogeneous medium downsampled from the
Marmousi2 model, cf. [8]. Wave-speeds 2? and 2B are illustrated in Figure 4.2 Grid
spacing is chosen as 2m and 4m for upper and lower regions (separated by the
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Fig. 4: Media parameters 2? (left) and 2B (right); Colorbar reflects wave-speed with unit m/s.

green dashed line), respectively. Time step length is chosen as 2e-4 s and 3e-4 s for
uniform and nonuniform grid simulations, respectively. Same plots as in the previous
example are displayed in Figure 5, from where similar observations can be made.

Fig. 5: Seismogram (left) and evolvement of discrete energy (right); Heterogeneous media.

In this example, the ratio between the numbers of spatial grid points in uniform
and nonuniform grid simulations is ∼1.813. As a rough estimation, the amount of
arithmetic operations per time step is assumed to be linearly proportional to the
number of spatial grid points. We therefore expect the ratio between runtimes to be
∼2.719, with an extra factor of 1.5 coming from the difference in total time steps. A
test with our Matlab code reveals a ratio of ∼2.681 in runtimes (average of 5 runs),
which agrees well with the above complexity analysis result.

5 Summary

Finite difference discretization of the isotropic elastic wave system is considered.
An interface treatment procedure is presented to connect two uniformly discretized
regions with different grid spacings. The interface conditions are weakly imposed
through carefully designed simultaneous approximation terms. The overall semi-
discretization conserves a discrete energy that resembles the continuous physical
energy, which is demonstrated on both homogeneous and heterogeneous media.
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We note here that media parameters for uniform grid and nonuniform grid simulations are sampled
differently; thus, small discrepancies in simulation results should be allowed.
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