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1 Introduction

Multilevel methods such asmultigrid and domain decomposition are among themost
efficient and scalable solvers developed to date. Adapting them to the next generation
of supercomputers and improving their performance and scalability is crucial for ex-
ascale computing and beyond. Domain decomposition methods subdivide the global
problem into subdomains, and then alternate between local solves and boundary data
exchange. This puts significant stress on the network interconnect, since all processes
try to communicate at once. On the other hand, during the solve phase, the network
is under-utilized. The use of non-blocking communication can only alleviate this
issue, but not solve it. In asynchronous methods, on the other hand, computation and
communication occur concurrently, with some processes performing computation
while others communicate, so that the network is consistently in use.

Unfortunately, the term “asynchronous” can have several different meanings in
the literature. In computer science, it is sometimes used to describe communica-
tion patterns that are non-blocking, such that computation and communication can
be overlapped. Iterative algorithms that use such “asynchronous” communication
typically still yield the same iterates (results), just more efficiently. In applied math-
ematics, on the other hand, “asynchronous” denotes parallel algorithms where each
process (processor) proceeds at its own speed without synchronization. Thus, asyn-
chronous algorithms go beyond the widely used bulk-synchronous parallel (BSP)
model. More importantly, they are mathematically different than synchronous meth-
ods and generate different iterates. The earliest work in this area was called “chaotic
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relaxation” [6]. Both approaches are expected to play an important role on future su-
percomputers. In this paper, we focus on the mathematically asynchronous methods.

Domain decomposition solvers [8, 16, 15] are often used as preconditioners in
Krylov subspace iterations. Unfortunately, the computation of inner products and
norms widely used in Krylov methods requires global communication. Global com-
munication primitives, such as MPI_Reduce, asymptotically scale as the logarithm of
the number of processes involved. This can become a limiting factor when very large
process counts are used. The underlying domain decomposition method, however,
can do away with globally synchronous communication, assuming the coarse prob-
lem in multilevel methods can be solved in a parallel way. Therefore, we will focus
on using domain decomposition methods purely as iterative methods. We note, how-
ever, that the discussed algorithms could be coupled with existing pipelined methods
[10] which alleviate the global synchronization requirement of Krylov solvers.

Another issue that is crucial to good scaling behavior is load imbalance. Load
imbalance might occur due to heterogeneous hardware in the system, or due to local,
problem specific causes, such as iteration counts for local sub-solves that vary from
region to region. Especially the latter are difficult to predict, so that load balancing
cannot occur before the actual solve. Therefore, a synchronous parallel application
has to be idle until its slowest process has finished. In an asynchronous method, local
computation can continue, and improve the quality of the global solution. An added
benefit of asynchronousmethods is that, since the interdependence of one subdomain
on the others has been weakened, fault tolerance [4, 5] can be more easily achieved.

The main drawback of asynchronous iterations is the fact that deterministic be-
havior is sacrificed. Consecutive runs do not produce the same result. (The results do
match up to a factor proportional to the convergence tolerance.) This also makes the
mathematical analysis of asynchronous methods significantly more difficult than the
analysis of their synchronous counterparts. Analytical frameworks for asynchronous
linear iterations have long been available [6, 2, 3, 9], but generally cannot produce
sharp convergence bounds except for in the simplest of cases.

2 Domain decomposition methods

We want to solve the system Gu = f , where G ∈ R#×# . Informally speaking, one-
level domain decomposition solvers break up the global system into overlapping sub-
problems that cover the global system. The iteration alternates between computation
of the global residual, involving communication, and local solves for corrections.
Special attention is paid to unknowns in the overlap to avoid over-correction.

We use the notation of [8] and denote subdomain matrices by G? , restrictions by
X? , and the discrete partition of unity by J ? . The local form of the restricted additive
Schwarz iteration (RAS) is given in Figure 1. A detailed derivation of the algorithm
can be found in [11]. In fact, Figure 1 describes both the synchronous and the
asynchronous version of RAS. In the synchronous version Line 4 is executed in lock
step by all subdomains using non-blocking two-sided communication primitives. In
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1: w ? ← 0
2: while not converged do
3: Local residual: t ? ← J?X?f − G?J?w ?

4: Accumulate: r ? ←
∑%
@=1 X?X

)
@ t@

5: Solve: G?v ? = r ?
6: Update: w ? ← w ? + v ?
7: end while
8: Post-process: u ? ←

∑%
@=1 X?X

)
@J@w@

Fig. 1: Restricted additive Schwarz (RAS) in local form. G? are subdomain matrices, X? are
subdomain restrictions, J? are the discrete partition of unity.

the asynchronous variant, each subdomain exposes amemory region to remote access
via MPI one-sided primitives. On execution of Line 4, the relevant components of
current local residual t ? are written to the neighboring subdomains, and the latest
locally available data t@ from neighbors @ is used.

In order to improve the scalability of the solver, amechanismof global information
exchange is required [15, 16]. Let X0 ∈ R=×=0 be the restriction from the fine grid
problem to a coarser mesh, and let the coarse grid matrix G0 be given by the Galerkin
relation G0 = X0GX

)
0 . The coarse grid solve can be incorporated in the RAS

iteration in additive fashion u =+1 = u =+
(

1
2 S

−1
'�(
+ 1

2 X
)
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0 X0

)
(f − Gu =), where

S−1
'�(

denotes the preconditioner associatedwith the RAS iteration described above.
We focus on the additive version, since it lends itself to asynchronous iterations:
subdomain solves and coarse-grid solves are independent of each other. From the
mathematical description of two-level additive RAS, one might be tempted to see
the coarse-grid problem simply as an additional subdomain. However, subdomains
determine the right-hand side for their local solve and correct it by transmitting
boundary data to their neighbors. The coarse-grid, on the other hand, receives its
entire right-hand side from the subdomains, and hence has to communicate with
every single one of them.

In order to perform asynchronous coarse-grid solves, we therefore need to make
sure that all the right-hand side data necessary for the solve has been received
on the coarse grid. Moreover, corrections sent by the coarse grid should be used
exactly once by the subdomains. This is achieved by not only allocating memory
regions to hold the coarse grid right-hand side on the coarse grid rank and the
coarse grid correction on the subdomains, but also Boolean variables that are polled
to determine whether writing or reading right-hand side or solution is permitted.
More precisely, writing of the local subdomain residuals to the coarse grid memory
region of r 0 is contingent upon the state of the Boolean variable canWriteRHS? .
(See Figure 2.) When canWriteRHS? is True, right-hand side data is written to
the coarse grid, otherwise this operation is omitted. Here, the subscripts are used
to signify the MPI rank owning the accessed memory region. As before, index 0
corresponds to the coarse grid and indices 1, . . . , % correspond to the subdomains.
To improve readability, we show access to a memory region on the calling process in
light gray, while remote access is printed in dark gray. In a similar fashion, the coarse
grid checks whether every subdomain has written a right-hand side to r 0 by polling
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1: while not converged do
2: On subdomains
3: Local residual: t ? ← J?X?f−G?J?w ?

4: if canWriteRHS? then
5: r 0 ← r 0 + X0X

)
? t ?

6: canWriteRHS? ← False
7: RHSisReady0 [?] ← True
8: end if
9: Accumulate asynchronously:

10: r ? ←
∑%
@=1 X?X

)
@ t@

11: Solve: G?v ? = r ?
12: Update: w ? ← w ? + 1

2 v ?
13: if solutionIsReady? then
14: Update: w ? ← w ? + 1

2 c ?
15: solutionIsReady? ← False
16: end if

17: On coarse grid
18: if RHSisReady0 [?] ∀? = 1, . . . , % then
19: Solve G0v 0 = r 0
20: for ? = 1, . . . , % do
21: RHSisReady0 [?] ← False
22: canWriteRHS? ← True
23: c ? ← X?X

)
0 v 0

24: solutionIsReady? ← True
25: end for
26: else
27: Sleep
28: end if
29: end while
30: On subdomains
31: Post-process synchronously
32: u ? ←

∑%
@=1 X?X

)
@J@w@

Fig. 2: Asynchronous RAS with additive coarse grid in local form. Variables printed in light gray
are exposed memory regions that are local to the calling process. Dark gray variables are remote
memory regions.

the state of the local Boolean array RHSisReady0. We notice that the algorithm is
asynchronous despite the data dependencies. Coarse grid and subdomain solves do
not wait for each other.

Since we determined by experiments that performance is adversely affected if
the coarse grid constantly polls the status variable RHSisReady0, we added a sleep
statement into its work loop. The sleep interval should not be too large, since this
results in under-usage of the coarse grid. Keeping the ratio of attempted coarse grid
solves to actual performed coarse grid solves at around 1/20 has been proven effective
to us. This can easily be achieved by an adaptive procedure that counts solves and
solve attempts and either increases or decreases the sleep interval accordingly.

We conclude this section with a note on convergence theory for the asynchronous
case. Contrary to the synchronous case, where the condition d (K) < 1 on the
iteration matrix K of the method is necessary and sufficient for convergence,
asynchronous convergence is guaranteed if K is a block H-matrix which is a P-
contraction [9]. Obtaining a prediction for a rate at which the asynchronous method
converges appears to bemore elusivewhich is whywe limit ourselves to experimental
comparisons.

3 Numerical Experiments

The performance of linear iterative methods is typically measured by the average
contraction factor per iteration d̃ = (Afinal/A0)

1
 , where A0 is the norm of the initial

residual vector, Afinal the norm of the final residual vector, and  the number of iter-
ations that were taken to decrease the residual from A0 to Afinal. For an asynchronous
method, the number of iterations varies from subdomain to subdomain, and hence d̃
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is not well-defined. The following generalization permits us to compare synchronous
methods with their asynchronous counterpart: d̂ = (Afinal/A0)

gsync
) . Here,) is the total

iteration time, and gsync is the average time for a single iteration in the synchronous
case. In the synchronous case, since ) = gsync , d̂ recovers d̃. The approximate
contraction factor d̂ can be interpreted as the average contraction of the residual
norm in the time of a single synchronous iteration.

We expect the performance of the asynchronousmethod relative to its synchronous
counterpart to be essentially dependent on the communication stencil. Here, we limit
ourselves to a simple 2D problem. Further experiments for more complicated PDEs
and as well as in 3D are part of future work.

As a test problem, we solve −ΔD = 5 in Ω = [0, 1]2 subject to the boundary
condition D = 0 on mΩ, where the right-hand side is 5 = 2c2 sin (cG) sin (cH) and
the corresponding solution is D = sin (cG) sin (cH). We discretizeΩ using a uniform
triangular mesh and approximate the solution using piece-wise linear finite elements.

In classical synchronous iterative methods, a stopping criterion of the form A < Y

is evaluated at every iteration. Here, A is the norm of the residual vector and Y is
a prescribed tolerance. The global quantity A needs to be computed as the sum of
local contributions from all the subdomains. This implies that convergence detection
in asynchronous methods is not straightforward, since collective communication
primitives require synchronization. In the numerical examples below, we terminate
the iteration using a simplistic convergence criterion where each process writes its
local contribution to the residual norm to a master rank, say rank 0. The master rank
sums the contributions, and exposes the result through another MPI window. Each
subdomain can retrieve this estimate of the global residual norm, and terminates
if it is smaller than the prescribed tolerance. This simplistic convergence detection
mechanism has several drawbacks. For one, the global residual is updated by the
master rank, which might not happen frequently enough. Hence it is possible that
the iteration continues despite the true global residual norm already being smaller
than the tolerance. Moreover, the mechanism puts an increased load on the network
connection to the master rank, since every subdomain writes to its memory region.
Finally, since the local contributions to the residual norm are not necessarily mono-
tonically decreasing, the criterion might actually detect convergence when the true
global residual is not yet smaller than the tolerance. The delicate topic of asyn-
chronous convergence detection has been treated in much detail in the literature, and
we refer to [1, 14] for an overview of more elaborate approaches.

All runs are performed on the Haswell partition of Cori at NERSC. While the
code was written from scratch, the differences between the synchronous and the
asynchronous code paths are limited, since only the communication layer and stop-
ping criterion need to be changed. One MPI rank is used per core, i.e. 32 ranks per
Haswell node. For the two-level method, the coarse grid solve is performed on a
single rank. The underlying mesh is partitioned using METIS [12]. Both subdomain
and coarse grid problems are factored and solved using the SuperLU [13, 7] direct
solver. This choice is guided by the desire to eliminate the impact that inexact solves
such as preconditioned iterative sub-solves might have on the overall convergence.
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One-level RAS We compare synchronous and asynchronous one-level RAS in a
strong scaling experiment, where we fix the global problem size to about 261,000
unknowns, and vary the number of subdomains between 4 and 256. We obviously
cannot expect good scaling for this one-level method, since increasing the number of
subdomains adversely affects the rate of convergence. In Figure 3a we display solve
time, final residual norm and approximate rate of convergence. It can be observed
that the synchronousmethod is faster for smaller subdomain count, yet comparatively
slower for larger number of subdomains. The crossover point is at 64 subdomains.

An important question is whether the asynchronous method converges because
every subdomain performs the same number of local iterations, and hence the asyn-
chronous method just mirrors the synchronous one, merely with the communication
method replaced. The histogram in Figure 3c shows that this is not the case. The
number of local iterations varies significantly between 11,000 and 16,000 iterations.
The problemwas load balanced by the number of unknowns, thus the local solves are
also approximately balanced but the communication is likely slightly imbalanced.

The advantage of asynchronous RAS becomes even clearer when the experiment
is repeated with one of the subdomains being 50% larger, thereby artificially creating
load imbalance. In Figure 3b we observe that the asynchronous method outperforms
the synchronous one in all but the smallest run.

Two-level RAS In order to gauge the performance and scalability of the syn-
chronous and asynchronous two-level RAS solvers, we perform a weak scaling ex-
periments. We use 16, 64, 256 and 1024 subdomains. The local number of unknowns
on each subdomain is kept constant at almost 20,000. The coarse grid problem in-
creases in size proportionally to the number of subdomains, with approximately
16 unknowns per subdomain. In Figure 4a we plot the solution time, the achieved
residual norm and the average contraction factor d̂. Both the synchronous and the
asynchronous method reach the prescribed tolerance of 10−8. Due to the lack of an
efficient mechanism of convergence detection, the asynchronous method ends up
iterating longer than necessary, so that the final residual often is smaller than 10−9.
The number of iterations in the synchronous case is about 110, whereas the num-
ber of local iterations in the asynchronous case varies between 110 and 150. (See
Figure 4c.) One can observe that for 16, 64 and 256 subdomains, asynchronous and
synchronous method take almost the same time. For 1024 subdomains, however, the
synchronous method is seen to take drastically more time. For this case the size of the
coarse grid is comparable to the size of the subdomains, and hence the coarse grid
solve which exchanges information with all the subdomains slows down the overall
progress. For the asynchronous case this is not observed, since the subdomains do
not have to wait for information from the coarse grid. The third subplot of Figure 4a
shows that the asynchronous method outperforms its synchronous equivalent in all
but the smallest problem.

To further illustrate the effect of load imbalance, we repeat the previous experi-
ment with one subdomain being 50% larger. The results are shown in Figure 4b. The
results are consistent with the previous case, and the performance advantage of the
asynchronous method over the synchronous one has increased. Even when the size
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Fig. 3: (a) Performance of synchronous and asynchronous one-level RAS for a system size of
approximately 261,000 unknowns. The subdomains are load balanced. From top to bottom: Solution
time, final residual norm, and the resulting approximate contraction factor. (b) Performance of
synchronous and asynchronous one-levelRAS for a system size of approximately 261,000 unknowns
under load imbalance: one subdomain is 50% larger than the rest. (c) Histogram of local iteration
counts asynchronous one-level RAS with 256 subdomains in the balanced case.

of the coarse grid system is smaller than the size of the typical subdomain problem,
the asynchronous method outperforms its synchronous counterpart.
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Fig. 4: (a) Weak scaling of synchronous and asynchronous two-level additive RAS, load balanced
case. From top to bottom: Total solution time, final residual norm, and approximate contraction
factor. (b) Weak scaling of synchronous and asynchronous two-level additive RAS under load
imbalance: one subdomain is 50% larger than all the other ones. (c) Histogram of local iteration
counts asynchronous two-level additive RAS with 1024 subdomains in the balanced case.
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